ccls/src/indexer.cc

2428 lines
86 KiB
C++

#include "indexer.h"
#include "clang_cursor.h"
#include "clang_utils.h"
#include "platform.h"
#include "serializer.h"
#include "timer.h"
#include "type_printer.h"
#include <loguru.hpp>
#include <algorithm>
#include <cassert>
#include <chrono>
#include <climits>
#include <iostream>
// TODO: See if we can use clang_indexLoc_getFileLocation to get a type ref on
// |Foobar| in DISALLOW_COPY(Foobar)
#if CINDEX_VERSION >= 47
#define CINDEX_HAVE_PRETTY 1
#endif
#if CINDEX_VERSION >= 48
#define CINDEX_HAVE_ROLE 1
#endif
namespace {
constexpr bool kIndexStdDeclarations = true;
// For typedef/using spanning less than or equal to (this number) of lines,
// display their declarations on hover.
constexpr int kMaxLinesDisplayTypeAliasDeclarations = 3;
void AddFuncUse(std::vector<Use>* result, Use ref) {
if (!result->empty() && (*result)[result->size() - 1] == ref)
return;
result->push_back(ref);
}
bool IsScopeSemanticContainer(CXCursorKind kind) {
switch (kind) {
case CXCursor_Namespace:
case CXCursor_TranslationUnit:
case CXCursor_StructDecl:
case CXCursor_UnionDecl:
case CXCursor_ClassDecl:
case CXCursor_EnumDecl:
// TODO Add more Objective-C containers
case CXCursor_ObjCInterfaceDecl:
case CXCursor_ObjCImplementationDecl:
return false;
default:
return true;
}
}
Role GetRole(const CXIdxEntityRefInfo* ref_info, Role role) {
#if CINDEX_HAVE_ROLE
return static_cast<Role>(static_cast<int>(ref_info->role));
#else
return role;
#endif
}
SymbolKind GetSymbolKind(CXCursorKind kind) {
switch (kind) {
default:
return SymbolKind::Invalid;
case CXCursor_FunctionDecl:
case CXCursor_CXXMethod:
case CXCursor_Constructor:
case CXCursor_Destructor:
case CXCursor_ConversionFunction:
case CXCursor_FunctionTemplate:
case CXCursor_OverloadedDeclRef:
case CXCursor_LambdaExpr:
return SymbolKind::Func;
case CXCursor_Namespace:
case CXCursor_EnumDecl:
case CXCursor_UnionDecl:
case CXCursor_StructDecl:
case CXCursor_ClassDecl:
return SymbolKind::Type;
}
}
// Inverse of libclang/CXIndexDataConsumer.cpp getEntityKindFromSymbolKind
ClangSymbolKind GetSymbolKind(CXIdxEntityKind kind) {
switch (kind) {
default:
return ClangSymbolKind::Unknown;
case CXIdxEntity_Enum:
return ClangSymbolKind::Enum;
case CXIdxEntity_Struct:
return ClangSymbolKind::Struct;
case CXIdxEntity_Union:
return ClangSymbolKind::Union;
case CXIdxEntity_CXXTypeAlias:
case CXIdxEntity_Typedef:
return ClangSymbolKind::TypeAlias;
case CXIdxEntity_Function:
return ClangSymbolKind::Function;
case CXIdxEntity_Variable:
// Can also be Parameter
return ClangSymbolKind::Variable;
case CXIdxEntity_Field:
case CXIdxEntity_ObjCIvar:
return ClangSymbolKind::Field;
case CXIdxEntity_EnumConstant:
return ClangSymbolKind::EnumConstant;
case CXIdxEntity_CXXClass:
case CXIdxEntity_ObjCClass:
return ClangSymbolKind::Class;
case CXIdxEntity_CXXInterface:
case CXIdxEntity_ObjCProtocol:
return ClangSymbolKind::Protocol;
case CXIdxEntity_ObjCCategory:
return ClangSymbolKind::Extension;
case CXIdxEntity_CXXInstanceMethod:
case CXIdxEntity_ObjCInstanceMethod:
return ClangSymbolKind::InstanceMethod;
case CXIdxEntity_ObjCClassMethod:
return ClangSymbolKind::ClassMethod;
case CXIdxEntity_CXXStaticMethod:
return ClangSymbolKind::StaticMethod;
case CXIdxEntity_ObjCProperty:
return ClangSymbolKind::InstanceProperty;
case CXIdxEntity_CXXStaticVariable:
return ClangSymbolKind::StaticProperty;
case CXIdxEntity_CXXNamespace:
return ClangSymbolKind::Namespace;
case CXIdxEntity_CXXNamespaceAlias:
return ClangSymbolKind::NamespaceAlias;
case CXIdxEntity_CXXConstructor:
return ClangSymbolKind::Constructor;
case CXIdxEntity_CXXDestructor:
return ClangSymbolKind::Destructor;
case CXIdxEntity_CXXConversionFunction:
return ClangSymbolKind::ConversionFunction;
}
}
StorageClass GetStorageClass(CX_StorageClass storage) {
switch (storage) {
case CX_SC_Invalid:
case CX_SC_OpenCLWorkGroupLocal:
return StorageClass::Invalid;
case CX_SC_None:
return StorageClass::None;
case CX_SC_Extern:
return StorageClass::Extern;
case CX_SC_Static:
return StorageClass::Static;
case CX_SC_PrivateExtern:
return StorageClass::PrivateExtern;
case CX_SC_Auto:
return StorageClass::Auto;
case CX_SC_Register:
return StorageClass::Register;
default:
assert(0);
return StorageClass::Invalid;
}
}
// Caches all instances of constructors, regardless if they are indexed or not.
// The constructor may have a make_unique call associated with it that we need
// to export. If we do not capture the parameter type description for the
// constructor we will not be able to attribute the constructor call correctly.
struct ConstructorCache {
struct Constructor {
Usr usr;
std::vector<std::string> param_type_desc;
};
std::unordered_map<Usr, std::vector<Constructor>> constructors_;
// This should be called whenever there is a constructor declaration.
void NotifyConstructor(ClangCursor ctor_cursor) {
auto build_type_desc = [](ClangCursor cursor) {
std::vector<std::string> type_desc;
for (ClangCursor arg : cursor.get_arguments()) {
if (arg.get_kind() == CXCursor_ParmDecl)
type_desc.push_back(arg.get_type_description());
}
return type_desc;
};
Constructor ctor{ctor_cursor.get_usr_hash(), build_type_desc(ctor_cursor)};
// Insert into |constructors_|.
auto type_usr_hash = ctor_cursor.get_semantic_parent().get_usr_hash();
auto existing_ctors = constructors_.find(type_usr_hash);
if (existing_ctors != constructors_.end()) {
existing_ctors->second.push_back(ctor);
} else {
constructors_[type_usr_hash] = {ctor};
}
}
// Tries to lookup a constructor in |type_usr| that takes arguments most
// closely aligned to |param_type_desc|.
optional<Usr> TryFindConstructorUsr(
Usr type_usr,
const std::vector<std::string>& param_type_desc) {
auto count_matching_prefix_length = [](const char* a, const char* b) {
int matched = 0;
while (*a && *b) {
if (*a != *b)
break;
++a;
++b;
++matched;
}
// Additional score if the strings were the same length, which makes
// "a"/"a" match higher than "a"/"a&"
if (*a == *b)
matched += 1;
return matched;
};
// Try to find constructors for the type. If there are no constructors
// available, return an empty result.
auto ctors_it = constructors_.find(type_usr);
if (ctors_it == constructors_.end())
return nullopt;
const std::vector<Constructor>& ctors = ctors_it->second;
if (ctors.empty())
return nullopt;
Usr best_usr = ctors[0].usr;
int best_score = INT_MIN;
// Scan constructors for the best possible match.
for (const Constructor& ctor : ctors) {
// If |param_type_desc| is empty and the constructor is as well, we don't
// need to bother searching, as this is the match.
