Remove some unused code.

This commit is contained in:
Jacob Dufault 2017-11-11 11:43:55 -08:00
parent 601af73ca9
commit 42f744ba29
8 changed files with 0 additions and 876 deletions

View File

@ -1,122 +0,0 @@
#include "buffer.h"
#include "platform.h"
#include "utils.h"
#include <doctest/doctest.h>
#include <cstdlib>
#include <mutex>
#include <thread>
namespace {
struct ScopedLockLocal : public ScopedLock {
ScopedLockLocal(std::mutex& mutex) : guard(mutex) {}
std::lock_guard<std::mutex> guard;
};
struct BufferLocal : public Buffer {
explicit BufferLocal(size_t capacity) {
this->data = malloc(capacity);
this->capacity = capacity;
}
~BufferLocal() override {
free(data);
data = nullptr;
capacity = 0;
}
std::unique_ptr<ScopedLock> WaitForExclusiveAccess() override {
return MakeUnique<ScopedLockLocal>(mutex_);
}
std::mutex mutex_;
};
struct ScopedLockPlatform : public ScopedLock {
ScopedLockPlatform(PlatformMutex* mutex)
: guard(CreatePlatformScopedMutexLock(mutex)) {}
std::unique_ptr<PlatformScopedMutexLock> guard;
};
struct BufferPlatform : public Buffer {
explicit BufferPlatform(const std::string& name, size_t capacity)
: memory_(CreatePlatformSharedMemory(name + "_mem", capacity)),
mutex_(CreatePlatformMutex(name + "_mtx")) {
this->data = memory_->data;
this->capacity = memory_->capacity;
}
~BufferPlatform() override {
data = nullptr;
capacity = 0;
}
std::unique_ptr<ScopedLock> WaitForExclusiveAccess() override {
return MakeUnique<ScopedLockPlatform>(mutex_.get());
}
std::unique_ptr<PlatformSharedMemory> memory_;
std::unique_ptr<PlatformMutex> mutex_;
};
} // namespace
std::unique_ptr<Buffer> Buffer::Create(size_t capacity) {
return MakeUnique<BufferLocal>(capacity);
}
std::unique_ptr<Buffer> Buffer::CreateSharedBuffer(const std::string& name,
size_t capacity) {
return MakeUnique<BufferPlatform>(name, capacity);
}
TEST_SUITE("BufferLocal");
TEST_CASE("create") {
std::unique_ptr<Buffer> b = Buffer::Create(24);
REQUIRE(b->data);
REQUIRE(b->capacity == 24);
b = Buffer::CreateSharedBuffer("indexertest", 24);
REQUIRE(b->data);
REQUIRE(b->capacity == 24);
}
TEST_CASE("lock") {
auto buffers = {Buffer::Create(sizeof(int)),
Buffer::CreateSharedBuffer("indexertest", sizeof(int))};
for (auto& b : buffers) {
int* data = reinterpret_cast<int*>(b->data);
*data = 0;
std::unique_ptr<std::thread> thread;
{
auto lock = b->WaitForExclusiveAccess();
*data = 1;
// Start a second thread, wait until it has attempted to acquire a lock.
volatile bool did_read = false;
thread = MakeUnique<std::thread>([&did_read, &b, &data]() {
did_read = true;
auto l = b->WaitForExclusiveAccess();
*data = 2;
});
while (!did_read)
std::this_thread::sleep_for(std::chrono::milliseconds(1));
std::this_thread::sleep_for(std::chrono::milliseconds(1));
// Verify lock acquisition is waiting.
REQUIRE(*data == 1);
}
// Wait for thread to acquire lock, verify it writes to data.
thread->join();
REQUIRE(*data == 2);
}
}
TEST_SUITE_END();

