#include "indexer.h" #include "serializer.h" IndexedFile::IndexedFile(const std::string& path) : path(path) { // TODO: Reconsider if we should still be reusing the same id_cache. // Preallocate any existing resolved ids. for (const auto& entry : id_cache.usr_to_type_id) types.push_back(IndexedTypeDef(entry.second, entry.first)); for (const auto& entry : id_cache.usr_to_func_id) funcs.push_back(IndexedFuncDef(entry.second, entry.first)); for (const auto& entry : id_cache.usr_to_var_id) vars.push_back(IndexedVarDef(entry.second, entry.first)); } // TODO: Optimize for const char*? TypeId IndexedFile::ToTypeId(const std::string& usr) { auto it = id_cache.usr_to_type_id.find(usr); if (it != id_cache.usr_to_type_id.end()) return it->second; TypeId id(types.size()); types.push_back(IndexedTypeDef(id, usr)); id_cache.usr_to_type_id[usr] = id; id_cache.type_id_to_usr[id] = usr; return id; } FuncId IndexedFile::ToFuncId(const std::string& usr) { auto it = id_cache.usr_to_func_id.find(usr); if (it != id_cache.usr_to_func_id.end()) return it->second; FuncId id(funcs.size()); funcs.push_back(IndexedFuncDef(id, usr)); id_cache.usr_to_func_id[usr] = id; id_cache.func_id_to_usr[id] = usr; return id; } VarId IndexedFile::ToVarId(const std::string& usr) { auto it = id_cache.usr_to_var_id.find(usr); if (it != id_cache.usr_to_var_id.end()) return it->second; VarId id(vars.size()); vars.push_back(IndexedVarDef(id, usr)); id_cache.usr_to_var_id[usr] = id; id_cache.var_id_to_usr[id] = usr; return id; } TypeId IndexedFile::ToTypeId(const CXCursor& cursor) { return ToTypeId(clang::Cursor(cursor).get_usr()); } FuncId IndexedFile::ToFuncId(const CXCursor& cursor) { return ToFuncId(clang::Cursor(cursor).get_usr()); } VarId IndexedFile::ToVarId(const CXCursor& cursor) { return ToVarId(clang::Cursor(cursor).get_usr()); } IndexedTypeDef* IndexedFile::Resolve(TypeId id) { return &types[id.id]; } IndexedFuncDef* IndexedFile::Resolve(FuncId id) { return &funcs[id.id]; } IndexedVarDef* IndexedFile::Resolve(VarId id) { return &vars[id.id]; } std::string IndexedFile::ToString() { rapidjson::StringBuffer output; rapidjson::PrettyWriter writer(output); writer.SetFormatOptions( rapidjson::PrettyFormatOptions::kFormatSingleLineArray); writer.SetIndent(' ', 2); Serialize(writer, this); return output.GetString(); } IndexedTypeDef::IndexedTypeDef(TypeId id, const std::string& usr) : id(id), def(usr) { assert(usr.size() > 0); //std::cerr << "Creating type with usr " << usr << std::endl; } void IndexedTypeDef::AddUsage(Location loc, bool insert_if_not_present) { for (int i = uses.size() - 1; i >= 0; --i) { if (uses[i].IsEqualTo(loc)) { if (loc.interesting) uses[i].interesting = true; return; } } if (insert_if_not_present) uses.push_back(loc); } IdCache::IdCache() { // Reserve id 0 for unfound. file_path_to_file_id[""] = FileId(0); file_id_to_file_path[FileId(0)] = ""; } Location IdCache::Resolve(const CXSourceLocation& cx_loc, bool interesting) { CXFile file; unsigned int line, column, offset; clang_getSpellingLocation(cx_loc, &file, &line, &column, &offset); FileId file_id(-1); if (file != nullptr) { std::string path = clang::ToString(clang_getFileName(file)); auto it = file_path_to_file_id.find(path); if (it != file_path_to_file_id.end()) { file_id = it->second; } else { file_id = FileId(file_path_to_file_id.size()); file_path_to_file_id[path] = file_id; file_id_to_file_path[file_id] = path; } } return Location(interesting, file_id, line, column); } Location IdCache::Resolve(const CXIdxLoc& cx_idx_loc, bool interesting) { CXSourceLocation cx_loc = clang_indexLoc_getCXSourceLocation(cx_idx_loc); return Resolve(cx_loc, interesting); } Location IdCache::Resolve(const CXCursor& cx_cursor, bool interesting) { return Resolve(clang_getCursorLocation(cx_cursor), interesting); } Location IdCache::Resolve(const clang::Cursor& cursor, bool interesting) { return Resolve(cursor.cx_cursor, interesting); } template bool Contains(const