Re-pick "Handle template <class T> class A" but does not assign names to templates without body

This commit is contained in:
Fangrui Song 2018-01-25 12:19:24 -08:00
parent 7f9f6e0c6b
commit 7aea052f09
2 changed files with 70 additions and 22 deletions

View File

@ -774,11 +774,13 @@ bool IsTypeDefinition(const CXIdxContainerInfo* container) {
struct VisitDeclForTypeUsageParam { struct VisitDeclForTypeUsageParam {
IndexFile* db; IndexFile* db;
optional<IndexTypeId> toplevel_type;
int has_processed_any = false; int has_processed_any = false;
optional<ClangCursor> previous_cursor; optional<ClangCursor> previous_cursor;
optional<IndexTypeId> initial_type; optional<IndexTypeId> initial_type;
VisitDeclForTypeUsageParam(IndexFile* db) : db(db) {} VisitDeclForTypeUsageParam(IndexFile* db, optional<IndexTypeId> toplevel_type)
: db(db), toplevel_type(toplevel_type) {}
}; };
void VisitDeclForTypeUsageVisitorHandler(ClangCursor cursor, void VisitDeclForTypeUsageVisitorHandler(ClangCursor cursor,
@ -786,8 +788,31 @@ void VisitDeclForTypeUsageVisitorHandler(ClangCursor cursor,
param->has_processed_any = true; param->has_processed_any = true;
IndexFile* db = param->db; IndexFile* db = param->db;
// For |A<int> a| where there is a specialization for |A<int>|,
// the |referenced_usr| below resolves to the primary template and
// attributes the use to the primary template instead of the specialization.
// |toplevel_type| is retrieved |clang_getCursorType| which can be a specialization.
// If its name is the same as the primary template's, we assume the use
// should be attributed to the specialization.
// This heuristic fails when a member class bears the same name with its container.
//
// template<class T>
// struct C { struct C {}; };
// C<int>::C a;
//
// We will attribute |::C| to the parent class.
if (param->toplevel_type) {
IndexType* ref_type = db->Resolve(*param->toplevel_type);
std::string name = cursor.get_referenced().get_spelling();
if (name == ref_type->def.short_name) {
UniqueAdd(ref_type->uses, cursor.get_spelling_range());
param->toplevel_type = nullopt;
return;
}
}
std::string referenced_usr = std::string referenced_usr =
cursor.get_referenced().template_specialization_to_template_definition().get_usr(); cursor.get_referenced().template_specialization_to_template_definition().get_usr();
// TODO: things in STL cause this to be empty. Figure out why and document it. // TODO: things in STL cause this to be empty. Figure out why and document it.
if (referenced_usr == "") if (referenced_usr == "")
return; return;
@ -846,9 +871,15 @@ ClangCursor::VisitResult VisitDeclForTypeUsageVisitor(
// useful if trying to figure out ie, what a using statement refers to. If // useful if trying to figure out ie, what a using statement refers to. If
// trying to generally resolve a cursor to a type, use // trying to generally resolve a cursor to a type, use
// ResolveToDeclarationType, which works in more scenarios. // ResolveToDeclarationType, which works in more scenarios.
// If |decl_cursor| is a variable of a template type, clang_getCursorType
// may return a specialized template which is preciser than the primary
// template.
// We use |toplevel_type| to attribute the use to the specialized template
// instead of the primary template.
optional<IndexTypeId> AddDeclTypeUsages( optional<IndexTypeId> AddDeclTypeUsages(
IndexFile* db, IndexFile* db,
ClangCursor decl_cursor, ClangCursor decl_cursor,
optional<IndexTypeId> toplevel_type,
const CXIdxContainerInfo* semantic_container, const CXIdxContainerInfo* semantic_container,
const CXIdxContainerInfo* lexical_container) { const CXIdxContainerInfo* lexical_container) {
// //
@ -948,7 +979,7 @@ optional<IndexTypeId> AddDeclTypeUsages(
process_last_type_ref = false; process_last_type_ref = false;
} }
VisitDeclForTypeUsageParam param(db); VisitDeclForTypeUsageParam param(db, toplevel_type);
decl_cursor.VisitChildren(&VisitDeclForTypeUsageVisitor, &param); decl_cursor.VisitChildren(&VisitDeclForTypeUsageVisitor, &param);
// VisitDeclForTypeUsageVisitor guarantees that if there are multiple TypeRef // VisitDeclForTypeUsageVisitor guarantees that if there are multiple TypeRef
@ -1374,8 +1405,8 @@ void OnIndexDeclaration(CXClientData client_data, const CXIdxDeclInfo* decl) {
// the function declaration is encountered since we won't receive ParmDecl // the function declaration is encountered since we won't receive ParmDecl
// declarations for unnamed parameters. // declarations for unnamed parameters.
// TODO: See if we can remove this function call. // TODO: See if we can remove this function call.
AddDeclTypeUsages(db, decl_cursor, decl->semanticContainer, AddDeclTypeUsages(db, decl_cursor, var->def.variable_type,
decl->lexicalContainer); decl->semanticContainer, decl->lexicalContainer);
// We don't need to assign declaring type multiple times if this variable // We don't need to assign declaring type multiple times if this variable
// has already been seen. // has already been seen.