if (param_type_desc.empty() && ctor.param_type_desc.empty()) {
best_usr = ctor.usr;
break;
}
// Weight matching parameter length heavily, as it is more accurate than
// the fuzzy type matching approach.
int score = 0;
if (param_type_desc.size() == ctor.param_type_desc.size())
score += param_type_desc.size() * 1000;
// Do prefix-based match on parameter type description. This works well in
// practice because clang appends qualifiers to the end of the type, ie,
// |foo *&&|
for (size_t i = 0;
i < std::min(param_type_desc.size(), ctor.param_type_desc.size());
++i) {
score += count_matching_prefix_length(param_type_desc[i].c_str(),
ctor.param_type_desc[i].c_str());
}
if (score > best_score) {
best_usr = ctor.usr;
best_score = score;
}
}
return best_usr;
}
};
struct IndexParam {
Config* config = nullptr;
std::unordered_set<CXFile> seen_cx_files;
std::vector<std::string> seen_files;
FileContentsMap file_contents;
std::unordered_map<std::string, int64_t> file_modification_times;
// Only use this when strictly needed (ie, primary translation unit is
// needed). Most logic should get the IndexFile instance via
// |file_consumer|.
//
// This can be null if we're not generating an index for the primary
// translation unit.
IndexFile* primary_file = nullptr;
ClangTranslationUnit* tu = nullptr;
FileConsumer* file_consumer = nullptr;
NamespaceHelper ns;
ConstructorCache ctors;
IndexParam(Config* config, ClangTranslationUnit* tu, FileConsumer* file_consumer)
: config(config), tu(tu), file_consumer(file_consumer) {}
#if CINDEX_HAVE_PRETTY
CXPrintingPolicy print_policy = nullptr;
CXPrintingPolicy print_policy_more = nullptr;
~IndexParam() {
clang_PrintingPolicy_dispose(print_policy);
clang_PrintingPolicy_dispose(print_policy_more);
}
std::string PrettyPrintCursor(CXCursor cursor, bool initializer = true) {
if (!print_policy) {
print_policy = clang_getCursorPrintingPolicy(cursor);
clang_PrintingPolicy_setProperty(print_policy,
CXPrintingPolicy_TerseOutput, 1);
clang_PrintingPolicy_setProperty(print_policy,
CXPrintingPolicy_FullyQualifiedName, 1);
clang_PrintingPolicy_setProperty(print_policy,
CXPrintingPolicy_SuppressInitializers, 1);
print_policy_more = clang_getCursorPrintingPolicy(cursor);
clang_PrintingPolicy_setProperty(print_policy_more,
CXPrintingPolicy_FullyQualifiedName, 1);
clang_PrintingPolicy_setProperty(print_policy_more,
CXPrintingPolicy_TerseOutput, 1);
}
return ToString(clang_getCursorPrettyPrinted(
cursor, initializer ? print_policy_more : print_policy));
}
#endif
};
IndexFile* ConsumeFile(IndexParam* param, CXFile file) {
bool is_first_ownership = false;
IndexFile* db = param->file_consumer->TryConsumeFile(
file, &is_first_ownership, &param->file_contents);
// If this is the first time we have seen the file (ignoring if we are
// generating an index for it):
if (param->seen_cx_files.insert(file).second) {
std::string file_name = FileName(file);
// Sometimes the fill name will be empty. Not sure why. Not much we can do
// with it.
if (!file_name.empty()) {
// Add to all files we have seen so we can generate proper dependency
// graph.
param->seen_files.push_back(file_name);
// Set modification time.
optional<int64_t> modification_time = GetLastModificationTime(file_name);
LOG_IF_S(ERROR, !modification_time)
<< "Failed fetching modification time for " << file_name;
if (modification_time)
param->file_modification_times[file_name] = *modification_time;
}
}
if (is_first_ownership) {
// Report skipped source range list.
CXSourceRangeList* skipped = clang_getSkippedRanges(param->tu->cx_tu, file);
for (unsigned i = 0; i < skipped->count; ++i) {
Range range = ResolveCXSourceRange(skipped->ranges[i]);
// clang_getSkippedRanges reports start one token after the '#', move it
// back so it starts at the '#'
range.start.column -= 1;
db->skipped_by_preprocessor.push_back(range);
}
clang_disposeSourceRangeList(skipped);
}
return db;
}
// Returns true if the given entity kind can be called implicitly, ie, without
// actually being written in the source code.
bool CanBeCalledImplicitly(CXIdxEntityKind kind) {
switch (kind) {
case CXIdxEntity_CXXConstructor:
case CXIdxEntity_CXXConversionFunction:
case CXIdxEntity_CXXDestructor:
return true;
default:
return false;
}
}
// Returns true if the cursor spelling contains the given string. This is
// useful to check for implicit function calls.
bool CursorSpellingContainsString(CXCursor cursor,
CXTranslationUnit cx_tu,
std::string_view needle) {
CXSourceRange range = clang_Cursor_getSpellingNameRange(cursor, 0, 0);
CXToken* tokens;
unsigned num_tokens;
clang_tokenize(cx_tu, range, &tokens, &num_tokens);
bool result = false;
for (unsigned i = 0; i < num_tokens; ++i) {
CXString name = clang_getTokenSpelling(cx_tu, tokens[i]);
if (needle == clang_getCString(name)) {
result = true;
break;
}
clang_disposeString(name);
}
clang_disposeTokens(cx_tu, tokens, num_tokens);
return result;
}
// Returns the document content for the given range. May not work perfectly
// when there are tabs instead of spaces.
std::string GetDocumentContentInRange(CXTranslationUnit cx_tu,
CXSourceRange range) {
std::string result;
CXToken* tokens;
unsigned num_tokens;
clang_tokenize(cx_tu, range, &tokens, &num_tokens);
optional<Range> previous_token_range;
for (unsigned i = 0; i < num_tokens; ++i) {
// Add whitespace between the previous token and this one.
Range token_range =
ResolveCXSourceRange(clang_getTokenExtent(cx_tu, tokens[i]));
if (previous_token_range) {
// Insert newlines.
int16_t line_delta =
token_range.start.line - previous_token_range->end.line;
assert(line_delta >= 0);
if (line_delta > 0) {
result.append((size_t)line_delta, '\n');
// Reset column so we insert starting padding.
previous_token_range->end.column = 0;
}
// Insert spaces.
int16_t column_delta =
token_range.start.column - previous_token_range->end.column;
assert(column_delta >= 0);
result.append((size_t)column_delta, ' ');
}
previous_token_range = token_range;
// Add token content.
CXString spelling = clang_getTokenSpelling(cx_tu, tokens[i]);
result += clang_getCString(spelling);
clang_disposeString(spelling);
}
clang_disposeTokens(cx_tu, tokens, num_tokens);
return result;
}
void SetUsePreflight(IndexFile* db, ClangCursor lex_parent) {
switch (GetSymbolKind(lex_parent.get_kind())) {
default:
break;
case SymbolKind::Func: {
(void)db->ToFuncId(lex_parent.cx_cursor);
break;
}
case SymbolKind::Type: {
(void)db->ToTypeId(lex_parent.cx_cursor);
break;
}
case SymbolKind::Var: {
(void)db->ToVarId(lex_parent.cx_cursor);
break;
}
}
}
void SetUse(IndexFile* db, Maybe<Use>* def, Range range, ClangCursor lex_parent, Role role) {
switch (GetSymbolKind(lex_parent.get_kind())) {
default:
*def = Use(range, Id<void>(), SymbolKind::File, role);
break;
case SymbolKind::Func: {
IndexFuncId id = db->ToFuncId(lex_parent.cx_cursor);
*def = Use(range, id, SymbolKind::Func, Role::Definition);
break;
}
case SymbolKind::Type: {
IndexTypeId id = db->ToTypeId(lex_parent.cx_cursor);
*def = Use(range, id, SymbolKind::Type, Role::Definition);
break;
}
case SymbolKind::Var: {
IndexVarId id = db->ToVarId(lex_parent.cx_cursor);
*def = Use(range, id, SymbolKind::Var, Role::Definition);
break;
}
}
}
void SetTypeName(IndexType* type,
const ClangCursor& cursor,
const CXIdxContainerInfo* container,
const char* name,
IndexParam* param) {
CXIdxContainerInfo parent;
// |name| can be null in an anonymous struct (see
// tests/types/anonymous_struct.cc).