std::vector& vec, const T& element) { for (const T& entry : vec) { if (entry == element) return true; } return false; } int abortQuery(CXClientData client_data, void *reserved) { // 0 -> continue return 0; } void diagnostic(CXClientData client_data, CXDiagnosticSet, void *reserved) {} CXIdxClientFile enteredMainFile(CXClientData client_data, CXFile mainFile, void *reserved) { return nullptr; } CXIdxClientFile ppIncludedFile(CXClientData client_data, const CXIdxIncludedFileInfo *) { return nullptr; } CXIdxClientASTFile importedASTFile(CXClientData client_data, const CXIdxImportedASTFileInfo *) { return nullptr; } CXIdxClientContainer startedTranslationUnit(CXClientData client_data, void *reserved) { return nullptr; } clang::VisiterResult DumpVisitor(clang::Cursor cursor, clang::Cursor parent, int* level) { for (int i = 0; i < *level; ++i) std::cerr << " "; std::cerr << clang::ToString(cursor.get_kind()) << " " << cursor.get_spelling() << std::endl; *level += 1; cursor.VisitChildren(&DumpVisitor, level); *level -= 1; return clang::VisiterResult::Continue; } void Dump(clang::Cursor cursor) { int level = 0; cursor.VisitChildren(&DumpVisitor, &level); } struct FindChildOfKindParam { CXCursorKind target_kind; optional result; FindChildOfKindParam(CXCursorKind target_kind) : target_kind(target_kind) {} }; clang::VisiterResult FindChildOfKindVisitor(clang::Cursor cursor, clang::Cursor parent, FindChildOfKindParam* param) { if (cursor.get_kind() == param->target_kind) { param->result = cursor; return clang::VisiterResult::Break; } return clang::VisiterResult::Recurse; } optional FindChildOfKind(clang::Cursor cursor, CXCursorKind kind) { FindChildOfKindParam param(kind); cursor.VisitChildren(&FindChildOfKindVisitor, ¶m); return param.result; } clang::VisiterResult FindTypeVisitor(clang::Cursor cursor, clang::Cursor parent, optional* result) { switch (cursor.get_kind()) { case CXCursor_TypeRef: case CXCursor_TemplateRef: *result = cursor; return clang::VisiterResult::Break; } return clang::VisiterResult::Recurse; } optional FindType(clang::Cursor cursor) { optional result; cursor.VisitChildren(&FindTypeVisitor, &result); return result; } struct NamespaceHelper { std::unordered_map container_usr_to_qualified_name; void RegisterQualifiedName(std::string usr, const CXIdxContainerInfo* container, std::string qualified_name) { if (container) { std::string container_usr = clang::Cursor(container->cursor).get_usr(); auto it = container_usr_to_qualified_name.find(container_usr); if (it != container_usr_to_qualified_name.end()) { container_usr_to_qualified_name[usr] = it->second + qualified_name + "::"; return; } } container_usr_to_qualified_name[usr] = qualified_name + "::"; } std::string QualifiedName(const CXIdxContainerInfo* container, std::string unqualified_name) { if (container) { std::string container_usr = clang::Cursor(container->cursor).get_usr(); auto it = container_usr_to_qualified_name.find(container_usr); if (it != container_usr_to_qualified_name.end()) return it->second + unqualified_name; // Anonymous namespaces are not processed by indexDeclaration. If we // encounter one insert it into map. if (container->cursor.kind == CXCursor_Namespace) { assert(clang::Cursor(container->cursor).get_spelling() == ""); container_usr_to_qualified_name[container_usr] = "::"; return "::" + unqualified_name; } } return unqualified_name; } }; struct IndexParam { IndexedFile* db; NamespaceHelper* ns; // Record the last type usage location we recorded. Clang will sometimes // visit the same expression twice so we wan't to avoid double-reporting // usage information for those locations. Location last_type_usage_location; Location last_func_usage_location; IndexParam(IndexedFile* db, NamespaceHelper* ns) : db(db), ns(ns) {} }; /* std::string GetNamespacePrefx(const CXIdxDeclInfo* decl) { const CXIdxContainerInfo* container = decl->lexicalContainer; while (container) { } } */ bool IsTypeDefinition(const