#include "query.h" #include #include #include #include #include #include #include "function_output_iterator.hpp" #include "compilation_database_loader.h" #include "optional.h" #include "indexer.h" //#define CATCH_CONFIG_MAIN //#include "catch.hpp" // TODO: Make all copy constructors explicit. struct IdMap { // The first vector is indexed by TId::group. // The second vector is indexed by TId::id. template using GroupMap = std::vector>; GroupId target_group; int64_t next_file_id = 1; int64_t next_type_id = 1; int64_t next_func_id = 1; int64_t next_var_id = 1; GroupMap remap_file_id; GroupMap remap_type_id; GroupMap remap_func_id; GroupMap remap_var_id; IdMap(GroupId target_group) : target_group(target_group) {} template inline TId GenericRemap(GroupMap* map, int64_t* next_id, TId from) { // PERF: If this function is a hot-spot we can pull the group computation // out, ie, // // IdMap id_map; // GroupIdMap group_map = id_map.ResolveIdGroup(file.group) // for (...) // group_map.Remap(id) // Find the group that |from| belongs to. Create groups if needed. if (from.group >= map->size()) map->resize(from.group + 1); // If the group doesn't have an ID already mapped out for |from|, map it. /* // TODO: The concern with this approach is that it going to waste huge // amounts of memory, because the first 16k+ ids can be unused. std::vector& group = (*map)[from.group]; if (from.id >= group.size()) { group.reserve(from.id + 1); for (size_t i = group.size(); i < from.id; ++i) group.emplace_back(TId(target_group, (*next_id)++)); } */ std::unordered_map group = (*map)[from.group]; // Lookup the id from the group or add it. auto it = group.find(from); if (it == group.end()) { TId result(target_group, (*next_id)++); group[from] = result; return result; } return it->second; } template inline std::vector GenericVectorRemap(GroupMap* map, int64_t* next_id, const std::vector& from) { if (from.empty()) return {}; int group_id = from[0].group; if (group_id >= map->size()) map->resize(group_id + 1); std::unordered_map group = (*map)[group_id]; std::vector result; result.reserve(from.size()); for (TId id : from) { // Lookup the id from the group or add it. auto it = group.find(id); if (it == group.end()) { TId new_id(target_group, (*next_id)++); group[id] = new_id; result.push_back(new_id); } else { result.push_back(it->second); } } return result; } FileId Remap(FileId from) { return GenericRemap(&remap_file_id, &next_file_id, from); } Location Remap(Location from) { FileId file = Remap(from.file_id()); from.raw_file_group = file.group; from.raw_file_id = file.id; return from; } TypeId Remap(TypeId from) { return GenericRemap(&remap_type_id, &next_type_id, from); } FuncId Remap(FuncId from) { return GenericRemap(&remap_func_id, &next_func_id, from); } VarId Remap(VarId from) { return GenericRemap(&remap_var_id, &next_var_id, from); } FuncRef Remap(FuncRef from) { from.id = Remap(from.id); from.loc = Remap(from.loc); return from; } TypeDefDefinitionData Remap(TypeDefDefinitionData def) { def.id = Remap(def.id); if (def.definition) def.definition = Remap(def.definition.value()); if (def.alias_of) def.alias_of = Remap(def.alias_of.value()); def.parents = Remap(def.parents); def.types = Remap(def.types); def.funcs = Remap(def.funcs); def.vars = Remap(def.vars); return def; } FuncDefDefinitionData Remap(FuncDefDefinitionData def) { def.id = Remap(def.id); if (def.definition) def.definition = Remap(def.definition.value()); if (def.declaring_type) def.declaring_type = Remap(def.declaring_type.value()); if (def.base) def.base = Remap(def.base.value()); def.locals = Remap(def.locals); def.callees = Remap(def.callees); return def; } VarDefDefinitionData Remap(VarDefDefinitionData def) { def.id = Remap(def.id); if (def.declaration) def.declaration = Remap(def.declaration.value()); if (def.definition) def.definition = Remap(def.definition.value()); if (def.variable_type) def.variable_type = Remap(def.variable_type.value()); if (def.declaring_type) def.declaring_type = Remap(def.declaring_type.value()); return def; } //std::vector Remap(const std::vector& from) { // return GenericVectorRemap(&remap_file_id, &next_file_id, from); //} std::vector Remap(const std::vector& from) { std::vector result; result.reserve(from.size()); for (Location l : from) result.push_back(Remap(l)); return result; } std::vector Remap(const std::vector& from) { return GenericVectorRemap(&remap_type_id, &next_type_id, from); } std::vector