if (!name)
name = "(anon)";
if (!container)
parent.cursor = cursor.get_semantic_parent().cx_cursor;
// Investigate why clang_getCursorPrettyPrinted is not fully qualified.
type->def.detailed_name =
param->ns.QualifiedName(container ? container : &parent, name);
auto idx = type->def.detailed_name.find(name);
assert(idx != std::string::npos);
type->def.short_name_offset = idx;
type->def.short_name_size = strlen(name);
}
// Finds the cursor associated with the declaration type of |cursor|. This
// strips
// qualifies from |cursor| (ie, Foo* => Foo) and removes template arguments
// (ie, Foo<A,B> => Foo<*,*>).
optional<IndexTypeId> ResolveToDeclarationType(IndexFile* db,
ClangCursor cursor,
IndexParam* param) {
ClangType type = cursor.get_type();
// auto x = new Foo() will not be deduced to |Foo| if we do not use the
// canonical type. However, a canonical type will look past typedefs so we
// will not accurately report variables on typedefs if we always do this.
if (type.cx_type.kind == CXType_Auto)
type = type.get_canonical();
type = type.strip_qualifiers();
if (type.is_fundamental()) {
// For builtin types, use type kinds as USR hash.
return db->ToTypeId(type.cx_type.kind);
}
ClangCursor declaration =
type.get_declaration().template_specialization_to_template_definition();
CXString cx_usr = clang_getCursorUSR(declaration.cx_cursor);
const char* str_usr = clang_getCString(cx_usr);
if (!str_usr || str_usr[0] == '\0') {
clang_disposeString(cx_usr);
return nullopt;
}
Usr usr = HashUsr(str_usr);
clang_disposeString(cx_usr);
IndexTypeId type_id = db->ToTypeId(usr);
IndexType* typ = db->Resolve(type_id);
if (typ->def.detailed_name.empty()) {
std::string name = declaration.get_spelling();
SetTypeName(typ, declaration, nullptr, name.c_str(), param);
}
return type_id;
}
void SetVarDetail(IndexVar* var,
std::string_view short_name,
const ClangCursor& cursor,
const CXIdxContainerInfo* semanticContainer,
bool is_first_seen,
IndexFile* db,
IndexParam* param) {
IndexVar::Def& def = var->def;
const CXType cx_type = clang_getCursorType(cursor.cx_cursor);
std::string type_name = ToString(clang_getTypeSpelling(cx_type));
// clang may report "(lambda at foo.cc)" which end up being a very long
// string. Shorten it to just "lambda".
if (type_name.find("(lambda at") != std::string::npos)
type_name = "lambda";
def.comments = cursor.get_comments();
def.storage = GetStorageClass(clang_Cursor_getStorageClass(cursor.cx_cursor));
// TODO how to make PrettyPrint'ed variable name qualified?
std::string qualified_name =
#if 0 && CINDEX_HAVE_PRETTY
cursor.get_kind() != CXCursor_EnumConstantDecl
? param->PrettyPrintCursor(cursor.cx_cursor)
:
#endif
param->ns.QualifiedName(semanticContainer, short_name);
if (cursor.get_kind() == CXCursor_EnumConstantDecl && semanticContainer) {
CXType enum_type = clang_getCanonicalType(
clang_getEnumDeclIntegerType(semanticContainer->cursor));
std::string hover = qualified_name + " = ";
if (enum_type.kind == CXType_UInt || enum_type.kind == CXType_ULong ||
enum_type.kind == CXType_ULongLong)
hover += std::to_string(
clang_getEnumConstantDeclUnsignedValue(cursor.cx_cursor));
else
hover += std::to_string(clang_getEnumConstantDeclValue(cursor.cx_cursor));
def.detailed_name = std::move(qualified_name);
def.hover = hover;
} else {
#if 0 && CINDEX_HAVE_PRETTY
//def.detailed_name = param->PrettyPrintCursor(cursor.cx_cursor, false);
#else
ConcatTypeAndName(type_name, qualified_name);
def.detailed_name = type_name;
// Append the textual initializer, bit field, constructor to |hover|.
// Omit |hover| for these types:
// int (*a)(); int (&a)(); int (&&a)(); int a[1]; auto x = ...
// We can take these into consideration after we have better support for
// inside-out syntax.
CXType deref = cx_type;
while (deref.kind == CXType_Pointer || deref.kind == CXType_MemberPointer ||
deref.kind == CXType_LValueReference ||
deref.kind == CXType_RValueReference)
deref = clang_getPointeeType(deref);
if (deref.kind != CXType_Unexposed && deref.kind != CXType_Auto &&
clang_getResultType(deref).kind == CXType_Invalid &&
clang_getElementType(deref).kind == CXType_Invalid) {
const FileContents& fc = param->file_contents[db->path];
optional<int> spell_end = fc.ToOffset(cursor.get_spelling_range().end);
optional<int> extent_end = fc.ToOffset(cursor.get_extent().end);
if (extent_end && *spell_end < *extent_end)
def.hover = std::string(def.detailed_name.c_str()) +
fc.content.substr(*spell_end, *extent_end - *spell_end);
}
#endif
}
// FIXME QualifiedName should return index
auto idx = def.detailed_name.find(short_name.begin(), 0, short_name.size());
assert(idx != std::string::npos);
def.short_name_offset = idx;
def.short_name_size = short_name.size();
if (is_first_seen) {
optional<IndexTypeId> var_type =
ResolveToDeclarationType(db, cursor, param);
if (var_type) {
// Don't treat enum definition variables as instantiations.
bool is_enum_member = semanticContainer &&
semanticContainer->cursor.kind == CXCursor_EnumDecl;
if (!is_enum_member)
db->Resolve(var_type.value())->instances.push_back(var->id);
def.type = *var_type;
}
}
}
void OnIndexReference_Function(IndexFile* db,
Range loc,
ClangCursor parent_cursor,
IndexFuncId called_id,
Role role) {
switch (GetSymbolKind(parent_cursor.get_kind())) {
case SymbolKind::Func: {
IndexFunc* parent = db->Resolve(db->ToFuncId(parent_cursor.cx_cursor));
IndexFunc* called = db->Resolve(called_id);
parent->def.callees.push_back(
SymbolRef(loc, called->id, SymbolKind::Func, role));
AddFuncUse(&called->uses, Use(loc, parent->id, SymbolKind::Func, role));
break;
}
case SymbolKind::Type: {
IndexType* parent = db->Resolve(db->ToTypeId(parent_cursor.cx_cursor));
IndexFunc* called = db->Resolve(called_id);
called = db->Resolve(called_id);
AddFuncUse(&called->uses, Use(loc, parent->id, SymbolKind::Type, role));
break;
}
default: {
IndexFunc* called = db->Resolve(called_id);
AddFuncUse(&called->uses, Use(loc, Id<void>(), SymbolKind::File, role));
break;
}
}
}
} // namespace
// static
const int IndexFile::kMajorVersion = 13;
const int IndexFile::kMinorVersion = 0;
IndexFile::IndexFile(const std::string& path, const std::string& contents)
: id_cache(path), path(path), file_contents(contents) {}
// TODO: Optimize for const char*?