View File

@ -1,29 +0,0 @@
#pragma once
#include <memory>
#include <string>
struct ScopedLock {
virtual ~ScopedLock() = default;
};
// Points to a generic block of memory. Note that |data| is relocatable, ie,
// multiple Buffer instantiations may point to the same underlying block of
// memory but the data pointer has different values.
struct Buffer {
// Create a new buffer of the given capacity using process-local memory.
static std::unique_ptr<Buffer> Create(size_t capacity);
// Create a buffer pointing to memory shared across processes with the given
// capacity.
static std::unique_ptr<Buffer> CreateSharedBuffer(const std::string& name,
size_t capacity);
virtual ~Buffer() = default;
// Acquire a lock on the buffer, ie, become the only code that can read or
// write to it. The lock lasts so long as the returned object is alive.
virtual std::unique_ptr<ScopedLock> WaitForExclusiveAccess() = 0;
void* data = nullptr;
size_t capacity = 0;
};

View File

@ -1,5 +1,4 @@
// TODO: cleanup includes // TODO: cleanup includes
#include "buffer.h"
#include "cache.h" #include "cache.h"
#include "clang_complete.h" #include "clang_complete.h"
#include "file_consumer.h" #include "file_consumer.h"
@ -9,7 +8,6 @@
#include "language_server_api.h" #include "language_server_api.h"
#include "lex_utils.h" #include "lex_utils.h"
#include "match.h" #include "match.h"
#include "message_queue.h"
#include "options.h" #include "options.h"
#include "platform.h" #include "platform.h"
#include "project.h" #include "project.h"