Remap(const std::vector& from) { return GenericVectorRemap(&remap_func_id, &next_func_id, from); } std::vector Remap(const std::vector& from) { return GenericVectorRemap(&remap_var_id, &next_var_id, from); } std::vector Remap(const std::vector& from) { std::vector result; result.reserve(from.size()); for (FuncRef r : from) result.push_back(Remap(r)); return result; } }; enum class SymbolKind { Type, Func, Var }; struct SymbolIdx { SymbolKind kind; union { uint64_t type_idx; uint64_t func_idx; uint64_t var_idx; }; }; // There are two sources of reindex updates: the (single) definition of a // symbol has changed, or one of many users of the symbol has changed. // // For simplicitly, if the single definition has changed, we update all of the // associated single-owner definition data. See |Update*DefId|. // // If one of the many symbol users submits an update, we store the update such // that it can be merged with other updates before actually being applied to // the main database. See |MergeableUpdate|. template struct MergeableUpdate { // The type/func/var which is getting new usages. TId id; // Entries to add and remove. std::vector to_add; std::vector to_remove; }; template MergeableUpdate MakeMergeableUpdate(IdMap* id_map, TId symbol_id, const std::vector& removed, const std::vector& added) { MergeableUpdate update; update.id = id_map->Remap(symbol_id); update.to_remove = id_map->Remap(removed); update.to_add = id_map->Remap(added); return update; } // NOTE: When not inside of a |def| object, there can be duplicates of the same // information if that information is contributed from separate sources. // If we need to avoid this duplication in the future, we will have to // add a refcount. struct QueryableTypeDef { TypeDefDefinitionData def; std::vector derived; std::vector uses; using DefUpdate = TypeDefDefinitionData; using DerivedUpdate = MergeableUpdate; using UsesUpdate = MergeableUpdate; QueryableTypeDef(IdMap& id_map, const IndexedTypeDef& indexed) : def(id_map.Remap(indexed.def)) { derived = id_map.Remap(indexed.derived); uses = id_map.Remap(indexed.uses); } }; struct QueryableFuncDef { FuncDefDefinitionData def; std::vector declarations; std::vector derived; std::vector callers; std::vector uses; using DefUpdate = FuncDefDefinitionData; using DeclarationsUpdate = MergeableUpdate; using DerivedUpdate = MergeableUpdate; using CallersUpdate = MergeableUpdate; using UsesUpdate = MergeableUpdate; QueryableFuncDef(IdMap& id_map, const IndexedFuncDef& indexed) : def(id_map.Remap(indexed.def)) { declarations = id_map.Remap(indexed.declarations); derived = id_map.Remap(indexed.derived); callers = id_map.Remap(indexed.callers); uses = id_map.Remap(indexed.uses); } }; struct QueryableVarDef { VarDefDefinitionData def; std::vector uses; using DefUpdate = VarDefDefinitionData; using UsesUpdate = MergeableUpdate; QueryableVarDef(IdMap& id_map, const IndexedVarDef& indexed) : def(id_map.Remap(indexed.def)) { uses = id_map.Remap(indexed.uses); } }; struct QueryableFile { FileId file_id; // Symbols declared in the file. std::vector declared_symbols; // Symbols which have definitions in the file. std::vector defined_symbols; }; struct QueryableEntry { const char* const str; }; // The query database is heavily optimized for fast queries. It is stored // in-memory. struct QueryableDatabase { IdMap id_map; // Indicies between lookup vectors are related to symbols, ie, index 5 in // |qualified_names| matches index 5 in |symbols|. std::vector qualified_names; std::vector symbols; // Raw data storage. std::vector types; std::vector funcs; std::vector vars; // |files| is indexed by FileId. Retrieve a FileId from a path using // |file_db|. FileDb file_db; std::vector files; // When importing data into the global db we need to remap ids from an // arbitrary group into the global group. IdMap local_id_group_to_global_id_group; }; struct CachedIndexedFile { // Path to the file indexed. std::string path; // GroupId of the indexed file. GroupId group; // TODO: Make sure that |previous_index| and |current_index| use the same id // to USR mapping. This lets us greatly speed up difference computation. // The previous index. This is used for index updates, so we only apply a // an update diff when changing the global db. optional previous_index; IndexedFile current_index; CachedIndexedFile(const IndexedFile& indexed) : group(indexed.usr_to_id->group), current_index(indexed) {} }; struct