IndexTypeId IndexFile::ToTypeId(Usr usr) {
auto it = id_cache.usr_to_type_id.find(usr);
if (it != id_cache.usr_to_type_id.end())
return it->second;
IndexTypeId id(types.size());
types.push_back(IndexType(id, usr));
id_cache.usr_to_type_id[usr] = id;
id_cache.type_id_to_usr[id] = usr;
return id;
}
IndexFuncId IndexFile::ToFuncId(Usr usr) {
auto it = id_cache.usr_to_func_id.find(usr);
if (it != id_cache.usr_to_func_id.end())
return it->second;
IndexFuncId id(funcs.size());
funcs.push_back(IndexFunc(id, usr));
id_cache.usr_to_func_id[usr] = id;
id_cache.func_id_to_usr[id] = usr;
return id;
}
IndexVarId IndexFile::ToVarId(Usr usr) {
auto it = id_cache.usr_to_var_id.find(usr);
if (it != id_cache.usr_to_var_id.end())
return it->second;
IndexVarId id(vars.size());
vars.push_back(IndexVar(id, usr));
id_cache.usr_to_var_id[usr] = id;
id_cache.var_id_to_usr[id] = usr;
return id;
}
IndexTypeId IndexFile::ToTypeId(const CXCursor& cursor) {
return ToTypeId(ClangCursor(cursor).get_usr_hash());
}
IndexFuncId IndexFile::ToFuncId(const CXCursor& cursor) {
return ToFuncId(ClangCursor(cursor).get_usr_hash());
}
IndexVarId IndexFile::ToVarId(const CXCursor& cursor) {
return ToVarId(ClangCursor(cursor).get_usr_hash());
}
IndexType* IndexFile::Resolve(IndexTypeId id) {
return &types[id.id];
}
IndexFunc* IndexFile::Resolve(IndexFuncId id) {
return &funcs[id.id];
}
IndexVar* IndexFile::Resolve(IndexVarId id) {
return &vars[id.id];
}
std::string IndexFile::ToString() {
return Serialize(SerializeFormat::Json, *this);
}
IndexType::IndexType(IndexTypeId id, Usr usr) : usr(usr), id(id) {}
void RemoveItem(std::vector<Range>& ranges, Range to_remove) {
auto it = std::find(ranges.begin(), ranges.end(), to_remove);
if (it != ranges.end())
ranges.erase(it);
}
template <typename T>
void UniqueAdd(std::vector<T>& values, T value) {
if (std::find(values.begin(), values.end(), value) == values.end())
values.push_back(value);
}
// FIXME Reference: set id in call sites and remove this
void AddUse(std::vector<Use>& values, Range value) {
values.push_back(
Use(value, Id<void>(), SymbolKind::File, Role::Reference));
}
void AddUse(IndexFile* db,
std::vector<Use>& uses,
Range range,
ClangCursor parent,
Role role = Role::Reference) {
switch (GetSymbolKind(parent.get_kind())) {
default:
uses.push_back(Use(range, Id<void>(), SymbolKind::File, role));
break;
case SymbolKind::Func:
uses.push_back(
Use(range, db->ToFuncId(parent.cx_cursor), SymbolKind::Func, role));
break;
case SymbolKind::Type:
uses.push_back(
Use(range, db->ToTypeId(parent.cx_cursor), SymbolKind::Type, role));
break;
}
}
CXCursor fromContainer(const CXIdxContainerInfo* parent) {
return parent ? parent->cursor : clang_getNullCursor();
}
void AddUseSpell(IndexFile* db,
std::vector<Use>& uses,
ClangCursor cursor) {
AddUse(db, uses, cursor.get_spelling_range(),
cursor.get_lexical_parent().cx_cursor, Role::Reference);
}
template <typename... Args>
void UniqueAddUse(IndexFile* db, std::vector<Use>& uses, Range range, Args&&... args) {
if (std::find_if(uses.begin(), uses.end(),
[&](Use use) { return use.range == range; }) == uses.end())
AddUse(db, uses, range, std::forward<Args>(args)...);
}
template <typename... Args>
void UniqueAddUseSpell(IndexFile* db, std::vector<Use>& uses, ClangCursor cursor, Args&&... args) {
Range range = cursor.get_spelling_range();
if (std::find_if(uses.begin(), uses.end(),
[&](Use use) { return use.range == range; }) == uses.end())
AddUse(db, uses, range, cursor.get_lexical_parent().cx_cursor, std::forward<Args>(args)...);
}
IdCache::IdCache(const std::string& primary_file)
: primary_file(primary_file) {}
void OnIndexDiagnostic(CXClientData client_data,
CXDiagnosticSet diagnostics,
void* reserved) {
IndexParam* param = static_cast<IndexParam*>(client_data);
for (unsigned i = 0; i < clang_getNumDiagnosticsInSet(diagnostics); ++i) {
CXDiagnostic diagnostic = clang_getDiagnosticInSet(diagnostics, i);
CXSourceLocation diag_loc = clang_getDiagnosticLocation(diagnostic);
// Skip diagnostics in system headers.
// if (clang_Location_isInSystemHeader(diag_loc))
// continue;
// Get db so we can attribute diagnostic to the right indexed file.
CXFile file;
unsigned int line, column;
clang_getSpellingLocation(diag_loc, &file, &line, &column, nullptr);
// Skip empty diagnostic.
if (!line && !column)
continue;
IndexFile* db = ConsumeFile(param, file);
if (!db)
continue;
// Build diagnostic.
optional<lsDiagnostic> ls_diagnostic =
BuildAndDisposeDiagnostic(diagnostic, db->path);
if (ls_diagnostic)
db->diagnostics_.push_back(*ls_diagnostic);
}
}
CXIdxClientFile OnIndexIncludedFile(CXClientData client_data,
const CXIdxIncludedFileInfo* file) {
IndexParam* param = static_cast<IndexParam*>(client_data);
// file->hashLoc only has the position of the hash. We don't have the full
// range for the include.
CXSourceLocation hash_loc = clang_indexLoc_getCXSourceLocation(file->hashLoc);
CXFile cx_file;
unsigned int line;
clang_getSpellingLocation(hash_loc, &cx_file, &line, nullptr, nullptr);
line--;
IndexFile* db = ConsumeFile(param, cx_file);
if (!db)
return nullptr;
IndexInclude include;
include.line = line;
include.resolved_path = FileName(file->file);
if (!include.resolved_path.empty())
db->includes.push_back(include);
return nullptr;
}
ClangCursor::VisitResult DumpVisitor(ClangCursor cursor,
ClangCursor parent,
int* level) {
for (int i = 0; i < *level; ++i)
std::cerr << " ";
std::cerr << ToString(cursor.get_kind()) << " " << cursor.get_spelling()
<< std::endl;
*level += 1;
cursor.VisitChildren(&DumpVisitor, level);
*level -= 1;
return ClangCursor::VisitResult::Continue;
}
void Dump(ClangCursor cursor) {
int level = 0;
cursor.VisitChildren(&DumpVisitor, &level);
}
struct FindChildOfKindParam {
CXCursorKind target_kind;
optional<ClangCursor> result;
FindChildOfKindParam(CXCursorKind target_kind) : target_kind(target_kind) {}
};
ClangCursor::VisitResult FindTypeVisitor(ClangCursor cursor,
ClangCursor parent,
optional<ClangCursor>* result) {
switch (cursor.get_kind()) {
case CXCursor_TypeRef:
case CXCursor_TemplateRef:
*result = cursor;
return ClangCursor::VisitResult::Break;
default:
break;
}
return ClangCursor::VisitResult::Recurse;
}
optional<ClangCursor> FindType(ClangCursor cursor) {
optional<ClangCursor> result;
cursor.VisitChildren(&FindTypeVisitor, &result);
return result;
}
bool IsTypeDefinition(const CXIdxContainerInfo* container) {
if (!container)
return false;
return GetSymbolKind(container->cursor.kind) == SymbolKind::Type;
}
struct VisitDeclForTypeUsageParam {
IndexFile* db;
optional<IndexTypeId> toplevel_type;
int has_processed_any = false;
optional<ClangCursor> previous_cursor;
optional<IndexTypeId> initial_type;
VisitDeclForTypeUsageParam(IndexFile* db, optional<IndexTypeId> toplevel_type)
: db(db), toplevel_type(toplevel_type) {}
};
void VisitDeclForTypeUsageVisitorHandler(ClangCursor cursor,
VisitDeclForTypeUsageParam* param) {
param->has_processed_any = true;
IndexFile* db = param->db;
// For |A<int> a| where there is a specialization for |A<int>|,
// the |referenced_usr| below resolves to the primary template and
// attributes the use to the primary template instead of the specialization.