View File

@ -1,416 +0,0 @@
#include "message_queue.h"
#include <cassert>
#include <cstring>
#include <functional>
#include <iostream>
#include <thread>
#include <doctest/doctest.h>
#include "platform.h"
#include "resizable_buffer.h"
#include "utils.h"
// TODO: figure out a logging solution
//#define MESSAGE_QUEUE_LOG
namespace {
const int kMinimumPartialPayloadSize = 128;
struct MessageHeader {
MessageHeader(uint32_t partial_id, bool has_more_chunks, size_t size)
: partial_id(partial_id), has_more_chunks(has_more_chunks), size(size) {}
uint32_t partial_id;
bool has_more_chunks;
size_t size;
};
struct BufferMessageIterator {
static BufferMessageIterator Begin(void* buffer, size_t bytes_used) {
if (bytes_used == 0)
return End();
return BufferMessageIterator(buffer, bytes_used);
}
static BufferMessageIterator End() {
return BufferMessageIterator(nullptr, 0);
}
// Start of buffer to iterate.
uint8_t* buffer;
// Number of bytes left in buffer to parse.
size_t remaining_bytes;
BufferMessageIterator(void* buffer, size_t remaining_bytes)
: buffer(reinterpret_cast<uint8_t*>(buffer)),
remaining_bytes(remaining_bytes) {}
MessageHeader* get() const {
return reinterpret_cast<MessageHeader*>(buffer);
}
MessageHeader* operator*() const { return get(); }
MessageHeader* operator->() const { return get(); }
void operator++() {
size_t next_message_offset = sizeof(MessageHeader) + get()->size;
if (next_message_offset >= remaining_bytes) {
assert(next_message_offset == remaining_bytes);
buffer = nullptr;
remaining_bytes = 0;
return;
}
buffer = buffer + next_message_offset;
remaining_bytes -= next_message_offset;
}
void* message_data() const {
return reinterpret_cast<void*>(buffer + sizeof(MessageHeader));
}
bool operator==(const BufferMessageIterator& other) const {
return buffer == other.buffer && remaining_bytes == other.remaining_bytes;
}
bool operator!=(const BufferMessageIterator& other) const {
return !(*this == other);
}
};
enum class RepeatResult { RunAgain, Break };
// Run |action| an arbitrary number of times.
void Repeat(std::function<RepeatResult()> action) {
bool first = true;
#if defined(MESSAGE_QUEUE_LOG)
int log_iteration_count = 0;
int log_count = 0;
#endif
while (true) {
if (!first) {
#if defined(MESSAGE_QUEUE_LOG)
if (log_iteration_count > 1000) {
log_iteration_count = 0;
std::cerr << "[info]: Buffer full, waiting (" << log_count++ << ")"
<< std::endl;
}
++log_iteration_count;
#endif
// TODO: See if we can figure out a way to use condition variables
// cross-process.
std::this_thread::sleep_for(std::chrono::microseconds(0));
}
first = false;
if (action() == RepeatResult::RunAgain)
continue;
break;
}
}
ResizableBuffer* CreateOrFindResizableBuffer(
std::unordered_map<uint32_t, std::unique_ptr<ResizableBuffer>>&
resizable_buffers,
uint32_t id) {
auto it = resizable_buffers.find(id);
if (it != resizable_buffers.end())
return it->second.get();
return (resizable_buffers[id] = MakeUnique<ResizableBuffer>()).get();
}
std::unique_ptr<Buffer> MakeBuffer(void* content, size_t size) {
auto buffer = Buffer::Create(size);
memcpy(buffer->data, content, size);
return buffer;
}
} // namespace
Message::Message(void* data, size_t size) : data(data), size(size) {}
struct MessageQueue::BufferMetadata {
// Reset buffer.
void reset() { total_message_bytes_ = 0; }
// Total number of used bytes excluding the sizeof this metadata object.
void add_used_bytes(size_t used_bytes) { total_message_bytes_ += used_bytes; }
// The total number of bytes in use.
size_t total_bytes_used_including_metadata() {
return total_message_bytes_ + sizeof(BufferMetadata);
}
// The total number of bytes currently used for messages. This does not
// include the sizeof the buffer metadata.
size_t total_message_bytes() { return total_message_bytes_; }
int next_partial_message_id = 0;
