#include "query_utils.h" #include "queue_manager.h" #include #include #include #include #include namespace { // Computes roughly how long |range| is. int ComputeRangeSize(const Range& range) { if (range.start.line != range.end.line) return INT_MAX; return range.end.column - range.start.column; } template std::vector GetDeclarations(std::vector& entities, const std::vector>& ids) { std::vector ret; ret.reserve(ids.size()); for (auto id : ids) { Q& entity = entities[id.id]; bool has_def = false; for (auto& def : entity.def) if (def.spell) { ret.push_back(*def.spell); has_def = true; break; } if (!has_def && entity.declarations.size()) ret.push_back(entity.declarations[0]); } return ret; } } // namespace Maybe GetDefinitionSpellingOfSymbol(QueryDatabase* db, SymbolIdx sym) { Maybe ret; EachEntityDef(db, sym, [&](const auto& def) { return !(ret = def.spell); }); return ret; } Maybe GetDefinitionExtentOfSymbol(QueryDatabase* db, SymbolIdx sym) { // Used to jump to file. if (sym.kind == SymbolKind::File) return Use(Range(Position(0, 0), Position(0, 0)), sym.id, sym.kind, Role::None, QueryFileId(sym.id)); Maybe ret; EachEntityDef(db, sym, [&](const auto& def) { return !(ret = def.extent); }); return ret; } Maybe GetDeclarationFileForSymbol(QueryDatabase* db, SymbolIdx sym) { switch (sym.kind) { case SymbolKind::File: return QueryFileId(sym.id); case SymbolKind::Func: { QueryFunc& func = db->GetFunc(sym); if (!func.declarations.empty()) return func.declarations[0].file; if (const auto* def = func.AnyDef()) return def->file; break; } case SymbolKind::Type: { if (const auto* def = db->GetType(sym).AnyDef()) return def->file; break; } case SymbolKind::Var: { if (const auto* def = db->GetVar(sym).AnyDef()) return def->file; break; } case SymbolKind::Invalid: { assert(false && "unexpected"); break; } } return nullopt; } std::vector GetDeclarations(QueryDatabase* db, const std::vector& ids) { return GetDeclarations(db->funcs, ids); } std::vector GetDeclarations(QueryDatabase* db, const std::vector& ids) { return GetDeclarations(db->types, ids); } std::vector GetDeclarations(QueryDatabase* db, const std::vector& ids) { return GetDeclarations(db->vars, ids); } std::vector GetNonDefDeclarations(QueryDatabase* db, SymbolIdx sym) { switch (sym.kind) { case SymbolKind::Func: return db->GetFunc(sym).declarations; case SymbolKind::Type: return db->GetType(sym).declarations; case SymbolKind::Var: return db->GetVar(sym).declarations; default: return {}; } } bool HasCallersOnSelfOrBaseOrDerived(QueryDatabase* db, QueryFunc& root) { std::unordered_set seen; std::stack stack; seen.insert(root.usr); stack.push(&root); while (!stack.empty()) { QueryFunc& func = *stack.top(); stack.pop(); if (!func.uses.empty()) return true; if (auto* def = func.AnyDef()) { EachDefinedEntity(db->funcs, def->base, [&](QueryFunc& func1) { if (!seen.count(func1.usr)) { seen.insert(func1.usr); stack.push(&func1); } }); EachDefinedEntity(db->funcs, func.derived, [&](QueryFunc& func1) { if (!seen.count(func1.usr)) { seen.insert(func1.usr); stack.push(&func1); } }); } } return false; } std::vector GetCallersForAllBaseFunctions(QueryDatabase* db, QueryFunc& root) { std::vector callers; std::unordered_set seen; std::stack stack; seen.insert(root.usr); stack.push(&root); while (!stack.empty()) { QueryFunc& func = *stack.top(); stack.pop(); AddRange(&callers, func.uses); if (auto* def = func.AnyDef()) { EachDefinedEntity(db->funcs, def->base, [&](QueryFunc& func1) { if (!seen.count(func1.usr)) { seen.insert(func1.usr); stack.push(&func1); } }); } } return callers; } std::vector GetCallersForAllDerivedFunctions(QueryDatabase* db, QueryFunc& root) { std::vector callers; std::unordered_set seen; std::stack stack; seen.insert(root.usr); stack.push(&root); while (!stack.empty()) { QueryFunc& func = *stack.top(); stack.pop(); AddRange(&callers, func.uses); EachDefinedEntity(db->funcs, func.derived, [&](QueryFunc& func1) { if (!seen.count(func1.usr)) { seen.insert(func1.usr); stack.push(&func1); } }); } return callers; } optional GetLsPosition(WorkingFile* working_file, const Position& position) { if (!working_file) return lsPosition(position.line, position.column); int column = position.column; if (optional start = working_file->GetBufferPosFromIndexPos(position.line, &column, false)) return lsPosition(*start, column); return nullopt; } optional GetLsRange(WorkingFile* working_file, const Range& location) { if (!working_file) { return lsRange(lsPosition(location.start.line, location.start.column), lsPosition(location.end.line, location.end.column)); } int start_column = location.start.column, end_column = location.end.column; optional start = working_file->GetBufferPosFromIndexPos( location.start.line, &start_column, false); optional end = working_file->GetBufferPosFromIndexPos(location.end.line, &end_column, true); if (!start || !end) return nullopt; // If remapping end fails (end can never be < start), just guess that the // final location didn't move. This only screws up the highlighted code // region if we guess wrong, so not a big deal. // // Remapping fails often in C++ since there are a lot of "};" at the end of // class/struct definitions. if (*end < *start) *end = *start + (location.end.line - location.start.line); if (*start == *end && start_column > end_column) end_column = start_column; return lsRange(lsPosition(*start, start_column), lsPosition(*end, end_column)); } lsDocumentUri GetLsDocumentUri(QueryDatabase* db, QueryFileId file_id, std::string* path) { QueryFile& file = db->files[file_id.id]; if (file.def) { *path = file.def->path; return lsDocumentUri::FromPath(*path); } else { *path = ""; return lsDocumentUri::FromPath(""); } } lsDocumentUri GetLsDocumentUri(QueryDatabase* db, QueryFileId file_id) { QueryFile& file = db->files[file_id.id]; if (file.def) { return lsDocumentUri::FromPath(file.def->path); } else { return lsDocumentUri::FromPath(""); } } optional GetLsLocation(QueryDatabase* db, WorkingFiles* working_files, Use use) { std::string path; lsDocumentUri uri = GetLsDocumentUri(db, use.file, &path); optional range = GetLsRange(working_files->GetFileByFilename(path), use.range); if (!range) return nullopt; return lsLocation(uri, *range); } optional GetLsLocationEx(QueryDatabase* db, WorkingFiles* working_files, Use use, bool container) { optional ls_loc = GetLsLocation(db, working_files, use); if (!ls_loc) return nullopt; lsLocationEx ret; ret.lsLocation::operator=(*ls_loc); if (container) { EachEntityDef(db, use, [&](const auto& def) { ret.containerName = std::string_view(def.detailed_name); return false; }); } return ret; } std::vector GetLsLocationExs(QueryDatabase* db, WorkingFiles* working_files, const std::vector& uses, bool container, int limit) { std::vector ret; for (Use use : uses) if (auto loc = GetLsLocationEx(db, working_files, use, container)) ret.push_back(*loc); std::sort(ret.begin(), ret.end()); ret.erase(std::unique(ret.begin(), ret.end()), ret.end()); if (ret.size() > limit) ret.resize(limit); return ret; } // Returns a symbol. The symbol will have *NOT* have a location assigned. optional GetSymbolInfo(QueryDatabase* db, WorkingFiles* working_files, SymbolIdx sym, bool use_short_name) { switch (sym.kind) { case SymbolKind::Invalid: break; case SymbolKind::File: { QueryFile& file = db->GetFile(sym); if (!file.def) break; lsSymbolInformation info; info.name = file.def->path; info.kind = lsSymbolKind::File; return info; } default: { lsSymbolInformation info; EachEntityDef(db, sym, [&](const auto& def) { if (use_short_name) info.name = def.ShortName(); else info.name = def.detailed_name; info.kind = def.kind; info.containerName = def.detailed_name; return false; }); return info; } } return nullopt; } std::vector FindSymbolsAtLocation(WorkingFile* working_file, QueryFile* file, lsPosition position) { std::vector symbols; symbols.reserve(1); int target_line = position.line; int target_column = position.character; if (working_file) { optional index_line = working_file->GetIndexPosFromBufferPos( target_line, &target_column, false); if (index_line) target_line = *index_line; } for (const SymbolRef& sym : file->def->all_symbols) { if (sym.range.Contains(target_line, target_column)) symbols.push_back(sym); } // Order shorter ranges first, since they are more detailed/precise. This is // important for macros which generate code so that we can resolving the // macro argument takes priority over the entire macro body. // // Order SymbolKind::Var before SymbolKind::Type. Macro calls are treated as // Var currently. If a macro expands to tokens led by a SymbolKind::Type, the // macro and the Type have the same range. We want to find the macro // definition instead of the Type definition. // // Then order functions before other types, which makes goto definition work // better on constructors. std::sort(symbols.begin(), symbols.end(), [](const SymbolRef& a, const SymbolRef& b) { int t = ComputeRangeSize(a.range) - ComputeRangeSize(b.range); if (t) return t < 0; t = (a.role & Role::Definition) - (b.role & Role::Definition); if (t) return t > 0; // operator> orders Var/Func before Type. t = static_cast(a.kind) - static_cast(b.kind); if (t) return t > 0; return a.id < b.id; }); return symbols; } void EmitDiagnostics(WorkingFiles* working_files, std::string path, std::vector diagnostics) { // Emit diagnostics. Out_TextDocumentPublishDiagnostics out; out.params.uri = lsDocumentUri::FromPath(path); out.params.diagnostics = diagnostics; QueueManager::WriteStdout(IpcId::TextDocumentPublishDiagnostics, out); // Cache diagnostics so we can show fixits. working_files->DoActionOnFile(path, [&](WorkingFile* working_file) { if (working_file) working_file->diagnostics_ = diagnostics; }); }