Cleanup new MessageQueue impl

This commit is contained in:
Jacob Dufault 2017-03-20 22:40:14 -07:00
parent 4b609c7158
commit e7390c14f1
2 changed files with 270 additions and 96 deletions

View File

@ -6,11 +6,26 @@
#include <thread>
#include "platform.h"
#include "resizable_buffer.h"
#include "../utils.h"
#include "../third_party/doctest/doctest/doctest.h"
// TODO: figure out a logging solution
//#define MESSAGE_QUEUE_LOG
namespace {
const int kMinimumPartialPayloadSize = 128;
struct MessageHeader {
MessageHeader(uint32_t partial_id, bool has_more_chunks, size_t size)
: partial_id(partial_id), has_more_chunks(has_more_chunks), size(size) {}
uint32_t partial_id;
bool has_more_chunks;
size_t size;
};
struct BufferMessageIterator {
static BufferMessageIterator Begin(void* buffer, size_t bytes_used) {
if (bytes_used == 0)
@ -24,22 +39,22 @@ struct BufferMessageIterator {
// Start of buffer to iterate.
void* buffer;
uint8_t* buffer;
// Number of bytes left in buffer to parse.
size_t remaining_bytes;
BufferMessageIterator(void* buffer, size_t remaining_bytes)
: buffer(buffer), remaining_bytes(remaining_bytes) {}
: buffer(reinterpret_cast<uint8_t*>(buffer)), remaining_bytes(remaining_bytes) {}
Message* get() const {
assert(buffer);
return reinterpret_cast<Message*>(buffer);
MessageHeader* get() const {
return reinterpret_cast<MessageHeader*>(buffer);
}
Message* operator*() const { return get(); }
Message* operator->() const { return get(); }
MessageHeader* operator*() const { return get(); }
MessageHeader* operator->() const { return get(); }
void operator++() {
size_t next_message_offset = get()->total_size;
size_t next_message_offset = sizeof(MessageHeader) + get()->size;
if (next_message_offset >= remaining_bytes) {
assert(next_message_offset == remaining_bytes);
buffer = nullptr;
@ -47,10 +62,14 @@ struct BufferMessageIterator {
return;
}
buffer = reinterpret_cast<char*>(buffer) + next_message_offset;
buffer = buffer + next_message_offset;
remaining_bytes -= next_message_offset;
}
void* message_data() const {
return reinterpret_cast<void*>(buffer + sizeof(MessageHeader));
}
bool operator==(const BufferMessageIterator& other) const {
return buffer == other.buffer && remaining_bytes == other.remaining_bytes;
}
@ -73,7 +92,9 @@ void Repeat(std::function<RepeatResult()> action) {
if (!first) {
if (log_iteration_count > 1000) {
log_iteration_count = 0;
std::cerr << "[info]: shmem full, waiting (" << log_count++ << ")" << std::endl; // TODO: remove
#if defined(MESSAGE_QUEUE_LOG)
std::cerr << "[info]: Buffer full, waiting (" << log_count++ << ")" << std::endl;
#endif
}
++log_iteration_count;
// TODO: See if we can figure out a way to use condition variables cross-process.
@ -87,12 +108,32 @@ void Repeat(std::function<RepeatResult()> action) {
}
}
ResizableBuffer* CreateOrFindResizableBuffer(std::unordered_map<int, std::unique_ptr<ResizableBuffer>>& resizable_buffers, uint32_t id) {
auto it = resizable_buffers.find(id);
if (it != resizable_buffers.end())
return it->second.get();
return (resizable_buffers[id] = MakeUnique<ResizableBuffer>()).get();
}
std::unique_ptr<Buffer> MakeBuffer(void* content, size_t size) {
auto buffer = Buffer::Create(size);
memcpy(buffer->data, content, size);
return std::move(buffer);
}
} // namespace
Message::Message(void* data, size_t size) : data(data), size(size) {}
struct MessageQueue::BufferMetadata {
// Total number of used bytes exluding the sizeof this metadata object.
void set_total_messages_byte_count(size_t used_bytes) {
total_message_bytes_ = used_bytes;
void add_used_bytes(size_t used_bytes) {
total_message_bytes_ += used_bytes;
}
void reset() {
total_message_bytes_ = 0;
}
// The total number of bytes in use.