CXIdxContainerInfo* container) { if (!container) return false; switch (container->cursor.kind) { case CXCursor_EnumDecl: case CXCursor_UnionDecl: case CXCursor_StructDecl: case CXCursor_ClassDecl: return true; default: return false; } } struct VisitDeclForTypeUsageParam { IndexedFile* db; bool is_interesting; int has_processed_any = false; optional previous_cursor; optional initial_type; VisitDeclForTypeUsageParam(IndexedFile* db, bool is_interesting) : db(db), is_interesting(is_interesting) {} }; void VisitDeclForTypeUsageVisitorHandler(clang::Cursor cursor, VisitDeclForTypeUsageParam* param) { param->has_processed_any = true; IndexedFile* db = param->db; std::string referenced_usr = cursor.get_referenced().template_specialization_to_template_definition().get_usr(); // TODO: things in STL cause this to be empty. Figure out why and document it. if (referenced_usr == "") return; TypeId ref_type_id = db->ToTypeId(referenced_usr); if (!param->initial_type) param->initial_type = ref_type_id; if (param->is_interesting) { IndexedTypeDef* ref_type_def = db->Resolve(ref_type_id); Location loc = db->id_cache.Resolve(cursor, true /*interesting*/); ref_type_def->AddUsage(loc); } } clang::VisiterResult VisitDeclForTypeUsageVisitor(clang::Cursor cursor, clang::Cursor parent, VisitDeclForTypeUsageParam* param) { switch (cursor.get_kind()) { case CXCursor_TemplateRef: case CXCursor_TypeRef: if (param->previous_cursor) { VisitDeclForTypeUsageVisitorHandler(param->previous_cursor.value(), param); // This if is inside the above if because if there are multiple TypeRefs, // we always want to process the first one. If we did not always process // the first one, we cannot tell if there are more TypeRefs after it and // logic for fetching the return type breaks. This happens in ParmDecl // instances which only have one TypeRef child but are not interesting // usages. if (!param->is_interesting) return clang::VisiterResult::Break; } param->previous_cursor = cursor; break; // We do not want to recurse for everything, since if we do that we will end // up visiting method definition bodies/etc. Instead, we only recurse for // things that can logically appear as part of an inline variable initializer, // ie, // // class Foo { // int x = (Foo)3; // } case CXCursor_CallExpr: case CXCursor_CStyleCastExpr: case CXCursor_CXXStaticCastExpr: case CXCursor_CXXReinterpretCastExpr: return clang::VisiterResult::Recurse; } return clang::VisiterResult::Continue; } // Finds the cursor associated with the declaration type of |cursor|. This strips // qualifies from |cursor| (ie, Foo* => Foo) and removes template arguments // (ie, Foo => Foo<*,*>). optional ResolveToDeclarationType(IndexedFile* db, clang::Cursor cursor) { clang::Cursor declaration = cursor.get_type().strip_qualifiers().get_declaration(); declaration = declaration.template_specialization_to_template_definition(); std::string usr = declaration.get_usr(); if (usr != "") return db->ToTypeId(usr); return nullopt; } // Add usages to any seen TypeRef or TemplateRef under the given |decl_cursor|. This // returns the first seen TypeRef or TemplateRef value, which can be useful if trying // to figure out ie, what a using statement refers to. If trying to generally resolve // a cursor to a type, use ResolveToDeclarationType, which works in more scenarios. optional AddDeclUsages(IndexedFile* db, clang::Cursor decl_cursor, bool is_interesting, const CXIdxContainerInfo* semantic_container, const CXIdxContainerInfo* lexical_container) { //std::cerr << std::endl << "AddDeclUsages " << decl_cursor.get_spelling() << std::endl; //Dump(decl_cursor); // // The general AST format for definitions follows this pattern: // // template // struct Container; // // struct S1; // struct S2; // // Container, S2> foo; // // => // // VarDecl // TemplateRef Container // TemplateRef Container // TypeRef struct S1 // TypeRef struct S2 // TypeRef struct S2 // // // Here is another