// |toplevel_type| is retrieved |clang_getCursorType| which can be a
// specialization. If its name is the same as the primary template's, we
// assume the use should be attributed to the specialization. This heuristic
// fails when a member class bears the same name with its container.
//
// template<class T>
// struct C { struct C {}; };
// C<int>::C a;
//
// We will attribute |::C| to the parent class.
if (param->toplevel_type) {
IndexType* ref_type = db->Resolve(*param->toplevel_type);
std::string name = cursor.get_referenced().get_spelling();
if (name == ref_type->def.ShortName()) {
UniqueAddUseSpell(db, ref_type->uses, cursor);
param->toplevel_type = nullopt;
return;
}
}
std::string referenced_usr =
cursor.get_referenced()
.template_specialization_to_template_definition()
.get_usr();
// TODO: things in STL cause this to be empty. Figure out why and document it.
if (referenced_usr == "")
return;
IndexTypeId ref_type_id = db->ToTypeId(HashUsr(referenced_usr));
if (!param->initial_type)
param->initial_type = ref_type_id;
IndexType* ref_type_def = db->Resolve(ref_type_id);
// TODO: Should we even be visiting this if the file is not from the main
// def? Try adding assert on |loc| later.
UniqueAddUseSpell(db, ref_type_def->uses, cursor);
}
ClangCursor::VisitResult VisitDeclForTypeUsageVisitor(
ClangCursor cursor,
ClangCursor parent,
VisitDeclForTypeUsageParam* param) {
switch (cursor.get_kind()) {
case CXCursor_TemplateRef:
case CXCursor_TypeRef:
if (param->previous_cursor) {
VisitDeclForTypeUsageVisitorHandler(param->previous_cursor.value(),
param);
}
param->previous_cursor = cursor;
return ClangCursor::VisitResult::Continue;
// We do not want to recurse for everything, since if we do that we will end
// up visiting method definition bodies/etc. Instead, we only recurse for
// things that can logically appear as part of an inline variable
// initializer,
// ie,
//
// class Foo {
// int x = (Foo)3;
// }
case CXCursor_CallExpr:
case CXCursor_CStyleCastExpr:
case CXCursor_CXXStaticCastExpr:
case CXCursor_CXXReinterpretCastExpr:
return ClangCursor::VisitResult::Recurse;
default:
return ClangCursor::VisitResult::Continue;
}
return ClangCursor::VisitResult::Continue;
}
// Add usages to any seen TypeRef or TemplateRef under the given |decl_cursor|.
// This returns the first seen TypeRef or TemplateRef value, which can be
// useful if trying to figure out ie, what a using statement refers to. If
// trying to generally resolve a cursor to a type, use
// ResolveToDeclarationType, which works in more scenarios.
// If |decl_cursor| is a variable of a template type, clang_getCursorType
// may return a specialized template which is preciser than the primary
// template.
// We use |toplevel_type| to attribute the use to the specialized template
// instead of the primary template.
optional<IndexTypeId> AddDeclTypeUsages(
IndexFile* db,
ClangCursor decl_cursor,
optional<IndexTypeId> toplevel_type,
const CXIdxContainerInfo* semantic_container,
const CXIdxContainerInfo* lexical_container) {
//
// The general AST format for definitions follows this pattern:
//
// template<typename A, typename B>
// struct Container;
//
// struct S1;
// struct S2;
//
// Container<Container<S1, S2>, S2> foo;
//
// =>
//
// VarDecl
// TemplateRef Container
// TemplateRef Container
// TypeRef struct S1
// TypeRef struct S2
// TypeRef struct S2
//
//
// Here is another example:
//
// enum A {};
// enum B {};
//
// template<typename T>
// struct Foo {
// struct Inner {};
// };
//
// Foo<A>::Inner a;
// Foo<B> b;
//
// =>
//
// EnumDecl A
// EnumDecl B
// ClassTemplate Foo
// TemplateTypeParameter T
// StructDecl Inner
// VarDecl a
// TemplateRef Foo
// TypeRef enum A
// TypeRef struct Foo<enum A>::Inner
// CallExpr Inner
// VarDecl b
// TemplateRef Foo
// TypeRef enum B
// CallExpr Foo
//
//
// Determining the actual type of the variable/declaration from just the
// children is tricky. Doing so would require looking up the template
// definition associated with a TemplateRef, figuring out how many children
// it has, and then skipping that many TypeRef values. This also has to work
// with the example below (skipping the last TypeRef). As a result, we
// determine variable types using |ResolveToDeclarationType|.
//
//
// We skip the last type reference for methods/variables which are defined
// out-of-line w.r.t. the parent type.
//
// S1* Foo::foo() {}
//
// The above example looks like this in the AST:
//
// CXXMethod foo
// TypeRef struct S1
// TypeRef class Foo
// CompoundStmt
// ...
//
// The second TypeRef is an uninteresting usage.
bool process_last_type_ref = true;
if (IsTypeDefinition(semantic_container) &&
!IsTypeDefinition(lexical_container)) {
//
// In some code, such as the following example, we receive a cursor which is
// not
// a definition and is not associated with a definition due to an error
// condition.
// In this case, it is the Foo::Foo constructor.
//
// struct Foo {};
//
// template<class T>
// Foo::Foo() {}
//
if (!decl_cursor.is_definition()) {
ClangCursor def = decl_cursor.get_definition();
if (def.get_kind() != CXCursor_FirstInvalid)
decl_cursor = def;
}
process_last_type_ref = false;
}
VisitDeclForTypeUsageParam param(db, toplevel_type);
decl_cursor.VisitChildren(&VisitDeclForTypeUsageVisitor, &param);
// VisitDeclForTypeUsageVisitor guarantees that if there are multiple TypeRef
// children, the first one will always be visited.
if (param.previous_cursor && process_last_type_ref) {
VisitDeclForTypeUsageVisitorHandler(param.previous_cursor.value(), &param);
} else {
// If we are not processing the last type ref, it *must* be a TypeRef or
// TemplateRef.
//
// We will not visit every child if the is_interseting is false, so
// previous_cursor
// may not point to the last TemplateRef.
assert(param.previous_cursor.has_value() == false ||
(param.previous_cursor.value().get_kind() == CXCursor_TypeRef ||
param.previous_cursor.value().get_kind() == CXCursor_TemplateRef));
}
return param.initial_type;
}
// Various versions of LLVM (ie, 4.0) will not visit inline variable references
// for template arguments.
ClangCursor::VisitResult AddDeclInitializerUsagesVisitor(ClangCursor cursor,
ClangCursor parent,
IndexFile* db) {
/*
We need to index the |DeclRefExpr| below (ie, |var| inside of
Foo<int>::var).
template<typename T>
struct Foo {
static constexpr int var = 3;
};
int a = Foo<int>::var;
=>
VarDecl a
UnexposedExpr var
DeclRefExpr var
TemplateRef Foo
*/
switch (cursor.get_kind()) {
case CXCursor_DeclRefExpr: {
if (cursor.get_referenced().get_kind() != CXCursor_VarDecl)
break;
// TODO: when we resolve the template type to the definition, we get a
// different Usr.