@ -1416,7 +1447,7 @@ void OnIndexDeclaration(CXClientData client_data, const CXIdxDeclInfo* decl) {
// We don't actually need to know the return type, but we need to mark it // We don't actually need to know the return type, but we need to mark it
// as an interesting usage. // as an interesting usage.
AddDeclTypeUsages(db, decl_cursor, decl->semanticContainer, AddDeclTypeUsages(db, decl_cursor, nullopt, decl->semanticContainer,
decl->lexicalContainer); decl->lexicalContainer);
// Add definition or declaration. This is a bit tricky because we treat // Add definition or declaration. This is a bit tricky because we treat
@ -1543,8 +1574,9 @@ void OnIndexDeclaration(CXClientData client_data, const CXIdxDeclInfo* decl) {
// Note we want to fetch the first TypeRef. Running // Note we want to fetch the first TypeRef. Running
// ResolveCursorType(decl->cursor) would return // ResolveCursorType(decl->cursor) would return
// the type of the typedef/using, not the type of the referenced type. // the type of the typedef/using, not the type of the referenced type.
optional<IndexTypeId> alias_of = AddDeclTypeUsages( optional<IndexTypeId> alias_of =
db, decl->cursor, decl->semanticContainer, decl->lexicalContainer); AddDeclTypeUsages(db, decl->cursor, nullopt, decl->semanticContainer,
decl->lexicalContainer);
IndexTypeId type_id = db->ToTypeId(HashUsr(decl->entityInfo->USR)); IndexTypeId type_id = db->ToTypeId(HashUsr(decl->entityInfo->USR));
IndexType* type = db->Resolve(type_id); IndexType* type = db->Resolve(type_id);
@ -1659,8 +1691,8 @@ void OnIndexDeclaration(CXClientData client_data, const CXIdxDeclInfo* decl) {
for (unsigned int i = 0; i < class_info->numBases; ++i) { for (unsigned int i = 0; i < class_info->numBases; ++i) {
const CXIdxBaseClassInfo* base_class = class_info->bases[i]; const CXIdxBaseClassInfo* base_class = class_info->bases[i];
AddDeclTypeUsages(db, base_class->cursor, decl->semanticContainer, AddDeclTypeUsages(db, base_class->cursor, nullopt,
decl->lexicalContainer); decl->semanticContainer, decl->lexicalContainer);
optional<IndexTypeId> parent_type_id = optional<IndexTypeId> parent_type_id =
ResolveToDeclarationType(db, base_class->cursor); ResolveToDeclarationType(db, base_class->cursor);
// type_def ptr could be invalidated by ResolveToDeclarationType and // type_def ptr could be invalidated by ResolveToDeclarationType and
@ -1888,7 +1920,21 @@ void OnIndexReference(CXClientData client_data, const CXIdxEntityRefInfo* ref) {
case CXIdxEntity_CXXClass: { case CXIdxEntity_CXXClass: {
ClangCursor ref_cursor = ref->referencedEntity->cursor; ClangCursor ref_cursor = ref->referencedEntity->cursor;
ref_cursor = ref_cursor.template_specialization_to_template_definition(); ref_cursor = ref_cursor.template_specialization_to_template_definition();
IndexType* referenced = db->Resolve(db->ToTypeId(ref_cursor.get_usr_hash())); IndexType* ref_type = db->Resolve(db->ToTypeId(ref_cursor.get_usr_hash()));
// TODO
// This example is handled by OnIndexReference, not OnIndexDeclaration,
// and it does not have |short_name|.
//
// template <class T> class A;
//if (ref_type->def.short_name.empty()) {
// ref_type->def.short_name = ref->referencedEntity->name;
// ref_type->def.detailed_name = ref->referencedEntity->name;
// if (!ref_type->def.definition_spelling) {
// ref_type->def.definition_spelling = ref_cursor.get_spelling_range();
// ref_type->def.definition_extent = ref_cursor.get_extent();
// }
//}
// //
// The following will generate two TypeRefs to Foo, both located at the // The following will generate two TypeRefs to Foo, both located at the
@ -1905,7 +1951,7 @@ void OnIndexReference(CXClientData client_data, const CXIdxEntityRefInfo* ref) {
// Foo f; // Foo f;
// } // }
// //
UniqueAdd(referenced->uses, UniqueAdd(ref_type->uses,
ClangCursor(ref->cursor).get_spelling_range()); ClangCursor(ref->cursor).get_spelling_range());
break; break;
} }

View File

@ -515,17 +515,19 @@ std::vector<SymbolRef> FindSymbolsAtLocation(WorkingFile* working_file,
// //
// Then order functions before other types, which makes goto definition work // Then order functions before other types, which makes goto definition work
// better on constructors. // better on constructors.
std::sort(symbols.begin(), symbols.end(), std::sort(symbols.begin(), symbols.end(), [](const SymbolRef& a,
[](const SymbolRef& a, const SymbolRef& b) { const SymbolRef& b) {
int a_size = ComputeRangeSize(a.loc.range); int a_size = ComputeRangeSize(a.loc.range);
int b_size = ComputeRangeSize(b.loc.range); int b_size = ComputeRangeSize(b.loc.range);
if (a_size != b_size) if (a_size != b_size)
return a_size < b_size; return a_size < b_size;
// operator> orders Var/Func in front of orders. // operator> orders Var/Func before Type.
return static_cast<int>(a.idx.kind) > int t = static_cast<int>(a.idx.kind) - static_cast<int>(b.idx.kind);
static_cast<int>(b.idx.kind); if (t)
}); return t > 0;
return a.idx.idx < b.idx.idx;
});
return symbols; return symbols;
} }