IndexUpdate { IdMap* id_map; // Type updates. std::vector types_removed; std::vector types_added; std::vector types_def_changed; std::vector types_derived; std::vector types_uses; // Function updates. std::vector funcs_removed; std::vector funcs_added; std::vector funcs_def_changed; std::vector funcs_declarations; std::vector funcs_derived; std::vector funcs_callers; std::vector funcs_uses; // Variable updates. std::vector vars_removed; std::vector vars_added; std::vector vars_def_changed; std::vector vars_uses; IndexUpdate(IdMap* id_map) : id_map(id_map) {} }; template TValue* TryFind(std::unordered_set& set, TValue* value) { // TODO: Make |value| a const ref? auto it = set.find(value); if (it == set.end()) return nullptr; return *it; } template std::unordered_set CreateSet(std::vector& elements) { std::unordered_set result; result.reserve(elements.size()); for (T& element : elements) result.insert(&element); return result; } // Compares |previous| and |current|, adding all elements that are // in |previous| but not |current| to |removed|, and all elements // that are in |current| but not |previous| to |added|. // // Returns true iff |removed| or |added| are non-empty. template bool ComputeDifferenceForUpdate( std::vector& previous, std::vector& current, std::vector* removed, std::vector* added) { // We need to sort to use std::set_difference. std::sort(previous.begin(), previous.end()); std::sort(current.begin(), current.end()); // Returns the elements in |previous| that are not in |current|. std::set_difference( previous.begin(), previous.end(), current.begin(), current.end(), std::back_inserter(*removed)); // Returns the elmeents in |current| that are not in |previous|. std::set_difference( current.begin(), current.end(), previous.begin(), previous.end(), std::back_inserter(*added)); return !removed->empty() || !added->empty(); } #if false template void CompareGroups( std::vector& previous_data, std::vector& current_data, std::function on_removed, std::function on_added, std::function on_found) { // TODO: It could be faster to use set_intersection and set_difference to // compute these values. We will have to presort the input by ID, though. // Precompute sets so we stay around O(3N) instead of O(N^2). Otherwise // lookups for duplicate elements will be O(N) and we need them to be O(1). std::unordered_set previous_set = CreateSet(previous_data); std::unordered_set current_set = CreateSet(current_data); // TODO: TryFind is just comparing pointers which obviously fails because they point to different memory... for (T* current_entry : current_set) { // Possibly updated. if (T* previous_entry = TryFind(previous_set, current_entry)) on_found(previous_entry, current_entry); // Added else on_added(current_entry); } for (T* previous_entry : previous_set) { // Removed if (!TryFind(current_set, previous_entry)) on_removed(previous_entry); } } #endif template void CompareGroups( std::vector& previous_data, std::vector& current_data, std::function on_removed, std::function on_added, std::function on_found) { // TODO: It could be faster to use set_intersection and set_difference to // compute these values. We will have to presort the input by ID, though. std::sort(previous_data.begin(), previous_data.end()); std::sort(current_data.begin(), current_data.end()); /* std::set_difference( current_data.begin(), current_data.end(), previous_data.begin(), previous_data.end(), boost::make_function_output_iterator([](const T& val) { })); */ auto prev_it = previous_data.begin(); auto curr_it = current_data.begin(); while (prev_it != previous_data.end() && curr_it != current_data.end()) { // same id if (prev_it->def.id == curr_it->def.id) { on_found(&*prev_it, &*curr_it); ++prev_it; ++curr_it; } // prev_id is smaller - prev_it has data curr_it does not have. else if (prev_it->def.id < curr_it->def.id) { on_removed(&*prev_it); ++prev_it; } // prev_id is bigger - curr_it has data prev_it does not have. else { on_added(&*curr_it); ++curr_it; } } // if prev_it still has data, that means it is not in curr_it and was removed. while (prev_it != previous_data.end()) { on_removed(&*prev_it); ++prev_it; } // if curr_it still has data, that means it is not in prev_it and was added. while (curr_it != current_data.end()) { on_added(&*curr_it); ++curr_it; } } // TODO: make this const correct. IndexUpdate ComputeDiff(IdMap* id_map, IndexedFile& previous, IndexedFile& current) { #define JOIN(a, b) a##b // |query_name| is the name of the variable on the query type. // |index_name| is the name of the variable on the index type. // |type| is the type of the variable. #define PROCESS_UPDATE_DIFF(query_name, index_name, type) \ { \ /* Check for changes. */ \ std::vector removed, added; \ bool did_add = ComputeDifferenceForUpdate(JOIN(previous->, index_name), JOIN(current->, index_name), &removed, &added); \ if (did_add) {\ std::cout << "Adding mergeable update on " << current->def.short_name << " (" << current->def.usr << ") for field " << #index_name << std::endl; \ JOIN(update., query_name).push_back(MakeMergeableUpdate(id_map, current->def.id, removed, added)); \ } \ } assert(previous.usr_to_id == current.usr_to_id); assert(previous.file_db == current.file_db); IndexUpdate update(id_map); // Types CompareGroups(previous.types, current.types, /*onRemoved:*/[&update, &id_map](IndexedTypeDef* def) { update.types_removed.push_back(id_map->Remap(def->def.id)); }, /*onAdded:*/[&update, &id_map](IndexedTypeDef* def) { update.types_added.push_back(QueryableTypeDef(*id_map, *def)); }, /*onChanged:*/[&update, &id_map](IndexedTypeDef* previous, IndexedTypeDef* current) { if (previous->def != current->def) update.types_def_changed.push_back(id_map->Remap(current->def)); PROCESS_UPDATE_DIFF(types_derived, derived, TypeId); PROCESS_UPDATE_DIFF(types_uses, uses, Location); }); // Functions CompareGroups(previous.funcs, current.funcs, /*onRemoved:*/[&update, &id_map](IndexedFuncDef* def) { update.funcs_removed.push_back(id_map->Remap(def->def.id)); }, /*onAdded:*/[&update, &id_map](IndexedFuncDef* def) { update.funcs_added.push_back(QueryableFuncDef(*id_map, *def)); }, /*onChanged:*/[&update, &id_map](IndexedFuncDef* previous, IndexedFuncDef* current) { if (previous->def != current->def) update.funcs_def_changed.push_back(id_map->Remap(current->def)); PROCESS_UPDATE_DIFF(funcs_declarations, declarations, Location); PROCESS_UPDATE_DIFF(funcs_derived, derived, FuncId); PROCESS_UPDATE_DIFF(funcs_callers, callers, FuncRef); PROCESS_UPDATE_DIFF(funcs_uses, uses, Location); }); // Variables CompareGroups(previous.vars, current.vars, /*onRemoved:*/[&update, &id_map](IndexedVarDef* def) { update.vars_removed.push_back(id_map->Remap(def->def.id)); }, /*onAdded:*/[&update, &id_map](IndexedVarDef* def) { update.vars_added.push_back(QueryableVarDef(*id_map, *def)); }, /*onChanged:*/[&update, &id_map](IndexedVarDef* previous, IndexedVarDef* current) { if (previous->def != current->def) update.vars_def_changed.push_back(id_map->Remap(current->def)); PROCESS_UPDATE_DIFF(vars_uses, uses, Location); }); return update; #undef PROCESS_UPDATE_DIFF #undef JOIN } // Merge the contents of |source| into |destination|. void Merge(const IndexUpdate& source, IndexUpdate* destination) { // TODO. } // Insert the contents of |update| into |db|. void ApplyIndexUpdate(const IndexUpdate& update, QueryableDatabase* db) { } int ma333in(int argc, char** argv) { // TODO: Unify UserToIdResolver and FileDb UsrToIdResolver usr_to_id(1); FileDb file_db(1); IndexedFile indexed_file_a = Parse(&usr_to_id, &file_db, "full_tests/index_delta/a_v0.cc", {}); std::cout << indexed_file_a.ToString() << std::endl; std::cout << std::endl; IndexedFile indexed_file_b = Parse(&usr_to_id, &file_db, "full_tests/index_delta/a_v1.cc", {}); std::cout << indexed_file_b.ToString() << std::endl; // TODO: We don't need to do ID remapping when computting a diff. Well, we need to do it for the IndexUpdate. IdMap dest_ids(2); IndexUpdate update = ComputeDiff(&dest_ids, indexed_file_a, indexed_file_b); return 0; } // TODO: Idea: when indexing and joining to the main db, allow many dbs that // are joined to. So that way even if the main db is busy we can // still be joining. Joining the partially joined db to the main // db should be faster since we will have larger data lanes to use. // TODO: I think we can run libclang multiple times in one process. So we might // only need two processes. Still, for perf reasons it would be good if // we could stay in one process. We could probably just use shared // memory. May want to run libclang in separate process to protect from // crashes/issues there. // TODO: allow user to store configuration as json? file in home dir; also // allow local overrides (scan up dirs) // TODO: add opt to dump config when starting (--dump-config) // TODO: allow user to decide some indexer choices, ie, do we mark prototype parameters as usages?