// ClangCursor ref =
// cursor.get_referenced().template_specialization_to_template_definition().get_type().strip_qualifiers().get_usr_hash();
// std::string ref_usr =
// cursor.get_referenced().template_specialization_to_template_definition().get_type().strip_qualifiers().get_usr_hash();
auto ref_usr = cursor.get_referenced()
.template_specialization_to_template_definition()
.get_usr();
// std::string ref_usr = ref.get_usr_hash();
if (ref_usr == "")
break;
IndexVar* ref_var = db->Resolve(db->ToVarId(HashUsr(ref_usr)));
UniqueAddUseSpell(db, ref_var->uses, cursor);
break;
}
default:
break;
}
return ClangCursor::VisitResult::Recurse;
}
void AddDeclInitializerUsages(IndexFile* db, ClangCursor decl_cursor) {
decl_cursor.VisitChildren(&AddDeclInitializerUsagesVisitor, db);
}
bool AreEqualLocations(CXIdxLoc loc, CXCursor cursor) {
// clang_getCursorExtent
// clang_Cursor_getSpellingNameRange
return clang_equalLocations(
clang_indexLoc_getCXSourceLocation(loc),
// clang_getRangeStart(clang_getCursorExtent(cursor)));
clang_getRangeStart(clang_Cursor_getSpellingNameRange(cursor, 0, 0)));
}
ClangCursor::VisitResult VisitMacroDefinitionAndExpansions(ClangCursor cursor,
ClangCursor parent,
IndexParam* param) {
switch (cursor.get_kind()) {
case CXCursor_MacroDefinition:
case CXCursor_MacroExpansion: {
// Resolve location, find IndexFile instance.
CXSourceRange cx_source_range =
clang_Cursor_getSpellingNameRange(cursor.cx_cursor, 0, 0);
CXFile file;
Range decl_loc_spelling = ResolveCXSourceRange(cx_source_range, &file);
IndexFile* db = ConsumeFile(param, file);
if (!db)
break;
// TODO: Considering checking clang_Cursor_isMacroFunctionLike, but the
// only real difference will be that we show 'callers' instead of 'refs'
// (especially since macros cannot have overrides)
Usr decl_usr;
if (cursor.get_kind() == CXCursor_MacroDefinition)
decl_usr = cursor.get_usr_hash();
else
decl_usr = cursor.get_referenced().get_usr_hash();
SetUsePreflight(db, parent);
IndexVar* var_def = db->Resolve(db->ToVarId(decl_usr));
if (cursor.get_kind() == CXCursor_MacroDefinition) {
CXSourceRange cx_extent = clang_getCursorExtent(cursor.cx_cursor);
var_def->def.detailed_name = cursor.get_display_name();
var_def->def.short_name_offset = 0;
var_def->def.short_name_size =
int16_t(strlen(var_def->def.detailed_name.c_str()));
var_def->def.hover =
"#define " + GetDocumentContentInRange(param->tu->cx_tu, cx_extent);
var_def->def.kind = ClangSymbolKind::Macro;
var_def->def.comments = cursor.get_comments();
SetUse(db, &var_def->def.spell, decl_loc_spelling, parent,
Role::Definition);
SetUse(db, &var_def->def.extent,
ResolveCXSourceRange(cx_extent, nullptr), parent, Role::None);
} else
UniqueAddUse(db, var_def->uses, decl_loc_spelling, parent);
break;
}
default:
break;
}
return ClangCursor::VisitResult::Continue;
}
namespace {
// TODO Move to another file and use clang C++ API
struct TemplateVisitorData {
IndexFile* db;
IndexParam* param;
ClangCursor container;
};
ClangCursor::VisitResult TemplateVisitor(ClangCursor cursor,
ClangCursor parent,
TemplateVisitorData* data) {
IndexFile* db = data->db;
IndexParam* param = data->param;
switch (cursor.get_kind()) {
default:
break;
case CXCursor_DeclRefExpr: {
ClangCursor ref_cursor = clang_getCursorReferenced(cursor.cx_cursor);
if (ref_cursor.get_kind() == CXCursor_NonTypeTemplateParameter) {
SetUsePreflight(db, parent);
IndexVar* ref_var =
db->Resolve(db->ToVarId(ref_cursor.get_usr_hash()));
if (ref_var->def.detailed_name.empty()) {
SetUse(db, &ref_var->def.spell, ref_cursor.get_spelling_range(), parent, Role::Definition);
SetUse(db, &ref_var->def.extent, ref_cursor.get_extent(), parent, Role::None);
ref_var->def.kind = ClangSymbolKind::Parameter;
SetVarDetail(ref_var, ref_cursor.get_spelling(), ref_cursor,
nullptr, true, db, param);
ClangType ref_type = clang_getCursorType(ref_cursor.cx_cursor);
// TODO optimize
if (ref_type.get_usr().size()) {
IndexType* ref_type_index =
db->Resolve(db->ToTypeId(ref_type.get_usr_hash()));
// The cursor extent includes `type name`, not just `name`. There
// seems no way to extract the spelling range of `type` and we do
// not want to do subtraction here.
// See https://github.com/jacobdufault/cquery/issues/252
UniqueAddUse(db, ref_type_index->uses, ref_cursor.get_extent(),
ref_cursor.get_lexical_parent());
}
}
UniqueAddUseSpell(db, ref_var->uses, cursor);
}
break;
}
case CXCursor_OverloadedDeclRef: {
unsigned num_overloaded = clang_getNumOverloadedDecls(cursor.cx_cursor);
for (unsigned i = 0; i != num_overloaded; i++) {
ClangCursor overloaded = clang_getOverloadedDecl(cursor.cx_cursor, i);
switch (overloaded.get_kind()) {
default:
break;
case CXCursor_FunctionDecl:
case CXCursor_FunctionTemplate: {
IndexFuncId called_id = db->ToFuncId(overloaded.get_usr_hash());
OnIndexReference_Function(db, cursor.get_spelling_range(),
data->container, called_id,
Role::Call);
break;
}
}
}
break;
}
case CXCursor_TemplateRef: {
ClangCursor ref_cursor = clang_getCursorReferenced(cursor.cx_cursor);
if (ref_cursor.get_kind() == CXCursor_TemplateTemplateParameter) {
SetUsePreflight(db, parent);
IndexType* ref_index =
db->Resolve(db->ToTypeId(ref_cursor.get_usr_hash()));
// TODO It seems difficult to get references to template template
// parameters.
// CXCursor_TemplateTemplateParameter can be visited by visiting
// CXCursor_TranslationUnit, but not (confirm this) by visiting
// {Class,Function}Template. Thus we need to initialize it here.
if (ref_index->def.detailed_name.empty()) {
SetUse(db, &ref_index->def.spell, ref_cursor.get_spelling_range(), parent, Role::Definition);
SetUse(db, &ref_index->def.extent, ref_cursor.get_extent(), parent, Role::None);
#if CINDEX_HAVE_PRETTY
ref_index->def.detailed_name = param->PrettyPrintCursor(ref_cursor.cx_cursor);
#else
ref_index->def.detailed_name = ref_cursor.get_spelling();
#endif
ref_index->def.short_name_offset = 0;
ref_index->def.short_name_size =
int16_t(strlen(ref_index->def.detailed_name.c_str()));
ref_index->def.kind = ClangSymbolKind::Parameter;
}
UniqueAddUseSpell(db, ref_index->uses, cursor);
}
break;
}
case CXCursor_TypeRef: {
ClangCursor ref_cursor = clang_getCursorReferenced(cursor.cx_cursor);
if (ref_cursor.get_kind() == CXCursor_TemplateTypeParameter) {
SetUsePreflight(db, parent);
IndexType* ref_index =
db->Resolve(db->ToTypeId(ref_cursor.get_usr_hash()));
// TODO It seems difficult to get a FunctionTemplate's template
// parameters.