@ -112,92 +153,147 @@ private:
MessageQueue::MessageQueue(std::unique_ptr<Buffer> buffer, bool buffer_has_data)
: buffer_(std::move(buffer)) {
assert(buffer_->capacity >= (sizeof(BufferMetadata) + kMinimumPartialPayloadSize));
if (!buffer_has_data)
new (buffer_->data) BufferMetadata();
local_buffer_ = Buffer::Create(buffer_->capacity - sizeof(BufferMetadata));
memset(local_buffer_->data, 0, local_buffer_->capacity);
}
void MessageQueue::Enqueue(const Message& message) {
//BufferMessageIterator::Begin(first_message_in_buffer(), metadata()->total_message_bytes);
int partial_message_id = 0;
#if defined(MESSAGE_QUEUE_LOG)
int count = 0;
#endif
uint32_t partial_id = 0;
uint8_t* payload_data = reinterpret_cast<uint8_t*>(message.data);
size_t payload_size = message.size;
Repeat([&]() {
#if defined(MESSAGE_QUEUE_LOG)
if (count++ > 500) {
std::cerr << "x500 Sending partial message payload_size=" << payload_size << std::endl;
count = 0;
}
#endif
auto lock = buffer_->WaitForExclusiveAccess();
// We cannot find the entire payload in the buffer. We have to send chunks
// of it over time.
if (message.total_size >= BytesAvailableInBuffer()) {
if (payload_size >= BytesAvailableInBuffer()) {
// There's not enough room for our minimum payload size, so try again later.
if ((sizeof(Message) + kMinimumPartialPayloadSize) > BytesAvailableInBuffer())
if ((sizeof(MessageHeader) + kMinimumPartialPayloadSize) > BytesAvailableInBuffer())
return RepeatResult::RunAgain;
if (partial_message_id == 0)
partial_message_id = ++metadata()->next_partial_message_id; // note: pre-increment so we 1 as initial value
size_t sent_payload_size = BytesAvailableInBuffer() - sizeof(Message);
free_message_in_buffer()->CopyFrom(message);
metadata()->set_total_messages_byte_count(
metadata()->total_message_bytes() + sizeof(Message) + sent_payload_size);
//shared_buffer->free_message()->Setup(message->ipc_id, partial_message_id, true /*has_more_chunks*/, sent_payload_size, payload);
//shared_buffer->metadata()->bytes_used += sizeof(JsonMessage) + sent_payload_size;
//shared_buffer->free_message()->ipc_id = IpcId::Invalid; // Note: free_message() may be past writable memory.
if (count++ > 50) {
std::cerr << "x50 Sending partial message with payload_size=" << sent_payload_size << std::endl;
count = 0;
if (partial_id == 0) {
// note: pre-increment so we use 1 as the initial value
partial_id = ++metadata()->next_partial_message_id;
}
size_t sent_payload_size = BytesAvailableInBuffer() - sizeof(MessageHeader);
// |sent_payload_size| must always be smaller than |payload_size|. If it is equal to
// |payload_size|, than we could have sent it as a normal, non-partial message. It's
// also an error if it is larger than payload_size (we're sending garbage data).
assert(sent_payload_size < payload_size);
CopyPayloadToBuffer(partial_id, payload_data, sent_payload_size, true /*has_more_chunks*/);
payload_data += sent_payload_size;
payload_size -= sent_payload_size;
// Prepare for next time.
payload_size -= sent_payload_size;
payload += sent_payload_size;
return RepeatResult::RunAgain;
}
return RepeatResult::Break;
#if false
assert(payload_size > 0);
// We cannot find the entire payload in the buffer. We
// have to send chunks of it over time.
if ((sizeof(JsonMessage) + payload_size) > shared_buffer->bytes_available()) {
if ((sizeof(JsonMessage) + kMinimumPartialPayloadSize) > shared_buffer->bytes_available())
return DispatchResult::RunAgain;
if (partial_message_id == 0)
partial_message_id = ++shared_buffer->metadata()->next_partial_message_id; // note: pre-increment so we 1 as initial value
size_t sent_payload_size = shared_buffer->bytes_available() - sizeof(JsonMessage);
shared_buffer->free_message()->Setup(message->ipc_id, partial_message_id, true /*has_more_chunks*/, sent_payload_size, payload);
shared_buffer->metadata()->bytes_used += sizeof(JsonMessage) + sent_payload_size;
//shared_buffer->free_message()->ipc_id = IpcId::Invalid; // Note: free_message() may be past writable memory.
if (count++ > 50) {
std::cerr << "x50 Sending partial message with payload_size=" << sent_payload_size << std::endl;
count = 0;
}
// Prepare for next time.
payload_size -= sent_payload_size;
payload += sent_payload_size;
return RepeatResult::RunAgain;
}
// The entire payload fits. Send it all now.
else {
// Include partial message id, as there could have been previous parts of this payload.