private:
size_t total_message_bytes_ = 0;
};
MessageQueue::MessageQueue(std::unique_ptr<Buffer> buffer, bool buffer_has_data)
: buffer_(std::move(buffer)) {
assert(buffer_->capacity >=
(sizeof(BufferMetadata) + kMinimumPartialPayloadSize));
if (!buffer_has_data)
new (buffer_->data) BufferMetadata();
local_buffer_ = Buffer::Create(buffer_->capacity - sizeof(BufferMetadata));
memset(local_buffer_->data, 0, local_buffer_->capacity);
}
void MessageQueue::Enqueue(const Message& message) {
#if defined(MESSAGE_QUEUE_LOG)
int count = 0;
#endif
uint32_t partial_id = 0;
uint8_t* payload_data = reinterpret_cast<uint8_t*>(message.data);
size_t payload_size = message.size;
Repeat([&]() {
#if defined(MESSAGE_QUEUE_LOG)
if (count++ > 500) {
std::cerr << "x500 Sending partial message payload_size=" << payload_size
<< std::endl;
count = 0;
}
#endif
auto lock = buffer_->WaitForExclusiveAccess();
// We cannot find the entire payload in the buffer. We have to send chunks
// of it over time.
if (payload_size >= BytesAvailableInBuffer()) {
// There's not enough room for our minimum payload size, so try again
// later.
if ((sizeof(MessageHeader) + kMinimumPartialPayloadSize) >
BytesAvailableInBuffer())
return RepeatResult::RunAgain;
if (partial_id == 0) {
// note: pre-increment so we use 1 as the initial value
partial_id = ++metadata()->next_partial_message_id;
}
size_t sent_payload_size =
BytesAvailableInBuffer() - sizeof(MessageHeader);
// |sent_payload_size| must always be smaller than |payload_size|. If it
// is equal to |payload_size|, than we could have sent it as a normal,
// non-partial message. It's also an error if it is larger than
// payload_size (we're sending garbage data).
assert(sent_payload_size < payload_size);
CopyPayloadToBuffer(partial_id, payload_data, sent_payload_size,
true /*has_more_chunks*/);
payload_data += sent_payload_size;
payload_size -= sent_payload_size;
// Prepare for next time.
return RepeatResult::RunAgain;
}
// The entire payload fits. Send it all now.
else {
// Include partial message id, as there could have been previous parts of
// this payload.
CopyPayloadToBuffer(partial_id, payload_data, payload_size,
false /*has_more_chunks*/);
#if defined(MESSAGE_QUEUE_LOG)
std::cerr << "Sending full message with payload_size=" << payload_size
<< std::endl;
#endif
return RepeatResult::Break;
}
});
}
std::vector<std::unique_ptr<Buffer>> MessageQueue::DequeueAll() {
std::unordered_map<uint32_t, std::unique_ptr<ResizableBuffer>>
resizable_buffers;
std::vector<std::unique_ptr<Buffer>> result;
while (true) {
size_t local_buffer_size = 0;
// Move data from shared memory into a local buffer. Do this
// before parsing the blocks so that other processes can begin
// posting data as soon as possible.
{
std::unique_ptr<ScopedLock> lock = buffer_->WaitForExclusiveAccess();
assert(BytesAvailableInBuffer() >= 0);
// note: Do not copy over buffer_ metadata.
local_buffer_size = metadata()->total_message_bytes();
memcpy(local_buffer_->data, first_message_in_buffer(), local_buffer_size);
metadata()->reset();
}
// Parse blocks from shared memory.
for (auto it = BufferMessageIterator::Begin(local_buffer_->data,
local_buffer_size);
it != BufferMessageIterator::End(); ++it) {
#if defined(MESSAGE_QUEUE_LOG)
std::cerr << "Got message with partial_id=" << it->partial_id
<< ", payload_size=" << it->size
<< ", has_more_chunks=" << it->has_more_chunks << std::endl;
#endif
if (it->partial_id != 0) {
auto* buf =
CreateOrFindResizableBuffer(resizable_buffers, it->partial_id);
buf->Append(it.message_data(), it->size);
if (!it->has_more_chunks) {
result.push_back(MakeBuffer(buf->buffer, buf->size));
resizable_buffers.erase(it->partial_id);
}
} else {
// Note: we can't just return pointers to |local_buffer_| because if we