// CXCursor_TemplateTypeParameter can be visited by visiting
// CXCursor_TranslationUnit, but not (confirm this) by visiting
// {Class,Function}Template. Thus we need to initialize it here.
if (ref_index->def.detailed_name.empty()) {
SetUse(db, &ref_index->def.spell, ref_cursor.get_spelling_range(), parent, Role::Definition);
SetUse(db, &ref_index->def.extent, ref_cursor.get_extent(), parent, Role::None);
#if CINDEX_HAVE_PRETTY
ref_index->def.detailed_name = param->PrettyPrintCursor(ref_cursor.cx_cursor);
#else
ref_index->def.detailed_name = ref_cursor.get_spelling();
#endif
ref_index->def.short_name_offset = 0;
ref_index->def.short_name_size =
int16_t(strlen(ref_index->def.detailed_name.c_str()));
ref_index->def.kind = ClangSymbolKind::Parameter;
}
UniqueAddUseSpell(db, ref_index->uses, cursor);
}
break;
}
}
return ClangCursor::VisitResult::Recurse;
}
} // namespace
std::string NamespaceHelper::QualifiedName(const CXIdxContainerInfo* container,
std::string_view unqualified_name) {
if (!container)
return std::string(unqualified_name);
// Anonymous namespaces are not processed by indexDeclaration. We trace
// nested namespaces bottom-up through clang_getCursorSemanticParent until
// one that we know its qualified name. Then do another trace top-down and
// put their names into a map of USR -> qualified_name.
ClangCursor cursor(container->cursor);
std::vector<ClangCursor> namespaces;
std::string qualifier;
while (cursor.get_kind() != CXCursor_TranslationUnit &&
!IsScopeSemanticContainer(cursor.get_kind())) {
auto it = container_cursor_to_qualified_name.find(cursor);
if (it != container_cursor_to_qualified_name.end()) {
qualifier = it->second;
break;
}
namespaces.push_back(cursor);
cursor = clang_getCursorSemanticParent(cursor.cx_cursor);
}
for (size_t i = namespaces.size(); i > 0;) {
i--;
std::string name = namespaces[i].get_spelling();
// Empty name indicates unnamed namespace, anonymous struct, anonymous
// union, ...
if (name.size())
qualifier += name;
else
switch (namespaces[i].get_kind()) {
case CXCursor_ClassDecl:
qualifier += "(anon class)";
break;
case CXCursor_EnumDecl:
qualifier += "(anon enum)";
break;
case CXCursor_StructDecl:
qualifier += "(anon struct)";
break;
case CXCursor_UnionDecl:
qualifier += "(anon union)";
break;
default:
qualifier += "(anon)";
break;
}
qualifier += "::";
container_cursor_to_qualified_name[namespaces[i]] = qualifier;
}
// C++17 string::append
return qualifier + std::string(unqualified_name);
}
void OnIndexDeclaration(CXClientData client_data, const CXIdxDeclInfo* decl) {
if (!kIndexStdDeclarations &&
clang_Location_isInSystemHeader(
clang_indexLoc_getCXSourceLocation(decl->loc)))
return;
IndexParam* param = static_cast<IndexParam*>(client_data);
// Track all constructor declarations, as we may need to use it to manually
// associate std::make_unique and the like as constructor invocations.
if (decl->entityInfo->kind == CXIdxEntity_CXXConstructor) {
param->ctors.NotifyConstructor(decl->cursor);
}
CXFile file;
clang_getSpellingLocation(clang_indexLoc_getCXSourceLocation(decl->loc),
&file, nullptr, nullptr, nullptr);
IndexFile* db = ConsumeFile(param, file);
if (!db)
return;
// The language of this declaration
LanguageId decl_lang = [&decl]() {
switch (clang_getCursorLanguage(decl->cursor)) {
case CXLanguage_C:
return LanguageId::C;
case CXLanguage_CPlusPlus:
return LanguageId::Cpp;
case CXLanguage_ObjC:
return LanguageId::ObjC;
default:
return LanguageId::Unknown;
};
}();
// Only update the file language if the new language is "greater" than the old
if (decl_lang > db->language) {
db->language = decl_lang;
}
NamespaceHelper* ns = &param->ns;
ClangCursor lex_parent(fromContainer(decl->lexicalContainer));
SetUsePreflight(db, lex_parent);
switch (decl->entityInfo->kind) {
case CXIdxEntity_CXXNamespace: {
ClangCursor decl_cursor = decl->cursor;
Range decl_spell = decl_cursor.get_spelling_range();
IndexTypeId ns_id = db->ToTypeId(HashUsr(decl->entityInfo->USR));
IndexType* ns = db->Resolve(ns_id);
ns->def.kind = GetSymbolKind(decl->entityInfo->kind);
if (ns->def.detailed_name.empty()) {
SetTypeName(ns, decl_cursor, decl->semanticContainer,
decl->entityInfo->name, param);
SetUse(db, &ns->def.spell, decl_spell, lex_parent, Role::Definition);
SetUse(db, &ns->def.extent, decl_cursor.get_extent(), lex_parent, Role::None);
if (decl->semanticContainer) {
IndexTypeId parent_id = db->ToTypeId(
ClangCursor(decl->semanticContainer->cursor).get_usr_hash());
db->Resolve(parent_id)->derived.push_back(ns_id);
// |ns| may be invalidated.
ns = db->Resolve(ns_id);
ns->def.parents.push_back(parent_id);
}
}
AddUse(ns->uses, decl_spell);
break;
}
case CXIdxEntity_ObjCProperty:
case CXIdxEntity_ObjCIvar:
case CXIdxEntity_EnumConstant:
case CXIdxEntity_Field:
case CXIdxEntity_Variable:
case CXIdxEntity_CXXStaticVariable: {
ClangCursor decl_cursor = decl->cursor;
Range decl_spell = decl_cursor.get_spelling_range();
// Do not index implicit template instantiations.
if (decl_cursor !=
decl_cursor.template_specialization_to_template_definition())
break;
IndexVarId var_id = db->ToVarId(HashUsr(decl->entityInfo->USR));
IndexVar* var = db->Resolve(var_id);
// TODO: Eventually run with this if. Right now I want to iron out bugs
// this may shadow.
// TODO: Verify this gets called multiple times
// if (!decl->isRedeclaration) {
SetVarDetail(var, std::string(decl->entityInfo->name), decl->cursor,
decl->semanticContainer, !decl->isRedeclaration, db, param);
// FIXME https://github.com/jacobdufault/cquery/issues/239
var->def.kind = GetSymbolKind(decl->entityInfo->kind);
if (var->def.kind == ClangSymbolKind::Variable &&
decl->cursor.kind == CXCursor_ParmDecl)
var->def.kind = ClangSymbolKind::Parameter;
//}
if (decl->isDefinition) {
SetUse(db, &var->def.spell, decl_spell, lex_parent, Role::Definition);
SetUse(db, &var->def.extent, decl_cursor.get_extent(), lex_parent, Role::None);
} else {
Maybe<Use> use;
SetUse(db, &use, decl_spell, lex_parent, Role::Declaration);
var->declarations.push_back(*use);
}
AddDeclInitializerUsages(db, decl_cursor);
var = db->Resolve(var_id);
// Declaring variable type information. Note that we do not insert an
// interesting reference for parameter declarations - that is handled when
// the function declaration is encountered since we won't receive ParmDecl
// declarations for unnamed parameters.
// TODO: See if we can remove this function call.