example: // // enum A {}; // enum B {}; // // template // struct Foo { // struct Inner {}; // }; // // Foo::Inner a; // Foo b; // // => // // EnumDecl A // EnumDecl B // ClassTemplate Foo // TemplateTypeParameter T // StructDecl Inner // VarDecl a // TemplateRef Foo // TypeRef enum A // TypeRef struct Foo::Inner // CallExpr Inner // VarDecl b // TemplateRef Foo // TypeRef enum B // CallExpr Foo // // // Determining the actual type of the variable/declaration from just the // children is tricky. Doing so would require looking up the template // definition associated with a TemplateRef, figuring out how many children // it has, and then skipping that many TypeRef values. This also has to work // with the example below (skipping the last TypeRef). As a result, we // determine variable types using |ResolveToDeclarationType|. // // // We skip the last type reference for methods/variables which are defined // out-of-line w.r.t. the parent type. // // S1* Foo::foo() {} // // The above example looks like this in the AST: // // CXXMethod foo // TypeRef struct S1 // TypeRef class Foo // CompoundStmt // ... // // The second TypeRef is an uninteresting usage. bool process_last_type_ref = true; if (IsTypeDefinition(semantic_container) && !IsTypeDefinition(lexical_container)) { // // In some code, such as the following example, we receive a cursor which is not // a definition and is not associated with a definition due to an error condition. // In this case, it is the Foo::Foo constructor. // // struct Foo {}; // // template // Foo::Foo() {} // if (!decl_cursor.is_definition()) { // TODO: I don't think this resolution ever works. clang::Cursor def = decl_cursor.get_definition(); if (def.get_kind() != CXCursor_FirstInvalid) { std::cerr << "Successful resolution of decl usage to definition" << std::endl; decl_cursor = def; } } process_last_type_ref = false; } VisitDeclForTypeUsageParam param(db, is_interesting); decl_cursor.VisitChildren(&VisitDeclForTypeUsageVisitor, ¶m); // VisitDeclForTypeUsageVisitor guarantees that if there are multiple TypeRef // children, the first one will always be visited. if (param.previous_cursor && process_last_type_ref) { VisitDeclForTypeUsageVisitorHandler(param.previous_cursor.value(), ¶m); } else { // If we are not processing the last type ref, it *must* be a TypeRef (ie, // and not a TemplateRef). // // We will not visit every child if the is_interseting is false, so previous_cursor // may not point to the last TemplateRef. assert( is_interesting == false || param.previous_cursor.has_value() == false || param.previous_cursor.value().get_kind() == CXCursor_TypeRef); } return param.initial_type; } void indexDeclaration(CXClientData client_data, const CXIdxDeclInfo* decl) { bool is_system_def = clang_Location_isInSystemHeader(clang_getCursorLocation(decl->cursor)); IndexParam* param = static_cast(client_data); IndexedFile* db = param->db; NamespaceHelper* ns = param->ns; switch (decl->entityInfo->kind) { case CXIdxEntity_CXXNamespace: { ns->RegisterQualifiedName(decl->entityInfo->USR, decl->semanticContainer, decl->entityInfo->name); break; } case CXIdxEntity_EnumConstant: case CXIdxEntity_Field: case CXIdxEntity_Variable: case CXIdxEntity_CXXStaticVariable: { clang::Cursor decl_cursor = decl->cursor; // Do not index implicit template instantiations. if (decl_cursor != decl_cursor.template_specialization_to_template_definition()) break; std::string decl_usr = decl_cursor.get_usr(); VarId var_id = db->ToVarId(decl->entityInfo->USR); IndexedVarDef* var_def = db->Resolve(var_id); var_def->is_bad_def = is_system_def; // TODO: Eventually run with this if. Right now I want to iron out bugs this may shadow. // TODO: Verify this gets called multiple times //if (!decl->isRedeclaration) { var_def->def.short_name = decl->entityInfo->name; var_def->def.qualified_name = ns->QualifiedName(decl->semanticContainer, var_def->def.short_name); //} Location decl_loc = db->id_cache.Resolve(decl->loc, false /*interesting*/); if (decl->isDefinition) var_def->def.definition = decl_loc; else var_def->def.declaration = decl_loc; var_def->uses.push_back(decl_loc); //std::cerr << std::endl << "Visiting declaration" << std::endl; //Dump(decl_cursor); // Declaring variable type information. Note that we do not insert an // interesting reference for parameter declarations - that is handled when // the function declaration is encountered since we won't receive ParmDecl // declarations for unnamed parameters. AddDeclUsages(db, decl_cursor, decl_cursor.get_kind() != CXCursor_ParmDecl /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer); optional var_type = ResolveToDeclarationType(db, decl_cursor); if (var_type.has_value()) var_def->def.variable_type = var_type.value(); if (decl->isDefinition && IsTypeDefinition(decl->semanticContainer)) { TypeId declaring_type_id = db->ToTypeId(decl->semanticContainer->cursor); IndexedTypeDef* declaring_type_def = db->Resolve(declaring_type_id); var_def->def.declaring_type = declaring_type_id; declaring_type_def->def.vars.push_back(var_id); } break; } case CXIdxEntity_Function: case CXIdxEntity_CXXConstructor: case CXIdxEntity_CXXDestructor: case CXIdxEntity_CXXInstanceMethod: case CXIdxEntity_CXXStaticMethod: case CXIdxEntity_CXXConversionFunction: { clang::Cursor decl_cursor = decl->cursor; FuncId func_id = db->ToFuncId(decl->entityInfo->USR); IndexedFuncDef* func_def = db->Resolve(func_id); func_def->is_bad_def = is_system_def; // TODO: Eventually run with this if. Right now I want to iron out bugs this may shadow. //if (!decl->isRedeclaration) { func_def->def.short_name = decl->entityInfo->name; func_def->def.qualified_name = ns->QualifiedName(decl->semanticContainer, func_def->def.short_name); //} Location decl_loc = db->id_cache.Resolve(decl->loc, false /*interesting*/); if (decl->isDefinition) func_def->def.definition = decl_loc; else func_def->declarations.push_back(decl_loc); func_def->uses.push_back(decl_loc); bool is_pure_virtual = clang_CXXMethod_isPureVirtual(decl->cursor); bool is_ctor_or_dtor = decl->entityInfo->kind == CXIdxEntity_CXXConstructor || decl->entityInfo->kind == CXIdxEntity_CXXDestructor; //bool process_declaring_type = is_pure_virtual || is_ctor_or_dtor; // Add function usage information. We only want to do it once per // definition/declaration. Do it on definition since there should only ever // be one of those in the entire program. if (IsTypeDefinition(decl->semanticContainer)) { TypeId declaring_type_id = db->ToTypeId(decl->semanticContainer->cursor); IndexedTypeDef* declaring_type_def = db->Resolve(declaring_type_id); func_def->def.declaring_type = declaring_type_id; // Mark a type reference at the ctor/dtor location. // TODO: Should it be interesting? if (is_ctor_or_dtor) { Location type_usage_loc = decl_loc; declaring_type_def->AddUsage(type_usage_loc); } // Register function in declaring type if it hasn't been registered yet. if (!Contains(declaring_type_def->def.funcs, func_id)) declaring_type_def->def.funcs.push_back(func_id); } // We don't actually need to know the return type, but we need to mark it // as an interesting usage. AddDeclUsages(db, decl_cursor, true /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer); //TypeResolution ret_type = ResolveToType(db, decl_cursor.get_type().get_return_type()); //if (ret_type.resolved_type) // AddInterestingUsageToType(db, ret_type, FindLocationOfTypeSpecifier(decl_cursor)); if (decl->isDefinition || is_pure_virtual) { // Mark type usage for parameters as interesting. We handle this here // instead of inside var declaration because clang will not emit a var // declaration for an unnamed parameter, but we still want to mark the // usage as interesting. // TODO: Do a similar thing for function decl parameter usages. Mark // prototype params as interesting type usages but also relate mark // them as as usages on the primary variable - requires USR to be // the same. We can work around it by declaring which variables a // parameter has declared and update the USR in the definition. clang::Cursor cursor = decl->cursor; for (clang::Cursor arg : cursor.get_arguments()) { switch (arg.get_kind()) { case CXCursor_ParmDecl: // We don't need to know the arg type, but we do want to mark it as // an interesting usage. Note that we use semanticContainer twice // because a parameter is not really part of the lexical container. AddDeclUsages(db, arg, true /*is_interesting*/, decl->semanticContainer, decl->semanticContainer); //TypeResolution arg_type = ResolveToType(db, arg.get_type()); //if (arg_type.resolved_type) // AddInterestingUsageToType(db, arg_type, FindLocationOfTypeSpecifier(arg)); break; } } // Process inheritance. //void clang_getOverriddenCursors(CXCursor cursor, CXCursor **overridden, unsigned *num_overridden); //void clang_disposeOverriddenCursors(CXCursor *overridden); if (clang_CXXMethod_isVirtual(decl->cursor)) { CXCursor* overridden; unsigned int num_overridden; clang_getOverriddenCursors(decl->cursor, &overridden, &num_overridden); // TODO: How to handle multiple parent overrides?? for (unsigned int i = 0; i < num_overridden; ++i) { clang::Cursor parent = overridden[i]; FuncId parent_id = db->ToFuncId(parent.get_usr()); IndexedFuncDef* parent_def = db->Resolve(parent_id); func_def = db->Resolve(func_id); // ToFuncId invalidated func_def func_def->def.base = parent_id; parent_def->derived.push_back(func_id); } clang_disposeOverriddenCursors(overridden); } } /* optional base; std::vector derived; std::vector locals; std::vector callers; std::vector callees; std::vector uses; */ break; } case CXIdxEntity_Typedef: case CXIdxEntity_CXXTypeAlias: { // Note we want to fetch the first TypeRef. Running ResolveCursorType(decl->cursor) would return // the type of the typedef/using, not the type of the referenced type. optional alias_of = AddDeclUsages(db, decl->cursor, true /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer); TypeId type_id = db->ToTypeId(decl->entityInfo->USR); IndexedTypeDef* type_def = db->Resolve(type_id); type_def->is_bad_def = is_system_def; if (alias_of) type_def->def.alias_of = alias_of.value(); type_def->def.short_name = decl->entityInfo->name; type_def->def.qualified_name = ns->QualifiedName(decl->semanticContainer, type_def->def.short_name); Location decl_loc = db->id_cache.Resolve(decl->loc, true /*interesting*/); type_def->def.definition = decl_loc.WithInteresting(false); type_def->AddUsage(decl_loc); break; } case CXIdxEntity_Enum: case CXIdxEntity_Union: case CXIdxEntity_Struct: case CXIdxEntity_CXXClass: { TypeId type_id = db->ToTypeId(decl->entityInfo->USR); IndexedTypeDef* type_def = db->Resolve(type_id); type_def->is_bad_def = is_system_def; // TODO: Eventually run with this if. Right now I want to iron out bugs this may shadow. // TODO: For type section, verify if this ever runs for non definitions? //if (!decl->isRedeclaration) { // name can be null in an anonymous struct (see tests/types/anonymous_struct.cc). if (decl->entityInfo->name) { ns->RegisterQualifiedName(decl->entityInfo->USR, decl->semanticContainer, decl->entityInfo->name); type_def->def.short_name = decl->entityInfo->name; } else { type_def->def.short_name = ""; } type_def->def.qualified_name = ns->QualifiedName(decl->semanticContainer, type_def->def.short_name); // } assert(decl->isDefinition); Location decl_loc = db->id_cache.Resolve(decl->loc, true /*interesting*/); type_def->def.definition = decl_loc.WithInteresting(false); type_def->AddUsage(decl_loc); //type_def->alias_of //type_def->funcs //type_def->types //type_def->uses //type_def->vars // Add type-level inheritance information. CXIdxCXXClassDeclInfo const* class_info = clang_index_getCXXClassDeclInfo(decl); if (class_info) { for (unsigned int i = 0; i < class_info->numBases; ++i) { const CXIdxBaseClassInfo* base_class = class_info->bases[i]; AddDeclUsages(db, base_class->cursor, true /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer); optional parent_type_id = ResolveToDeclarationType(db, base_class->cursor); IndexedTypeDef* type_def = db->Resolve(type_id); // type_def ptr could be invalidated by ResolveDeclToType. if (parent_type_id) { IndexedTypeDef* parent_type_def = db->Resolve(parent_type_id.value()); parent_type_def->derived.push_back(type_id); type_def->def.parents.push_back(parent_type_id.value()); } } } break; } default: std::cerr << "!! Unhandled indexDeclaration: " << clang::Cursor(decl->cursor).ToString() << " at " << db->id_cache.Resolve(decl->loc, false /*interesting*/).ToString() << std::endl; std::cerr << " entityInfo->kind = " << decl->entityInfo->kind << std::endl; std::cerr << " entityInfo->USR = " << decl->entityInfo->USR << std::endl; if (decl->declAsContainer) std::cerr << " declAsContainer = " << clang::Cursor(decl->declAsContainer->cursor).ToString() << std::endl; if (decl->semanticContainer) std::cerr << " semanticContainer = " << clang::Cursor(decl->semanticContainer->cursor).ToString() << std::endl; if (decl->lexicalContainer) std::cerr << " lexicalContainer = " << clang::Cursor(decl->lexicalContainer->cursor).get_usr() << std::endl; break; } } bool IsFunction(CXCursorKind kind) { switch (kind) { case CXCursor_CXXMethod: case CXCursor_FunctionDecl: return true; } return false; } void indexEntityReference(CXClientData client_data, const CXIdxEntityRefInfo* ref) { IndexParam* param = static_cast(client_data); IndexedFile* db = param->db; clang::Cursor cursor(ref->cursor); switch (ref->referencedEntity->kind) { case CXIdxEntity_EnumConstant: case CXIdxEntity_CXXStaticVariable: case CXIdxEntity_Variable: case CXIdxEntity_Field: { clang::Cursor referenced = ref->referencedEntity->cursor; referenced = referenced.template_specialization_to_template_definition(); VarId var_id = db->ToVarId(referenced.get_usr()); IndexedVarDef* var_def = db->Resolve(var_id); Location loc = db->id_cache.Resolve(ref->loc, false /*interesting*/); var_def->uses.push_back(loc); break; } case CXIdxEntity_CXXConversionFunction: case CXIdxEntity_CXXStaticMethod: case CXIdxEntity_CXXInstanceMethod: case CXIdxEntity_Function: case CXIdxEntity_CXXConstructor: case CXIdxEntity_CXXDestructor: { // TODO: Redirect container to constructor for the following example, ie, // we should be inserting an outgoing function call from the Foo // ctor. // // int Gen() { return 5; } // class Foo { // int x = Gen(); // } // Don't report duplicate usages. // TODO: search full history? Location loc = db->id_cache.Resolve(ref->loc, false /*interesting*/); if (param->last_func_usage_location == loc) break; param->last_func_usage_location = loc; // Note: be careful, calling db->ToFuncId invalidates the FuncDef* ptrs. FuncId called_id = db->ToFuncId(ref->referencedEntity->USR); if (IsFunction(ref->container->cursor.kind)) { FuncId caller_id = db->ToFuncId(ref->container->cursor); IndexedFuncDef* caller_def = db->Resolve(caller_id); IndexedFuncDef* called_def = db->Resolve(called_id); caller_def->def.callees.push_back(FuncRef(called_id, loc)); called_def->callers.push_back(FuncRef(caller_id, loc)); called_def->uses.push_back(loc); } else { IndexedFuncDef* called_def = db->Resolve(called_id); called_def->uses.push_back(loc); } // For constructor/destructor, also add a usage against the type. Clang // will insert and visit implicit constructor references, so we also check // the location of the ctor call compared to the parent call. If they are // the same, this is most likely an implicit ctors. clang::Cursor ref_cursor = ref->cursor; if (ref->referencedEntity->kind == CXIdxEntity_CXXConstructor || ref->referencedEntity->kind == CXIdxEntity_CXXDestructor) { Location parent_loc = db->id_cache.Resolve(ref->parentEntity->cursor, true /*interesting*/); Location our_loc = db->id_cache.Resolve(ref->loc, true /*is_interesting*/); if (!parent_loc.IsEqualTo(our_loc)) { IndexedFuncDef* called_def = db->Resolve(called_id); // I suspect it is possible for the declaring type to be null // when the class is invalid. //if (called_def->def.declaring_type) { assert(called_def->def.declaring_type.has_value()); IndexedTypeDef* type_def = db->Resolve(called_def->def.declaring_type.value()); type_def->AddUsage(our_loc); //} } } break; } case CXIdxEntity_Typedef: case CXIdxEntity_CXXTypeAlias: case CXIdxEntity_Enum: case CXIdxEntity_Union: case CXIdxEntity_Struct: case CXIdxEntity_CXXClass: { clang::Cursor referenced = ref->referencedEntity->cursor; referenced = referenced.template_specialization_to_template_definition(); TypeId referenced_id = db->ToTypeId(referenced.get_usr()); IndexedTypeDef* referenced_def = db->Resolve(referenced_id); // We will not get a declaration visit for forward declared types. Try to mark them as non-bad // defs here so we will output usages/etc. if (referenced_def->is_bad_def) { bool is_system_def = clang_Location_isInSystemHeader(clang_getCursorLocation(ref->referencedEntity->cursor)); Location loc = db->id_cache.Resolve(ref->referencedEntity->cursor, false /*interesting*/); if (!is_system_def && loc.raw_file_id != -1) referenced_def->is_bad_def = false; } // // The following will generate two TypeRefs to Foo, both located at the // same spot (line 3, column 3). One of the parents will be set to // CXIdxEntity_Variable, the other will be CXIdxEntity_Function. There does // not appear to be a good way to disambiguate these references, as using // parent type alone breaks other indexing tasks. // // To work around this, we check to see if the usage location has been // inserted into all_uses previously. // // struct Foo {}; // void Make() { // Foo f; // } // referenced_def->AddUsage(db->id_cache.Resolve(ref->loc, false /*interesting*/)); break; } default: std::cerr << "!! Unhandled indexEntityReference: " << cursor.ToString() << " at " << db->id_cache.Resolve(ref->loc, false /*interesting*/).ToString() << std::endl; std::cerr << " ref->referencedEntity->kind = " << ref->referencedEntity->kind << std::endl; if (ref->parentEntity) std::cerr << " ref->parentEntity->kind = " << ref->parentEntity->kind << std::endl; std::cerr << " ref->loc = " << db->id_cache.Resolve(ref->loc, false /*interesting*/).ToString() << std::endl; std::cerr << " ref->kind = " << ref->kind << std::endl; if (ref->parentEntity) std::cerr << " parentEntity = " << clang::Cursor(ref->parentEntity->cursor).ToString() << std::endl; if (ref->referencedEntity) std::cerr << " referencedEntity = " << clang::Cursor(ref->referencedEntity->cursor).ToString() << std::endl; if (ref->container) std::cerr << " container = " << clang::Cursor(ref->container->cursor).ToString() << std::endl; break; } } IndexedFile Parse(std::string filename, std::vector args, bool dump_ast) { clang::Index index(0 /*excludeDeclarationsFromPCH*/, 0 /*displayDiagnostics*/); clang::TranslationUnit tu(index, filename, args); if (dump_ast) Dump(tu.document_cursor()); CXIndexAction index_action = clang_IndexAction_create(index.cx_index); IndexerCallbacks callbacks[] = { { &abortQuery, &diagnostic, &enteredMainFile, &ppIncludedFile, &importedASTFile, &startedTranslationUnit, &indexDeclaration, &indexEntityReference } /* callbacks.abortQuery = &abortQuery; callbacks.diagnostic = &diagnostic; callbacks.enteredMainFile = &enteredMainFile; callbacks.ppIncludedFile = &ppIncludedFile; callbacks.importedASTFile = &importedASTFile; callbacks.startedTranslationUnit = &startedTranslationUnit; callbacks.indexDeclaration = &indexDeclaration; callbacks.indexEntityReference = &indexEntityReference; */ }; IndexedFile db(filename); NamespaceHelper ns; IndexParam param(&db, &ns); clang_indexTranslationUnit(index_action, ¶m, callbacks, sizeof(callbacks), CXIndexOpt_IndexFunctionLocalSymbols | CXIndexOpt_SkipParsedBodiesInSession, tu.cx_tu); clang_IndexAction_dispose(index_action); return db; }