shared_buffer->free_message()->Setup(message->ipc_id, partial_message_id, false /*has_more_chunks*/, payload_size, payload);
shared_buffer->metadata()->bytes_used += sizeof(JsonMessage) + payload_size;
shared_buffer->free_message()->ipc_id = IpcId::Invalid;
//std::cerr << "Sending full message with payload_size=" << payload_size << std::endl;
CopyPayloadToBuffer(partial_id, payload_data, payload_size, false /*has_more_chunks*/);
#if defined(MESSAGE_QUEUE_LOG)
std::cerr << "Sending full message with payload_size=" << payload_size << std::endl;
#endif
return RepeatResult::Break;
}
#endif
});
}
std::vector<std::unique_ptr<Buffer>> MessageQueue::DequeueAll() {
std::unordered_map<int, std::unique_ptr<ResizableBuffer>> resizable_buffers;
std::vector<std::unique_ptr<Buffer>> result;
do {
size_t local_buffer_size = 0;
// Move data from shared memory into a local buffer. Do this
// before parsing the blocks so that other processes can begin
// posting data as soon as possible.
{
std::unique_ptr<ScopedLock> lock = buffer_->WaitForExclusiveAccess();
assert(BytesAvailableInBuffer() >= 0);
// note: Do not copy over buffer_ metadata.
local_buffer_size = metadata()->total_message_bytes();
memcpy(local_buffer_->data,
first_message_in_buffer(),
local_buffer_size);
metadata()->reset();
}
// Parse blocks from shared memory.
for (auto it = BufferMessageIterator::Begin(local_buffer_->data, local_buffer_size);
it != BufferMessageIterator::End();
++it) {
#if defined(MESSAGE_QUEUE_LOG)
std::cerr << "Got message with partial_id=" << it->partial_id << ", payload_size=" << it->size << ", has_more_chunks=" << it->has_more_chunks << std::endl;
#endif
if (it->partial_id != 0) {
auto* buf = CreateOrFindResizableBuffer(resizable_buffers, it->partial_id);
buf->Append(it.message_data(), it->size);
if (!it->has_more_chunks) {
// We can't remove the resizable buffer yet because we need to keep the data alive.
// We will remove it the next time this function is called.
result.push_back(MakeBuffer(buf->buffer, buf->size));
resizable_buffers.erase(it->partial_id);
}
}
else {
// Note: we can't just return pointers to |local_buffer_| because if we
// read a partial message we will invalidate all of the existing
// pointers. We could jump through hoops to make it work (ie, if no
// partial messages return pointers to local_buffer_) but it is not
// worth the effort.
assert(!it->has_more_chunks);
result.push_back(MakeBuffer(it.message_data(), it->size));
}
}
// Let other threads run. We still want to run as fast as possible, though.
std::this_thread::sleep_for(std::chrono::microseconds(0));
} while (resizable_buffers.size() > 0);
return result;
}
void MessageQueue::CopyPayloadToBuffer(uint32_t partial_id, void* payload, size_t payload_size, bool has_more_chunks) {
assert(BytesAvailableInBuffer() >= (sizeof(MessageHeader) + payload_size));
// Copy header.
MessageHeader header(partial_id, has_more_chunks, payload_size);
memcpy(first_free_address_in_buffer(), &header, sizeof(MessageHeader));
metadata()->add_used_bytes(sizeof(MessageHeader));
// Copy payload.
memcpy(first_free_address_in_buffer(), payload, payload_size);
metadata()->add_used_bytes(payload_size);
}
MessageQueue::BufferMetadata* MessageQueue::metadata() const {
return reinterpret_cast<BufferMetadata*>(buffer_->data);
}
@ -208,12 +304,95 @@ size_t MessageQueue::BytesAvailableInBuffer() const {
Message* MessageQueue::first_message_in_buffer() const {
return reinterpret_cast<Message*>(
reinterpret_cast<uint8_t>(buffer_->data) + sizeof(BufferMetadata));
reinterpret_cast<uint8_t*>(buffer_->data) + sizeof(BufferMetadata));
}
Message* MessageQueue::free_message_in_buffer() const {
if (metadata()->total_bytes_used_including_metadata >= buffer_->capacity)
void* MessageQueue::first_free_address_in_buffer() const {
if (metadata()->total_bytes_used_including_metadata() >= buffer_->capacity)
return nullptr;
return reinterpret_cast<Message*>(
reinterpret_cast<uint8_t>(buffer_->data) + metadata()->total_bytes_used_including_metadata());
return reinterpret_cast<void*>(
reinterpret_cast<uint8_t*>(buffer_->data) +
metadata()->total_bytes_used_including_metadata());
}
TEST_SUITE("MessageQueue");
TEST_CASE("simple") {
MessageQueue queue(Buffer::Create(kMinimumPartialPayloadSize * 5), false /*buffer_has_data*/);
int data = 0;
data = 1;
queue.Enqueue(Message(&data, sizeof(data)));
data = 2;
queue.Enqueue(Message(&data, sizeof(data)));
int expected = 0;
for (std::unique_ptr<Buffer>& m : queue.DequeueAll()) {
++expected;
REQUIRE(m->capacity == sizeof(data));
int* value = reinterpret_cast<int*>(m->data);
REQUIRE(expected == *value);
}
}
TEST_CASE("large payload") {
MessageQueue queue(Buffer::Create(kMinimumPartialPayloadSize * 5), false /*buffer_has_data*/);
// Allocate big buffer.
