#include "indexer.h" #include #include #include "platform.h" #include "serializer.h" namespace { const bool kIndexStdDeclarations = true; void AddFuncRef(std::vector* result, IndexFuncRef ref) { if (!result->empty() && (*result)[result->size() - 1] == ref) return; result->push_back(ref); } } // namespace IndexedFile::IndexedFile(const std::string& path) : id_cache(path), path(path) { // TODO: Reconsider if we should still be reusing the same id_cache. // Preallocate any existing resolved ids. for (const auto& entry : id_cache.usr_to_type_id) types.push_back(IndexedTypeDef(entry.second, entry.first)); for (const auto& entry : id_cache.usr_to_func_id) funcs.push_back(IndexedFuncDef(entry.second, entry.first)); for (const auto& entry : id_cache.usr_to_var_id) vars.push_back(IndexedVarDef(entry.second, entry.first)); } // TODO: Optimize for const char*? IndexTypeId IndexedFile::ToTypeId(const std::string& usr) { auto it = id_cache.usr_to_type_id.find(usr); if (it != id_cache.usr_to_type_id.end()) return it->second; IndexTypeId id(types.size()); types.push_back(IndexedTypeDef(id, usr)); id_cache.usr_to_type_id[usr] = id; id_cache.type_id_to_usr[id] = usr; return id; } IndexFuncId IndexedFile::ToFuncId(const std::string& usr) { auto it = id_cache.usr_to_func_id.find(usr); if (it != id_cache.usr_to_func_id.end()) return it->second; IndexFuncId id(funcs.size()); funcs.push_back(IndexedFuncDef(id, usr)); id_cache.usr_to_func_id[usr] = id; id_cache.func_id_to_usr[id] = usr; return id; } IndexVarId IndexedFile::ToVarId(const std::string& usr) { auto it = id_cache.usr_to_var_id.find(usr); if (it != id_cache.usr_to_var_id.end()) return it->second; IndexVarId id(vars.size()); vars.push_back(IndexedVarDef(id, usr)); id_cache.usr_to_var_id[usr] = id; id_cache.var_id_to_usr[id] = usr; return id; } IndexTypeId IndexedFile::ToTypeId(const CXCursor& cursor) { return ToTypeId(clang::Cursor(cursor).get_usr()); } IndexFuncId IndexedFile::ToFuncId(const CXCursor& cursor) { return ToFuncId(clang::Cursor(cursor).get_usr()); } IndexVarId IndexedFile::ToVarId(const CXCursor& cursor) { return ToVarId(clang::Cursor(cursor).get_usr()); } IndexedTypeDef* IndexedFile::Resolve(IndexTypeId id) { return &types[id.id]; } IndexedFuncDef* IndexedFile::Resolve(IndexFuncId id) { return &funcs[id.id]; } IndexedVarDef* IndexedFile::Resolve(IndexVarId id) { return &vars[id.id]; } std::string IndexedFile::ToString() { return Serialize(*this); } IndexedTypeDef::IndexedTypeDef(IndexTypeId id, const std::string& usr) : def(usr), id(id) { assert(usr.size() > 0); // std::cerr << "Creating type with usr " << usr << std::endl; } void RemoveItem(std::vector& ranges, Range to_remove) { auto it = std::find(ranges.begin(), ranges.end(), to_remove); if (it != ranges.end()) ranges.erase(it); } void UniqueAdd(std::vector& refs, IndexFuncRef ref) { if (std::find(refs.begin(), refs.end(), ref) != refs.end()) refs.push_back(ref); } void UniqueAdd(std::vector& uses, Range loc, bool insert_if_not_present = true) { // cannot sub 1 from size_t in loop below; check explicitly here if (uses.empty()) { if (insert_if_not_present) uses.push_back(loc); return; } // TODO: think about if we need to also consider |uses[i].end| // First thought makes me think no, we don't. for (int i = uses.size() - 1; i >= 0; --i) { if (uses[i].start == loc.start) { if (loc.interesting) uses[i].interesting = true; return; } } if (insert_if_not_present) uses.push_back(loc); } IdCache::IdCache(const std::string& primary_file) : primary_file(primary_file) {} Range IdCache::Resolve(const CXSourceRange& range, bool interesting) { CXSourceLocation start = clang_getRangeStart(range); CXSourceLocation end = clang_getRangeEnd(range); unsigned int start_line, start_column; clang_getSpellingLocation(start, nullptr, &start_line, &start_column, nullptr); unsigned int end_line, end_column; clang_getSpellingLocation(end, nullptr, &end_line, &end_column, nullptr); return Range(interesting, Position(start_line, start_column) /*start*/, Position(end_line, end_column) /*end*/); } Range IdCache::ResolveSpelling(const CXCursor& cx_cursor, bool interesting) { CXSourceRange cx_range = clang_Cursor_getSpellingNameRange(cx_cursor, 0, 0); return Resolve(cx_range, interesting); } Range IdCache::ResolveExtent(const CXCursor& cx_cursor, bool interesting) { CXSourceRange cx_range = clang_getCursorExtent(cx_cursor); return Resolve(cx_range, interesting); } template bool Contains(const std::vector& vec, const T& element) { for (const T& entry : vec) { if (entry == element) return true; } return false; } struct NamespaceHelper { std::unordered_map container_usr_to_qualified_name; void RegisterQualifiedName(std::string usr, const CXIdxContainerInfo* container, std::string qualified_name) { if (container) { std::string container_usr = clang::Cursor(container->cursor).get_usr(); auto it = container_usr_to_qualified_name.find(container_usr); if (it != container_usr_to_qualified_name.end()) { container_usr_to_qualified_name[usr] = it->second + qualified_name + "::"; return; } } container_usr_to_qualified_name[usr] = qualified_name + "::"; } std::string QualifiedName(const CXIdxContainerInfo* container, std::string unqualified_name) { if (container) { std::string container_usr = clang::Cursor(container->cursor).get_usr(); auto it = container_usr_to_qualified_name.find(container_usr); if (it != container_usr_to_qualified_name.end()) return it->second + unqualified_name; // Anonymous namespaces are not processed by indexDeclaration. If we // encounter one insert it into map. if (container->cursor.kind == CXCursor_Namespace) { // assert(clang::Cursor(container->cursor).get_spelling() == ""); container_usr_to_qualified_name[container_usr] = "::"; return "::" + unqualified_name; } } return unqualified_name; } }; struct IndexParam { // Only use this when strictly needed (ie, primary translation unit is // needed). Most logic should get the IndexedFile instance via // |file_consumer|. IndexedFile* primary_file; FileConsumer* file_consumer; NamespaceHelper ns; IndexParam(FileConsumer* file_consumer) : file_consumer(file_consumer) {} }; int abortQuery(CXClientData client_data, void* reserved) { // 0 -> continue return 0; } void diagnostic(CXClientData client_data, CXDiagnosticSet diagnostics, void* reserved) { IndexParam* param = static_cast(client_data); // Print any diagnostics to std::cerr for (unsigned i = 0; i < clang_getNumDiagnosticsInSet(diagnostics); ++i) { CXDiagnostic diagnostic = clang_getDiagnosticInSet(diagnostics, i); std::string spelling = clang::ToString(clang_getDiagnosticSpelling(diagnostic)); // Fetch location CXFile file; unsigned int line, column; CXSourceLocation location = clang_getDiagnosticLocation(diagnostic); clang_getSpellingLocation(location, &file, &line, &column, nullptr); // Fetch path, print. if (file != nullptr) { std::string path = clang::ToString(clang_getFileName(file)); std::cerr << NormalizePath(path) << ':'; } std::cerr << line << ':' << column << ": " << spelling << std::endl; clang_disposeDiagnostic(diagnostic); } } CXIdxClientFile enteredMainFile(CXClientData client_data, CXFile mainFile, void* reserved) { return nullptr; } CXIdxClientFile ppIncludedFile(CXClientData client_data, const CXIdxIncludedFileInfo* file) { // Clang include logic is broken. This function is never // called and clang_findIncludesInFile doesn't work. return nullptr; } CXIdxClientASTFile importedASTFile(CXClientData client_data, const CXIdxImportedASTFileInfo*) { return nullptr; } CXIdxClientContainer startedTranslationUnit(CXClientData client_data, void* reserved) { return nullptr; } clang::VisiterResult DumpVisitor(clang::Cursor cursor, clang::Cursor parent, int* level) { for (int i = 0; i < *level; ++i) std::cerr << " "; std::cerr << clang::ToString(cursor.get_kind()) << " " << cursor.get_spelling() << std::endl; *level += 1; cursor.VisitChildren(&DumpVisitor, level); *level -= 1; return clang::VisiterResult::Continue; } void Dump(clang::Cursor cursor) { int level = 0; cursor.VisitChildren(&DumpVisitor, &level); } struct FindChildOfKindParam { CXCursorKind target_kind; optional result; FindChildOfKindParam(CXCursorKind target_kind) : target_kind(target_kind) {} }; clang::VisiterResult FindChildOfKindVisitor(clang::Cursor cursor, clang::Cursor parent, FindChildOfKindParam* param) { if (cursor.get_kind() == param->target_kind) { param->result = cursor; return clang::VisiterResult::Break; } return clang::VisiterResult::Recurse; } optional FindChildOfKind(clang::Cursor cursor, CXCursorKind kind) { FindChildOfKindParam param(kind); cursor.VisitChildren(&FindChildOfKindVisitor, ¶m); return param.result; } clang::VisiterResult FindTypeVisitor(clang::Cursor cursor, clang::Cursor parent, optional* result) { switch (cursor.get_kind()) { case CXCursor_TypeRef: case CXCursor_TemplateRef: *result = cursor; return clang::VisiterResult::Break; } return clang::VisiterResult::Recurse; } optional FindType(clang::Cursor cursor) { optional result; cursor.VisitChildren(&FindTypeVisitor, &result); return result; } bool IsTypeDefinition(const CXIdxContainerInfo* container) { if (!container) return false; switch (container->cursor.kind) { case CXCursor_EnumDecl: case CXCursor_UnionDecl: case CXCursor_StructDecl: case CXCursor_ClassDecl: return true; default: return false; } } struct VisitDeclForTypeUsageParam { IndexedFile* db; bool is_interesting; int has_processed_any = false; optional previous_cursor; optional initial_type; VisitDeclForTypeUsageParam(IndexedFile* db, bool is_interesting) : db(db), is_interesting(is_interesting) {} }; void VisitDeclForTypeUsageVisitorHandler(clang::Cursor cursor, VisitDeclForTypeUsageParam* param) { param->has_processed_any = true; IndexedFile* db = param->db; std::string referenced_usr = cursor.get_referenced() .template_specialization_to_template_definition() .get_usr(); // TODO: things in STL cause this to be empty. Figure out why and document it. if (referenced_usr == "") return; IndexTypeId ref_type_id = db->ToTypeId(referenced_usr); if (!param->initial_type) param->initial_type = ref_type_id; if (param->is_interesting) { IndexedTypeDef* ref_type_def = db->Resolve(ref_type_id); // TODO: Should we even be visiting this if the file is not from the main // def? Try adding assert on |loc| later. Range loc = db->id_cache.ResolveSpelling(cursor.cx_cursor, true /*interesting*/); UniqueAdd(ref_type_def->uses, loc); } } clang::VisiterResult VisitDeclForTypeUsageVisitor( clang::Cursor cursor, clang::Cursor parent, VisitDeclForTypeUsageParam* param) { switch (cursor.get_kind()) { case CXCursor_TemplateRef: case CXCursor_TypeRef: if (param->previous_cursor) { VisitDeclForTypeUsageVisitorHandler(param->previous_cursor.value(), param); // This if is inside the above if because if there are multiple // TypeRefs, // we always want to process the first one. If we did not always process // the first one, we cannot tell if there are more TypeRefs after it and // logic for fetching the return type breaks. This happens in ParmDecl // instances which only have one TypeRef child but are not interesting // usages. if (!param->is_interesting) return clang::VisiterResult::Break; } param->previous_cursor = cursor; break; // We do not want to recurse for everything, since if we do that we will end // up visiting method definition bodies/etc. Instead, we only recurse for // things that can logically appear as part of an inline variable // initializer, // ie, // // class Foo { // int x = (Foo)3; // } case CXCursor_CallExpr: case CXCursor_CStyleCastExpr: case CXCursor_CXXStaticCastExpr: case CXCursor_CXXReinterpretCastExpr: return clang::VisiterResult::Recurse; } return clang::VisiterResult::Continue; } // Finds the cursor associated with the declaration type of |cursor|. This // strips // qualifies from |cursor| (ie, Foo* => Foo) and removes template arguments // (ie, Foo => Foo<*,*>). optional ResolveToDeclarationType(IndexedFile* db, clang::Cursor cursor) { clang::Cursor declaration = cursor.get_type().strip_qualifiers().get_declaration(); declaration = declaration.template_specialization_to_template_definition(); std::string usr = declaration.get_usr(); if (usr != "") return db->ToTypeId(usr); return nullopt; } // Add usages to any seen TypeRef or TemplateRef under the given |decl_cursor|. // This returns the first seen TypeRef or TemplateRef value, which can be // useful if trying to figure out ie, what a using statement refers to. If // trying to generally resolve a cursor to a type, use // ResolveToDeclarationType, which works in more scenarios. optional AddDeclTypeUsages( IndexedFile* db, clang::Cursor decl_cursor, bool is_interesting, const CXIdxContainerInfo* semantic_container, const CXIdxContainerInfo* lexical_container) { // std::cerr << std::endl << "AddDeclUsages " << decl_cursor.get_spelling() << // std::endl; // Dump(decl_cursor); // // The general AST format for definitions follows this pattern: // // template // struct Container; // // struct S1; // struct S2; // // Container, S2> foo; // // => // // VarDecl // TemplateRef Container // TemplateRef Container // TypeRef struct S1 // TypeRef struct S2 // TypeRef struct S2 // // // Here is another example: // // enum A {}; // enum B {}; // // template // struct Foo { // struct Inner {}; // }; // // Foo::Inner a; // Foo b; // // => // // EnumDecl A // EnumDecl B // ClassTemplate Foo // TemplateTypeParameter T // StructDecl Inner // VarDecl a // TemplateRef Foo // TypeRef enum A // TypeRef struct Foo::Inner // CallExpr Inner // VarDecl b // TemplateRef Foo // TypeRef enum B // CallExpr Foo // // // Determining the actual type of the variable/declaration from just the // children is tricky. Doing so would require looking up the template // definition associated with a TemplateRef, figuring out how many children // it has, and then skipping that many TypeRef values. This also has to work // with the example below (skipping the last TypeRef). As a result, we // determine variable types using |ResolveToDeclarationType|. // // // We skip the last type reference for methods/variables which are defined // out-of-line w.r.t. the parent type. // // S1* Foo::foo() {} // // The above example looks like this in the AST: // // CXXMethod foo // TypeRef struct S1 // TypeRef class Foo // CompoundStmt // ... // // The second TypeRef is an uninteresting usage. bool process_last_type_ref = true; if (IsTypeDefinition(semantic_container) && !IsTypeDefinition(lexical_container)) { // // In some code, such as the following example, we receive a cursor which is // not // a definition and is not associated with a definition due to an error // condition. // In this case, it is the Foo::Foo constructor. // // struct Foo {}; // // template // Foo::Foo() {} // if (!decl_cursor.is_definition()) { // TODO: I don't think this resolution ever works. clang::Cursor def = decl_cursor.get_definition(); if (def.get_kind() != CXCursor_FirstInvalid) { std::cerr << "Successful resolution of decl usage to definition" << std::endl; decl_cursor = def; } } process_last_type_ref = false; } VisitDeclForTypeUsageParam param(db, is_interesting); decl_cursor.VisitChildren(&VisitDeclForTypeUsageVisitor, ¶m); // VisitDeclForTypeUsageVisitor guarantees that if there are multiple