// read a partial message we will invalidate all of the existing
// pointers. We could jump through hoops to make it work (ie, if no
// partial messages return pointers to local_buffer_) but it is not
// worth the effort.
assert(!it->has_more_chunks);
result.push_back(MakeBuffer(it.message_data(), it->size));
}
}
// We're waiting for data to be posted to result. Delay a little so we
// don't push the CPU so hard.
if (!resizable_buffers.empty())
std::this_thread::sleep_for(std::chrono::microseconds(0));
else
break;
}
return result;
}
void MessageQueue::CopyPayloadToBuffer(uint32_t partial_id,
void* payload,
size_t payload_size,
bool has_more_chunks) {
assert(BytesAvailableInBuffer() >= (sizeof(MessageHeader) + payload_size));
// Copy header.
MessageHeader header(partial_id, has_more_chunks, payload_size);
memcpy(first_free_address_in_buffer(), &header, sizeof(MessageHeader));
metadata()->add_used_bytes(sizeof(MessageHeader));
// Copy payload.
memcpy(first_free_address_in_buffer(), payload, payload_size);
metadata()->add_used_bytes(payload_size);
}
MessageQueue::BufferMetadata* MessageQueue::metadata() const {
return reinterpret_cast<BufferMetadata*>(buffer_->data);
}
size_t MessageQueue::BytesAvailableInBuffer() const {
return buffer_->capacity - metadata()->total_bytes_used_including_metadata();
}
Message* MessageQueue::first_message_in_buffer() const {
return reinterpret_cast<Message*>(reinterpret_cast<uint8_t*>(buffer_->data) +
sizeof(BufferMetadata));
}
void* MessageQueue::first_free_address_in_buffer() const {
if (metadata()->total_bytes_used_including_metadata() >= buffer_->capacity)
return nullptr;
return reinterpret_cast<void*>(
reinterpret_cast<uint8_t*>(buffer_->data) +
metadata()->total_bytes_used_including_metadata());
}
TEST_SUITE("MessageQueue");
TEST_CASE("simple") {
MessageQueue queue(Buffer::Create(kMinimumPartialPayloadSize * 5),
false /*buffer_has_data*/);
int data = 0;
data = 1;
queue.Enqueue(Message(&data, sizeof(data)));
data = 2;
queue.Enqueue(Message(&data, sizeof(data)));
int expected = 0;
for (std::unique_ptr<Buffer>& m : queue.DequeueAll()) {
++expected;
REQUIRE(m->capacity == sizeof(data));
int* value = reinterpret_cast<int*>(m->data);
REQUIRE(expected == *value);
}
}
TEST_CASE("large payload") {
MessageQueue queue(Buffer::Create(kMinimumPartialPayloadSize * 5),
false /*buffer_has_data*/);
// Allocate big buffer.
size_t num_ints = kMinimumPartialPayloadSize * 100;
int* sent_ints = reinterpret_cast<int*>(malloc(sizeof(int) * num_ints));
for (int i = 0; i < num_ints; ++i)
sent_ints[i] = i;
// Queue big buffer. Add surrounding messages to make sure they get sent
// correctly.
// Run in a separate thread because Enqueue will block.
volatile bool done_sending = false;
std::thread sender([&]() {
int small = 5;
queue.Enqueue(Message(&small, sizeof(small)));
queue.Enqueue(Message(sent_ints, sizeof(int) * num_ints));
queue.Enqueue(Message(&small, sizeof(small)));
done_sending = true;
});
// Receive sent messages.
{
// Keep dequeuing messages until we have three.
std::vector<std::unique_ptr<Buffer>> messages;
while (messages.size() != 3) {
for (auto& message : queue.DequeueAll())
messages.emplace_back(std::move(message));
}
sender.join();
// Small
{
REQUIRE(sizeof(int) == messages[0]->capacity);
int* value = reinterpret_cast<int*>(messages[0]->data);
REQUIRE(*value == 5);
}
// Big
{
int* received_ints = reinterpret_cast<int*>(messages[1]->data);
REQUIRE(received_ints != sent_ints);
REQUIRE(messages[1]->capacity == (sizeof(int) * num_ints));
for (int i = 0; i < num_ints; ++i) {
REQUIRE(received_ints[i] == i);
REQUIRE(received_ints[i] == sent_ints[i]);
}
}
// Small
{
REQUIRE(sizeof(int) == messages[2]->capacity);
int* value = reinterpret_cast<int*>(messages[2]->data);
REQUIRE(*value == 5);
}
}
free(sent_ints);
}
TEST_SUITE_END();