size_t num_ints = kMinimumPartialPayloadSize * 100;
int* sent_ints = reinterpret_cast<int*>(malloc(sizeof(int) * num_ints));
for (int i = 0; i < num_ints; ++i)
sent_ints[i] = i;
// Queue big buffer. Add surrounding messages to make sure they get sent correctly.
// Run in a separate thread because Enqueue will block.
volatile bool done_sending = false;
std::thread sender([&]() {
int small = 5;
queue.Enqueue(Message(&small, sizeof(small)));
queue.Enqueue(Message(sent_ints, sizeof(int) * num_ints));
queue.Enqueue(Message(&small, sizeof(small)));
done_sending = true;
});
// Receive sent messages.
{
// Keep dequeuing messages until we have three.
std::vector<std::unique_ptr<Buffer>> messages;
while (messages.size() != 3) {
for (auto& message : queue.DequeueAll())
messages.emplace_back(std::move(message));
}
sender.join();
// Small
{
REQUIRE(sizeof(int) == messages[0]->capacity);
int* value = reinterpret_cast<int*>(messages[0]->data);
REQUIRE(*value == 5);
}
// Big
{
int* received_ints = reinterpret_cast<int*>(messages[1]->data);
REQUIRE(received_ints != sent_ints);
REQUIRE(messages[1]->capacity == (sizeof(int) * num_ints));
for (int i = 0; i < num_ints; ++i) {
REQUIRE(received_ints[i] == i);
REQUIRE(received_ints[i] == sent_ints[i]);
}
}
// Small
{
REQUIRE(sizeof(int) == messages[2]->capacity);
int* value = reinterpret_cast<int*>(messages[2]->data);
REQUIRE(*value == 5);
}
}
free(sent_ints);
}
TEST_SUITE_END();

View File

@ -2,26 +2,27 @@
#include <vector>
#include <memory>
#include <unordered_map>
#include "buffer.h"
class ResizableBuffer;
struct Message {
// Unique message identifier.
uint8_t message_id;
Message(void* data, size_t size);
// Total size of the message (including metadata that this object stores).
size_t total_size;
// Size of the extra message data immediately following the message payload.
size_t message_size() const { return total_size - sizeof(Message); }
void* data;
size_t size;
};
// A MessageQueue is a FIFO container storing messages in an arbitrary memory
// buffer.
// buffer that is cross-thread and cross-process safe. This means:
// - Multiple separate MessageQueues instantiations can point to the
// same underlying buffer
// - Buffer is fully relocatable, ie, it can have multiple different
// same underlying buffer and use it at the same time.
// - The buffer is fully relocatable, ie, it can have multiple different
// addresses (as is the case for memory shared across processes).
//
// There can be multiple writers, but there can only be one reader.
struct MessageQueue {
// Create a new MessageQueue using |buffer| as the backing data storage.
// This does *not* take ownership over the memory stored in |buffer|.
@ -44,28 +45,22 @@ struct MessageQueue {
void Enqueue(const Message& message);
// Take all messages from the queue.
//
// note:
// We could make this allocation free by returning raw pointers to the
// internal process-local buffer, but that is pretty haphazard and likely
// to cause a very confusing crash. The extra memory allocations here from
// unique_ptr going to make a performance difference.
std::vector<std::unique_ptr<Message>> DequeueAll();
// Take the first available message from the queue.
std::unique_ptr<Message> DequeueFirst();
std::vector<std::unique_ptr<Buffer>> DequeueAll();
private:
struct BufferMetadata;
void CopyPayloadToBuffer(uint32_t partial_id, void* payload, size_t payload_size, bool has_more_chunks);
BufferMetadata* metadata() const;
// Returns the number of bytes currently available in the buffer.
size_t BytesAvailableInBuffer() const;
Message* first_message_in_buffer() const;
// First free message in the buffer.
Message* free_message_in_buffer() const;
void* first_free_address_in_buffer() const;
std::unique_ptr<Buffer> buffer_;
std::unique_ptr<Buffer> local_buffer_;
};
/*