TypeRef // children, the first one will always be visited. if (param.previous_cursor && process_last_type_ref) { VisitDeclForTypeUsageVisitorHandler(param.previous_cursor.value(), ¶m); } else { // If we are not processing the last type ref, it *must* be a TypeRef or // TemplateRef. // // We will not visit every child if the is_interseting is false, so // previous_cursor // may not point to the last TemplateRef. assert(is_interesting == false || param.previous_cursor.has_value() == false || (param.previous_cursor.value().get_kind() == CXCursor_TypeRef || param.previous_cursor.value().get_kind() == CXCursor_TemplateRef)); } return param.initial_type; } // Various versions of LLVM (ie, 4.0) will not visit inline variable references // for template arguments. clang::VisiterResult AddDeclInitializerUsagesVisitor(clang::Cursor cursor, clang::Cursor parent, IndexedFile* db) { /* We need to index the |DeclRefExpr| below (ie, |var| inside of Foo::var). template struct Foo { static constexpr int var = 3; }; int a = Foo::var; => VarDecl a UnexposedExpr var DeclRefExpr var TemplateRef Foo */ switch (cursor.get_kind()) { case CXCursor_DeclRefExpr: CXCursorKind referenced_kind = cursor.get_referenced().get_kind(); if (cursor.get_referenced().get_kind() != CXCursor_VarDecl) break; // TODO: when we resolve the template type to the definition, we get a // different USR. // clang::Cursor ref = // cursor.get_referenced().template_specialization_to_template_definition().get_type().strip_qualifiers().get_usr(); // std::string ref_usr = // cursor.get_referenced().template_specialization_to_template_definition().get_type().strip_qualifiers().get_usr(); std::string ref_usr = cursor.get_referenced() .template_specialization_to_template_definition() .get_usr(); // std::string ref_usr = ref.get_usr(); if (ref_usr == "") break; Range loc = db->id_cache.ResolveSpelling(cursor.cx_cursor, false /*interesting*/); // std::cerr << "Adding usage to id=" << ref_id.id << " usr=" << ref_usr // << " at " << loc.ToString() << std::endl; IndexVarId ref_id = db->ToVarId(ref_usr); IndexedVarDef* ref_def = db->Resolve(ref_id); UniqueAdd(ref_def->uses, loc); break; } return clang::VisiterResult::Recurse; } void AddDeclInitializerUsages(IndexedFile* db, clang::Cursor decl_cursor) { decl_cursor.VisitChildren(&AddDeclInitializerUsagesVisitor, db); } bool AreEqualLocations(CXIdxLoc loc, CXCursor cursor) { // clang_getCursorExtent // clang_Cursor_getSpellingNameRange return clang_equalLocations( clang_indexLoc_getCXSourceLocation(loc), //clang_getRangeStart(clang_getCursorExtent(cursor))); clang_getRangeStart(clang_Cursor_getSpellingNameRange(cursor, 0, 0))); } // TODO TODO TODO TODO // INDEX SPELLING void indexDeclaration(CXClientData client_data, const CXIdxDeclInfo* decl) { // TODO: allow user to configure if they want STL index. if (!kIndexStdDeclarations && clang_Location_isInSystemHeader(clang_indexLoc_getCXSourceLocation(decl->loc))) return; assert(AreEqualLocations(decl->loc, decl->cursor)); // TODO: Use clang_getFileUniqueID CXFile file; clang_getSpellingLocation(clang_indexLoc_getCXSourceLocation(decl->loc), &file, nullptr, nullptr, nullptr); IndexParam* param = static_cast(client_data); bool is_first_time_visiting_file = false; IndexedFile* db = param->file_consumer->TryConsumeFile(file, &is_first_time_visiting_file); if (!db) return; if (is_first_time_visiting_file) param->primary_file->dependencies.push_back(db->path); NamespaceHelper* ns = ¶m->ns; //std::cerr << "DECL kind=" << decl->entityInfo->kind << " at " << db->id_cache.Resolve(decl->cursor, false).ToPrettyString(&db->id_cache) << std::endl; switch (decl->entityInfo->kind) { case CXIdxEntity_CXXNamespace: { ns->RegisterQualifiedName(decl->entityInfo->USR, decl->semanticContainer, decl->entityInfo->name); break; } case CXIdxEntity_EnumConstant: case CXIdxEntity_Field: case CXIdxEntity_Variable: case CXIdxEntity_CXXStaticVariable: { optional decl_loc_spelling = db->id_cache.ResolveSpelling(decl->cursor, false /*interesting*/); if (!decl_loc_spelling) break; clang::Cursor decl_cursor = decl->cursor; // Do not index implicit template instantiations. if (decl_cursor != decl_cursor.template_specialization_to_template_definition()) break; std::string decl_usr = decl_cursor.get_usr(); IndexVarId var_id = db->ToVarId(decl->entityInfo->USR); IndexedVarDef* var_def = db->Resolve(var_id); // TODO: Eventually run with this if. Right now I want to iron out bugs // this may shadow. // TODO: Verify this gets called multiple times // if (!decl->isRedeclaration) { var_def->def.short_name = decl->entityInfo->name; var_def->def.qualified_name = ns->QualifiedName(decl->semanticContainer, var_def->def.short_name); var_def->def.hover = clang::ToString(clang_getTypeSpelling(clang_getCursorType(decl->cursor))); //} if (decl->isDefinition) { var_def->def.definition_spelling = db->id_cache.ResolveSpelling(decl->cursor, false /*interesting*/); var_def->def.definition_extent = db->id_cache.ResolveExtent(decl->cursor, false /*interesting*/);; } else { var_def->def.declaration = db->id_cache.ResolveSpelling(decl->cursor, false /*interesting*/); } UniqueAdd(var_def->uses, decl_loc_spelling.value()); // std::cerr << std::endl << "Visiting declaration" << std::endl; // Dump(decl_cursor); AddDeclInitializerUsages(db, decl_cursor); var_def = db->Resolve(var_id); // Declaring variable type information. Note that we do not insert an // interesting reference for parameter declarations - that is handled when // the function declaration is encountered since we won't receive ParmDecl // declarations for unnamed parameters. AddDeclTypeUsages( db, decl_cursor, decl_cursor.get_kind() != CXCursor_ParmDecl /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer); // We don't need to assign declaring type multiple times if this variable // has already been seen. if (!decl->isRedeclaration) { optional var_type = ResolveToDeclarationType(db, decl_cursor); if (var_type.has_value()) { // Don't treat enum definition variables as instantiations. bool is_enum_member = decl->semanticContainer && decl->semanticContainer->cursor.kind == CXCursor_EnumDecl; if (!is_enum_member) db->Resolve(var_type.value())->instantiations.push_back(var_id); var_def->def.variable_type = var_type.value(); } } // TODO: Refactor handlers so more things are under 'if (!decl->isRedeclaration)' if (decl->isDefinition && IsTypeDefinition(decl->semanticContainer)) { IndexTypeId declaring_type_id = db->ToTypeId(decl->semanticContainer->cursor); IndexedTypeDef* declaring_type_def = db->Resolve(declaring_type_id); var_def->def.declaring_type = declaring_type_id; declaring_type_def->def.vars.push_back(var_id); } break; } case CXIdxEntity_Function: case CXIdxEntity_CXXConstructor: case CXIdxEntity_CXXDestructor: case CXIdxEntity_CXXInstanceMethod: case CXIdxEntity_CXXStaticMethod: case CXIdxEntity_CXXConversionFunction: { optional decl_loc_spelling = db->id_cache.ResolveSpelling(decl->cursor, false /*interesting*/); if (!decl_loc_spelling) break; clang::Cursor decl_cursor = decl->cursor; clang::Cursor resolved = decl_cursor.template_specialization_to_template_definition(); IndexFuncId func_id = db->ToFuncId(resolved.cx_cursor); IndexedFuncDef* func_def = db->Resolve(func_id); // We don't actually need to know the return type, but we need to mark it // as an interesting usage. AddDeclTypeUsages(db, decl_cursor, true /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer); // TODO: support multiple definitions per function; right now we are // hacking the 'declarations' field by // adding a definition when we really don't have one. if (decl->isDefinition && !func_def->def.definition_extent.has_value()) { func_def->def.definition_spelling = db->id_cache.ResolveSpelling(decl->cursor, false /*interesting*/); func_def->def.definition_extent = db->id_cache.ResolveExtent(decl->cursor, false /*interesting*/); RemoveItem(func_def->declarations, *func_def->def.definition_spelling); } else { Range decl_spelling = db->id_cache.ResolveSpelling(decl->cursor, false /*interesting*/); // Only add the declaration if it's not already a definition. if (!func_def->def.definition_spelling || *func_def->def.definition_spelling != decl_spelling) UniqueAdd(func_def->declarations, decl_spelling); } // If decl_cursor != resolved, then decl_cursor is a template // specialization. We // don't want to override a lot of the function definition information in // that // scenario. if (decl_cursor == resolved) { // TODO: Eventually run with this if. Right now I want to iron out bugs // this may shadow. // if (!decl->isRedeclaration) { func_def->def.short_name = decl->entityInfo->name; func_def->def.qualified_name = ns->QualifiedName( decl->semanticContainer, func_def->def.short_name); //} // TODO: we should build this ourselves. It doesn't include parameter names for functions. func_def->def.hover = decl_cursor.get_type_description(); // TODO: return type //decl_cursor.get_type_description() //func_def->def.return_type = bool is_pure_virtual = clang_CXXMethod_isPureVirtual(decl->cursor); bool is_ctor_or_dtor = decl->entityInfo->kind == CXIdxEntity_CXXConstructor || decl->entityInfo->kind == CXIdxEntity_CXXDestructor; // bool process_declaring_type = is_pure_virtual || is_ctor_or_dtor; // Add function usage information. We only want to do it once per // definition/declaration. Do it on definition since there should only // ever // be one of those in the entire program. if (IsTypeDefinition(decl->semanticContainer)) { IndexTypeId declaring_type_id = db->ToTypeId(decl->semanticContainer->cursor); IndexedTypeDef* declaring_type_def = db->Resolve(declaring_type_id); func_def->def.declaring_type = declaring_type_id; // Mark a type reference at the ctor/dtor location. // TODO: Should it be interesting? if (is_ctor_or_dtor) { Range type_usage_loc = decl_loc_spelling.value(); UniqueAdd(declaring_type_def->uses, type_usage_loc); } // Register function in declaring type if it hasn't been registered // yet. if (!Contains(declaring_type_def->def.funcs, func_id)) declaring_type_def->def.funcs.push_back(func_id); } // TypeResolution ret_type = ResolveToType(db, // decl_cursor.get_type().get_return_type()); // if (ret_type.resolved_type) // AddInterestingUsageToType(db, ret_type, // FindLocationOfTypeSpecifier(decl_cursor)); if (decl->isDefinition || is_pure_virtual) { // Mark type usage for parameters as interesting. We handle this here // instead of inside var declaration because clang will not emit a var // declaration for an unnamed parameter, but we still want to mark the // usage as interesting. // TODO: Do a similar thing for function decl parameter usages. Mark // prototype params as interesting type usages but also relate // mark // them as as usages on the primary variable - requires USR to // be // the same. We can work around it by declaring which variables // a // parameter has declared and update the USR in the definition. clang::Cursor cursor = decl->cursor; for (clang::Cursor arg : cursor.get_arguments()) { switch (arg.get_kind()) { case CXCursor_ParmDecl: // We don't need to know the arg type, but we do want to mark it // as // an interesting usage. Note that we use semanticContainer // twice // because a parameter is not really part of the lexical // container. AddDeclTypeUsages(db, arg, true /*is_interesting*/, decl->semanticContainer, decl->semanticContainer); // TypeResolution arg_type = ResolveToType(db, arg.get_type()); // if (arg_type.resolved_type) // AddInterestingUsageToType(db, arg_type, // FindLocationOfTypeSpecifier(arg)); break; } } // Process inheritance. // void clang_getOverriddenCursors(CXCursor cursor, CXCursor // **overridden, unsigned *num_overridden); // void clang_disposeOverriddenCursors(CXCursor *overridden); if (clang_CXXMethod_isVirtual(decl->cursor)) { CXCursor* overridden; unsigned int num_overridden; clang_getOverriddenCursors(decl->cursor, &overridden, &num_overridden); // TODO: How to handle multiple parent overrides?? for (unsigned int i = 0; i < num_overridden; ++i) { clang::Cursor parent = overridden[i]; IndexFuncId parent_id = db->ToFuncId(parent.get_usr()); IndexedFuncDef* parent_def = db->Resolve(parent_id); func_def = db->Resolve(func_id); // ToFuncId invalidated func_def func_def->def.base = parent_id; parent_def->derived.push_back(func_id); } clang_disposeOverriddenCursors(overridden); } } } /* optional base; std::vector derived; std::vector locals; std::vector callers; std::vector callees; std::vector uses; */ break; } case CXIdxEntity_Typedef: case CXIdxEntity_CXXTypeAlias: { optional decl_loc_spelling = db->id_cache.ResolveSpelling(decl->cursor, true /*interesting*/); if (!decl_loc_spelling) break; // Note we want to fetch the first TypeRef. Running // ResolveCursorType(decl->cursor) would return // the type of the typedef/using, not the type of the referenced type. optional alias_of = AddDeclTypeUsages(db, decl->cursor, true /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer); IndexTypeId type_id = db->ToTypeId(decl->entityInfo->USR); IndexedTypeDef* type_def = db->Resolve(type_id); if (alias_of) type_def->def.alias_of = alias_of.value(); type_def->def.short_name = decl->entityInfo->name; type_def->def.qualified_name = ns->QualifiedName(decl->semanticContainer, type_def->def.short_name); type_def->def.definition_spelling = db->id_cache.ResolveSpelling(decl->cursor, false /*interesting*/); type_def->def.definition_extent = db->id_cache.ResolveExtent(decl->cursor, false /*interesting*/); UniqueAdd(type_def->uses, decl_loc_spelling.value()); break; } case CXIdxEntity_Enum: case CXIdxEntity_Union: case CXIdxEntity_Struct: case CXIdxEntity_CXXClass: { optional decl_loc_spelling = db->id_cache.ResolveSpelling(decl->cursor, true /*interesting*/); if (!decl_loc_spelling) break; IndexTypeId type_id = db->ToTypeId(decl->entityInfo->USR); IndexedTypeDef* type_def = db->Resolve(type_id); // TODO: Eventually run with this if. Right now I want to iron out bugs // this may shadow. // TODO: For type section, verify if this ever runs for non definitions? // if (!decl->isRedeclaration) { // name can be null in an anonymous struct (see // tests/types/anonymous_struct.cc). if (decl->entityInfo->name) { ns->RegisterQualifiedName(decl->entityInfo->USR, decl->semanticContainer, decl->entityInfo->name); type_def->def.short_name = decl->entityInfo->name; } else { type_def->def.short_name = ""; } type_def->def.qualified_name = ns->QualifiedName(decl->semanticContainer, type_def->def.short_name); // } assert(decl->isDefinition); type_def->def.definition_spelling = db->id_cache.ResolveSpelling(decl->cursor, false /*interesting*/); type_def->def.definition_extent = db->id_cache.ResolveExtent(decl->cursor, false /*interesting*/); UniqueAdd(type_def->uses, decl_loc_spelling.value()); // type_def->alias_of // type_def->funcs // type_def->types // type_def->uses // type_def->vars // Add type-level inheritance information. CXIdxCXXClassDeclInfo const* class_info = clang_index_getCXXClassDeclInfo(decl); if (class_info) { for (unsigned int i = 0; i < class_info->numBases; ++i) { const CXIdxBaseClassInfo* base_class = class_info->bases[i]; AddDeclTypeUsages(db, base_class->cursor, true /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer); optional