View File

@ -1,80 +0,0 @@
#pragma once
#include <memory>
#include <unordered_map>
#include <vector>
#include "buffer.h"
struct ResizableBuffer;
struct Message {
Message(void* data, size_t size);
void* data;
size_t size;
};
// A MessageQueue is a FIFO container storing messages in an arbitrary memory
// buffer that is cross-thread and cross-process safe. This means:
// - Multiple separate MessageQueues instantiations can point to the
// same underlying buffer and use it at the same time.
// - The buffer is fully relocatable, ie, it can have multiple different
// addresses (as is the case for memory shared across processes).
//
// There can be multiple writers, but there can only be one reader.
struct MessageQueue {
// Create a new MessageQueue using |buffer| as the backing data storage.
// This does *not* take ownership over the memory stored in |buffer|.
//
// If |buffer_has_data| is true, then it is assumed that |buffer| contains
// data and has already been initialized. It is a perfectly acceptable
// use-case to have multiple completely separate MessageQueue
// instantiations pointing to the same memory.
explicit MessageQueue(std::unique_ptr<Buffer> buffer, bool buffer_has_data);
MessageQueue(const MessageQueue&) = delete;
// Enqueue a message to the queue. This will wait until there is room in
// queue. If the message is too large to fit into the queue, this will
// wait until the message has been fully sent, which may involve multiple
// IPC roundtrips (ie, Enqueue -> DequeueAll -> Enqueue) - so this method
// may take a long time to run.
//
// TODO: Consider copying message memory to a temporary buffer and running
// enqueues on a worker thread.
void Enqueue(const Message& message);
// Take all messages from the queue.
std::vector<std::unique_ptr<Buffer>> DequeueAll();
private:
struct BufferMetadata;
void CopyPayloadToBuffer(uint32_t partial_id,
void* payload,
size_t payload_size,
bool has_more_chunks);
BufferMetadata* metadata() const;
// Returns the number of bytes currently available in the buffer.
size_t BytesAvailableInBuffer() const;
Message* first_message_in_buffer() const;
// First free message in the buffer.
void* first_free_address_in_buffer() const;
std::unique_ptr<Buffer> buffer_;
std::unique_ptr<Buffer> local_buffer_;
};
/*
// TODO: We convert IpcMessage <-> Message as a user-level operation.
// MessageQueue doesn't know about IpcMessage.
struct IpcMessage {
std::unique_ptr<Message> ToMessage();
void BuildFromMessage(std::unique_ptr<Message> message);
// Serialize/deserialize the message.
virtual void Serialize(Writer& writer) = 0;
virtual void Deserialize(Reader& reader) = 0;
};
*/

View File

@ -1,100 +0,0 @@
#include "resizable_buffer.h"
#include <doctest/doctest.h>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <cstring>
namespace {
const size_t kInitialCapacity = 128;
}
ResizableBuffer::ResizableBuffer() {
buffer = malloc(kInitialCapacity);
size = 0;
capacity_ = kInitialCapacity;
}
ResizableBuffer::~ResizableBuffer() {
free(buffer);
size = 0;
capacity_ = 0;
}
void ResizableBuffer::Append(void* content, size_t content_size) {
assert(capacity_ >= 0);
size_t new_size = size + content_size;
// Grow buffer capacity if needed.
if (new_size >= capacity_) {
size_t new_capacity = capacity_ * 2;
while (new_size >= new_capacity)
new_capacity *= 2;
void* new_memory = malloc(new_capacity);
assert(size < capacity_);
memcpy(new_memory, buffer, size);
free(buffer);
buffer = new_memory;
capacity_ = new_capacity;
}
// Append new content into memory.
memcpy(reinterpret_cast<uint8_t*>(buffer) + size, content, content_size);
size = new_size;
}
void ResizableBuffer::Reset() {
size = 0;
}
TEST_SUITE("ResizableBuffer");
TEST_CASE("buffer starts with zero size") {
ResizableBuffer b;
REQUIRE(b.buffer);
REQUIRE(b.size == 0);
}
TEST_CASE("append and reset") {
int content = 1;
ResizableBuffer b;
b.Append(&content, sizeof(content));
REQUIRE(b.size == sizeof(content));
b.Append(&content, sizeof(content));
REQUIRE(b.size == (2 * sizeof(content)));
b.Reset();
REQUIRE(b.size == 0);
}
TEST_CASE("appended content is copied into buffer w/ resize") {
int content = 0;
ResizableBuffer b;
// go past kInitialCapacity to verify resize works too
while (b.size < kInitialCapacity * 2) {
b.Append(&content, sizeof(content));
content += 1;
}
for (int i = 0; i < content; ++i)
REQUIRE(i == *(reinterpret_cast<int*>(b.buffer) + i));
}
TEST_CASE("reset does not reallocate") {
ResizableBuffer b;
while (b.size < kInitialCapacity)
b.Append(&b, sizeof(b));
void* buffer = b.buffer;
b.Reset();
REQUIRE(b.buffer == buffer);
}
TEST_SUITE_END();

View File

@ -1,23 +0,0 @@
#pragma once
#include <cstddef>
// Points to a generic block of memory that can be resized. This class owns
// and has the only pointer to the underlying memory buffer.
struct ResizableBuffer {
ResizableBuffer();
ResizableBuffer(const ResizableBuffer&) = delete;
~ResizableBuffer();
void Append(void* content, size_t content_size);
void Reset();
// Buffer content.
void* buffer;
// Number of bytes in |buffer|. Note that the actual buffer may be larger
// than |size|.
size_t size;
private:
size_t capacity_;
};

View File

@ -1,104 +0,0 @@
#pragma once
#include <functional>
#include <iostream>
#include <unordered_map>
#include "buffer.h"
#include "message_queue.h"
#include "serializer.h"
// TypedBidiMessageQueue provides a type-safe server/client implementation on
// top of a couple MessageQueue instances.
template <typename TId, typename TMessage>
struct TypedBidiMessageQueue {
using Serializer = std::function<void(Writer& visitor, TMessage& message)>;
using Deserializer =
std::function<std::unique_ptr<TMessage>(Reader& visitor)>;
TypedBidiMessageQueue(const std::string& name, size_t buffer_size)
: for_server(Buffer::CreateSharedBuffer(name + "_fs", buffer_size),
false /*buffer_has_data*/),
for_client(Buffer::CreateSharedBuffer(name + "_fc", buffer_size),
true /*buffer_has_data*/) {}
void RegisterId(TId id,
const Serializer& serializer,
const Deserializer& deserializer) {
assert(serializers_.find(id) == serializers_.end() &&
deserializers_.find(id) == deserializers_.end() &&
"Duplicate registration");
serializers_[id] = serializer;
deserializers_[id] = deserializer;
}
void SendMessage(MessageQueue* destination, TId id, TMessage& message) {
// Create writer.
rapidjson::StringBuffer output;
rapidjson::PrettyWriter<rapidjson::StringBuffer> writer(output);
writer.SetIndent(' ', 0);
// Serialize the message.
assert(serializers_.find(id) != serializers_.end() &&
"No registered serializer");
const Serializer& serializer = serializers_.find(id)->second;
serializer(writer, message);
// Send message.
void* payload = malloc(sizeof(MessageHeader) + output.GetSize());
reinterpret_cast<MessageHeader*>(payload)->id = id;
memcpy(
(void*)(reinterpret_cast<const char*>(payload) + sizeof(MessageHeader)),
output.GetString(), output.GetSize());
destination->Enqueue(
Message(payload, sizeof(MessageHeader) + output.GetSize()));
free(payload);
}
// Retrieve all messages from the given |queue|.
std::vector<std::unique_ptr<TMessage>> GetMessages(
MessageQueue* queue) const {
assert(queue == &for_server || queue == &for_client);
std::vector<std::unique_ptr<Buffer>> messages = queue->DequeueAll();
std::vector<std::unique_ptr<TMessage>> result;
result.reserve(messages.size());
for (std::unique_ptr<Buffer>& buffer : messages) {
MessageHeader* header = reinterpret_cast<MessageHeader*>(buffer->data);
// Parse message content.
rapidjson::Document document;
document.Parse(
reinterpret_cast<const char*>(buffer->data) + sizeof(MessageHeader),
buffer->capacity - sizeof(MessageHeader));
if (document.HasParseError()) {
std::cerr << "[FATAL]: Unable to parse IPC message" << std::endl;
exit(1);
}
// Deserialize it.
assert(deserializers_.find(header->id) != deserializers_.end() &&
"No registered deserializer");
const Deserializer& deserializer =
deserializers_.find(header->id)->second;
result.emplace_back(deserializer(document));
}
return result;
}
// Messages which the server process should handle.
MessageQueue for_server;
// Messages which the client process should handle.
MessageQueue for_client;
private:
struct MessageHeader {
TId id;
};
std::unordered_map<TId, Serializer> serializers_;
std::unordered_map<TId, Deserializer> deserializers_;
};