parent_type_id = ResolveToDeclarationType(db, base_class->cursor); // type_def ptr could be invalidated by ResolveToDeclarationType. IndexedTypeDef* type_def = db->Resolve(type_id); if (parent_type_id) { IndexedTypeDef* parent_type_def = db->Resolve(parent_type_id.value()); parent_type_def->derived.push_back(type_id); type_def->def.parents.push_back(parent_type_id.value()); } } } break; } default: std::cerr << "!! Unhandled indexDeclaration: " << clang::Cursor(decl->cursor).ToString() << " at " << db->id_cache.ResolveSpelling(decl->cursor, false /*interesting*/).start.ToString() << std::endl; std::cerr << " entityInfo->kind = " << decl->entityInfo->kind << std::endl; std::cerr << " entityInfo->USR = " << decl->entityInfo->USR << std::endl; if (decl->declAsContainer) std::cerr << " declAsContainer = " << clang::Cursor(decl->declAsContainer->cursor).ToString() << std::endl; if (decl->semanticContainer) std::cerr << " semanticContainer = " << clang::Cursor(decl->semanticContainer->cursor).ToString() << std::endl; if (decl->lexicalContainer) std::cerr << " lexicalContainer = " << clang::Cursor(decl->lexicalContainer->cursor).get_usr() << std::endl; break; } } bool IsFunctionCallContext(CXCursorKind kind) { switch (kind) { case CXCursor_FunctionDecl: case CXCursor_CXXMethod: case CXCursor_Constructor: case CXCursor_Destructor: case CXCursor_ConversionFunction: case CXCursor_FunctionTemplate: case CXCursor_OverloadedDeclRef: // TODO: we need to test lambdas case CXCursor_LambdaExpr: return true; } return false; } void indexEntityReference(CXClientData client_data, const CXIdxEntityRefInfo* ref) { // Don't index references from or to system headers. if (clang_Location_isInSystemHeader(clang_indexLoc_getCXSourceLocation(ref->loc)) || clang_Location_isInSystemHeader(clang_getCursorLocation(ref->referencedEntity->cursor))) return; //assert(AreEqualLocations(ref->loc, ref->cursor)); // if (clang_Location_isInSystemHeader(clang_getCursorLocation(ref->cursor)) || // clang_Location_isInSystemHeader( // clang_getCursorLocation(ref->referencedEntity->cursor))) // return; // TODO: Use clang_getFileUniqueID CXFile file; clang_getSpellingLocation(clang_indexLoc_getCXSourceLocation(ref->loc), &file, nullptr, nullptr, nullptr); IndexParam* param = static_cast(client_data); bool is_first_time_visiting_file = false; IndexedFile* db = param->file_consumer->TryConsumeFile(file, &is_first_time_visiting_file); if (!db) return; if (is_first_time_visiting_file) param->primary_file->dependencies.push_back(db->path); // ref->cursor mainFile=0 // ref->loc mainFile=1 // ref->referencedEntity mainFile=1 // // Regardless, we need to do more advanced location processing to handle multiple output IndexedFile instances. //bool mainFile = clang_Location_isFromMainFile(clang_indexLoc_getCXSourceLocation(ref->loc)); //Range loc_spelling = param->db->id_cache.ForceResolveSpelling(ref->cursor, false /*interesting*/); //std::cerr << "mainFile: " << mainFile << ", loc: " << loc_spelling.ToString() << std::endl; // Don't index references that are not from the main file. //if (!clang_Location_isFromMainFile(clang_getCursorLocation(ref->cursor))) // return; clang::Cursor cursor(ref->cursor); // std::cerr << "REF kind=" << ref->referencedEntity->kind << " at " << // db->id_cache.Resolve(cursor, false).ToPrettyString(&db->id_cache) << // std::endl; switch (ref->referencedEntity->kind) { case CXIdxEntity_CXXNamespace: { // We don't index namespace usages. break; } case CXIdxEntity_EnumConstant: case CXIdxEntity_CXXStaticVariable: case CXIdxEntity_Variable: case CXIdxEntity_Field: { optional loc_spelling = db->id_cache.ResolveSpelling(ref->cursor, false /*interesting*/); if (!loc_spelling) break; clang::Cursor referenced = ref->referencedEntity->cursor; referenced = referenced.template_specialization_to_template_definition(); IndexVarId var_id = db->ToVarId(referenced.get_usr()); IndexedVarDef* var_def = db->Resolve(var_id); UniqueAdd(var_def->uses, loc_spelling.value()); break; } case CXIdxEntity_CXXConversionFunction: case CXIdxEntity_CXXStaticMethod: case CXIdxEntity_CXXInstanceMethod: case CXIdxEntity_Function: case CXIdxEntity_CXXConstructor: case CXIdxEntity_CXXDestructor: { // TODO: Redirect container to constructor for the following example, ie, // we should be inserting an outgoing function call from the Foo // ctor. // // int Gen() { return 5; } // class Foo { // int x = Gen(); // } // TODO: search full history? optional loc_spelling = db->id_cache.ResolveSpelling(ref->cursor, false /*interesting*/); if (!loc_spelling) break; // Note: be careful, calling db->ToFuncId invalidates the FuncDef* ptrs. IndexFuncId called_id = db->ToFuncId(ref->referencedEntity->USR); if (IsFunctionCallContext(ref->container->cursor.kind)) { IndexFuncId caller_id = db->ToFuncId(ref->container->cursor); IndexedFuncDef* caller_def = db->Resolve(caller_id); IndexedFuncDef* called_def = db->Resolve(called_id); AddFuncRef(&caller_def->def.callees, IndexFuncRef(called_id, loc_spelling.value())); AddFuncRef(&called_def->callers, IndexFuncRef(caller_id, loc_spelling.value())); } else { IndexedFuncDef* called_def = db->Resolve(called_id); AddFuncRef(&called_def->callers, IndexFuncRef(loc_spelling.value())); } // For constructor/destructor, also add a usage against the type. Clang // will insert and visit implicit constructor references, so we also check // the location of the ctor call compared to the parent call. If they are // the same, this is most likely an implicit ctors. clang::Cursor ref_cursor = ref->cursor; if (ref->referencedEntity->kind == CXIdxEntity_CXXConstructor || ref->referencedEntity->kind == CXIdxEntity_CXXDestructor) { //CXFile file; //unsigned int line, column, offset; //clang_getSpellingLocation(clang_indexLoc_getCXSourceLocation(ref->loc), &file, &line, &column, &offset); Range parent_loc = db->id_cache.ResolveSpelling(ref->parentEntity->cursor, true /*interesting*/); if (parent_loc.start != loc_spelling->start) { IndexedFuncDef* called_def = db->Resolve(called_id); // I suspect it is possible for the declaring type to be null // when the class is invalid. if (called_def->def.declaring_type) { // assert(called_def->def.declaring_type.has_value()); IndexedTypeDef* type_def = db->Resolve(called_def->def.declaring_type.value()); UniqueAdd(type_def->uses, loc_spelling.value().WithInteresting(true), false /*insert_if_not_present*/); } } } break; } case CXIdxEntity_Typedef: case CXIdxEntity_CXXTypeAlias: case CXIdxEntity_Enum: case CXIdxEntity_Union: case CXIdxEntity_Struct: case CXIdxEntity_CXXClass: { optional loc_spelling = db->id_cache.ResolveSpelling(ref->cursor, false /*interesting*/); if (!loc_spelling) break; clang::Cursor referenced = ref->referencedEntity->cursor; referenced = referenced.template_specialization_to_template_definition(); IndexTypeId referenced_id = db->ToTypeId(referenced.get_usr()); IndexedTypeDef* referenced_def = db->Resolve(referenced_id); // // The following will generate two TypeRefs to Foo, both located at the // same spot (line 3, column 3). One of the parents will be set to // CXIdxEntity_Variable, the other will be CXIdxEntity_Function. There // does // not appear to be a good way to disambiguate these references, as using // parent type alone breaks other indexing tasks. // // To work around this, we check to see if the usage location has been // inserted into all_uses previously. // // struct Foo {}; // void Make() { // Foo f; // } // UniqueAdd(referenced_def->uses, loc_spelling.value()); break; } default: std::cerr << "!! Unhandled indexEntityReference: " << cursor.ToString() << " at " << db->id_cache.ResolveSpelling(ref->cursor, false /*interesting*/).start.ToString() << std::endl; std::cerr << " ref->referencedEntity->kind = " << ref->referencedEntity->kind << std::endl; if (ref->parentEntity) std::cerr << " ref->parentEntity->kind = " << ref->parentEntity->kind << std::endl; std::cerr << " ref->loc = " << db->id_cache.ResolveSpelling(ref->cursor, false /*interesting*/).start.ToString() << std::endl; std::cerr << " ref->kind = " << ref->kind << std::endl; if (ref->parentEntity) std::cerr << " parentEntity = " << clang::Cursor(ref->parentEntity->cursor).ToString() << std::endl; if (ref->referencedEntity) std::cerr << " referencedEntity = " << clang::Cursor(ref->referencedEntity->cursor).ToString() << std::endl; if (ref->container) std::cerr << " container = " << clang::Cursor(ref->container->cursor).ToString() << std::endl; break; } } std::vector> Parse(FileConsumer::SharedState* file_consumer_shared, std::string filename, std::vector args, bool dump_ast) { filename = NormalizePath(filename); //return {}; clang_enableStackTraces(); clang_toggleCrashRecovery(1); clang::Index index(0 /*excludeDeclarationsFromPCH*/, 0 /*displayDiagnostics*/); clang::TranslationUnit tu(index, filename, args, {} /*unsaved_files*/, CXTranslationUnit_KeepGoing); if (dump_ast) Dump(tu.document_cursor()); IndexerCallbacks callbacks[] = { {&abortQuery, &diagnostic, &enteredMainFile, &ppIncludedFile, &importedASTFile, &startedTranslationUnit, &indexDeclaration, &indexEntityReference} }; FileConsumer file_consumer(file_consumer_shared); IndexParam param(&file_consumer); CXFile file = clang_getFile(tu.cx_tu, filename.c_str()); param.primary_file = file_consumer.ForceLocal(file); std::cerr << "!! [START] Indexing " << filename << std::endl; CXIndexAction index_action = clang_IndexAction_create(index.cx_index); clang_indexTranslationUnit(index_action, ¶m, callbacks, sizeof(callbacks), CXIndexOpt_IndexFunctionLocalSymbols | CXIndexOpt_SkipParsedBodiesInSession | CXIndexOpt_IndexImplicitTemplateInstantiations, tu.cx_tu); clang_IndexAction_dispose(index_action); std::cerr << "!! [END] Indexing " << filename << std::endl; auto result = param.file_consumer->TakeLocalState(); for (auto& entry : result) { // TODO: only store the path on one of these. // TODO: These NormalizePath call should be not needed. assert(entry->path == NormalizePath(entry->path)); assert(entry->id_cache.primary_file == entry->path); entry->path = NormalizePath(entry->path); entry->id_cache.primary_file = entry->path; } return result; }