AddDeclTypeUsages(db, decl_cursor, var->def.type,
decl->semanticContainer, decl->lexicalContainer);
// We don't need to assign declaring type multiple times if this variable
// has already been seen.
if (decl->isDefinition && decl->semanticContainer) {
switch (GetSymbolKind(decl->semanticContainer->cursor.kind)) {
default:
break;
case SymbolKind::Type: {
IndexTypeId parent_type_id =
db->ToTypeId(decl->semanticContainer->cursor);
db->Resolve(parent_type_id)->def.vars.push_back(var_id);
break;
}
}
}
break;
}
case CXIdxEntity_ObjCInstanceMethod:
case CXIdxEntity_ObjCClassMethod:
case CXIdxEntity_Function:
case CXIdxEntity_CXXConstructor:
case CXIdxEntity_CXXDestructor:
case CXIdxEntity_CXXInstanceMethod:
case CXIdxEntity_CXXStaticMethod:
case CXIdxEntity_CXXConversionFunction: {
ClangCursor decl_cursor = decl->cursor;
Range decl_spelling = decl_cursor.get_spelling_range();
Range decl_extent = decl_cursor.get_extent();
ClangCursor decl_cursor_resolved =
decl_cursor.template_specialization_to_template_definition();
bool is_template_specialization = decl_cursor != decl_cursor_resolved;
IndexFuncId func_id = db->ToFuncId(decl_cursor_resolved.cx_cursor);
IndexFunc* func = db->Resolve(func_id);
func->def.comments = decl_cursor.get_comments();
func->def.kind = GetSymbolKind(decl->entityInfo->kind);
func->def.storage =
GetStorageClass(clang_Cursor_getStorageClass(decl->cursor));
// We don't actually need to know the return type, but we need to mark it
// as an interesting usage.
AddDeclTypeUsages(db, decl_cursor, nullopt, decl->semanticContainer,
decl->lexicalContainer);
// Add definition or declaration. This is a bit tricky because we treat
// template specializations as declarations, even though they are
// technically definitions.
// TODO: Support multiple function definitions, which is common for
// template specializations.
if (decl->isDefinition && !is_template_specialization) {
// assert(!func->def.spell);
// assert(!func->def.extent);
SetUse(db, &func->def.spell, decl_spelling, lex_parent, Role::Definition);
SetUse(db, &func->def.extent, decl_extent, lex_parent, Role::None);
} else {
IndexFunc::Declaration declaration;
declaration.spelling = decl_spelling;
declaration.extent = decl_extent;
declaration.content = GetDocumentContentInRange(
param->tu->cx_tu, clang_getCursorExtent(decl->cursor));
// Add parameters.
for (ClangCursor arg : decl_cursor.get_arguments()) {
switch (arg.get_kind()) {
case CXCursor_ParmDecl: {
Range param_spelling = arg.get_spelling_range();
// If the name is empty (which is common for parameters), clang
// will report a range with length 1, which is not correct.
if (param_spelling.start.column ==
(param_spelling.end.column - 1) &&
arg.get_display_name().empty()) {
param_spelling.end.column -= 1;
}
declaration.param_spellings.push_back(param_spelling);
break;
}
default:
break;
}
}
func->declarations.push_back(declaration);
}
// Emit definition data for the function. We do this even if it isn't a
// definition because there can be, for example, interfaces, or a class
// declaration that doesn't have a definition yet. If we never end up
// indexing the definition, then there will not be any (ie) outline
// information.
if (!is_template_specialization) {
// Build detailed name. The type desc looks like void (void *). We
// insert the qualified name before the first '('.
// FIXME GetFunctionSignature should set index
#if CINDEX_HAVE_PRETTY
func->def.detailed_name = param->PrettyPrintCursor(decl->cursor);
#else
func->def.detailed_name = GetFunctionSignature(db, ns, decl);
#endif
auto idx = func->def.detailed_name.find(decl->entityInfo->name);
assert(idx != std::string::npos);
func->def.short_name_offset = idx;
func->def.short_name_size = strlen(decl->entityInfo->name);
// CXCursor_OverloadedDeclRef in templates are not processed by
// OnIndexReference, thus we use TemplateVisitor to collect function
// references.
if (decl->entityInfo->templateKind == CXIdxEntity_Template) {
TemplateVisitorData data;
data.db = db;
data.param = param;
data.container = decl_cursor;
decl_cursor.VisitChildren(&TemplateVisitor, &data);
// TemplateVisitor calls ToFuncId which invalidates func
func = db->Resolve(func_id);
}
// Add function usage information. We only want to do it once per
// definition/declaration. Do it on definition since there should only
// ever be one of those in the entire program.
if (IsTypeDefinition(decl->semanticContainer)) {
IndexTypeId declaring_type_id =
db->ToTypeId(decl->semanticContainer->cursor);
IndexType* declaring_type_def = db->Resolve(declaring_type_id);
func->def.declaring_type = declaring_type_id;
// Mark a type reference at the ctor/dtor location.
if (decl->entityInfo->kind == CXIdxEntity_CXXConstructor
|| decl->entityInfo->kind == CXIdxEntity_CXXDestructor)
UniqueAddUse(db, declaring_type_def->uses, decl_spelling,
fromContainer(decl->lexicalContainer));
// Add function to declaring type.
UniqueAdd(declaring_type_def->def.funcs, func_id);
}
// Process inheritance.
if (clang_CXXMethod_isVirtual(decl->cursor)) {
CXCursor* overridden;
unsigned int num_overridden;
clang_getOverriddenCursors(decl->cursor, &overridden,
&num_overridden);
for (unsigned i = 0; i < num_overridden; ++i) {
ClangCursor parent =
ClangCursor(overridden[i])
.template_specialization_to_template_definition();
IndexFuncId parent_id = db->ToFuncId(parent.get_usr_hash());
IndexFunc* parent_def = db->Resolve(parent_id);
func = db->Resolve(func_id); // ToFuncId invalidated func_def
func->def.base.push_back(parent_id);
parent_def->derived.push_back(func_id);
}
clang_disposeOverriddenCursors(overridden);
}
}
break;
}
case CXIdxEntity_Typedef:
case CXIdxEntity_CXXTypeAlias: {
// Note we want to fetch the first TypeRef. Running
// ResolveCursorType(decl->cursor) would return
// the type of the typedef/using, not the type of the referenced type.
optional<IndexTypeId> alias_of =
AddDeclTypeUsages(db, decl->cursor, nullopt, decl->semanticContainer,
decl->lexicalContainer);
IndexTypeId type_id = db->ToTypeId(HashUsr(decl->entityInfo->USR));
IndexType* type = db->Resolve(type_id);
if (alias_of)
type->def.alias_of = alias_of.value();
ClangCursor decl_cursor = decl->cursor;
Range spell = decl_cursor.get_spelling_range();
Range extent = decl_cursor.get_extent();
SetUse(db, &type->def.spell, spell, lex_parent, Role::Definition);
SetUse(db, &type->def.extent, extent, lex_parent, Role::None);
SetTypeName(type, decl_cursor, decl->semanticContainer,
decl->entityInfo->name, param);
type->def.kind = GetSymbolKind(decl->entityInfo->kind);
type->def.comments = decl_cursor.get_comments();
// For Typedef/CXXTypeAlias spanning a few lines, display the declaration
// line, with spelling name replaced with qualified name.
// TODO Think how to display multi-line declaration like `typedef struct {
// ... } foo;` https://github.com/jacobdufault/cquery/issues/29
if (extent.end.line - extent.start.line <
kMaxLinesDisplayTypeAliasDeclarations) {
FileContents& fc = param->file_contents[db->path];
optional<int> extent_start = fc.ToOffset(extent.start),
spell_start = fc.ToOffset(spell.start),
spell_end = fc.ToOffset(spell.end),
extent_end = fc.ToOffset(extent.end);
if (extent_start && spell_start && spell_end && extent_end) {
type->def.hover =
fc.content.substr(*extent_start, *spell_start - *extent_start) +
type->def.detailed_name.c_str() +
fc.content.substr(*spell_end, *extent_end - *spell_end);
}
}
UniqueAddUse(db, type->uses, spell, fromContainer(decl->lexicalContainer));
break;
}
case CXIdxEntity_ObjCProtocol:
case CXIdxEntity_ObjCCategory:
case CXIdxEntity_ObjCClass:
case CXIdxEntity_Enum:
case CXIdxEntity_Union:
case CXIdxEntity_Struct:
case CXIdxEntity_CXXClass: {
ClangCursor decl_cursor = decl->cursor;
Range decl_spell = decl_cursor.get_spelling_range();
IndexTypeId type_id = db->ToTypeId(HashUsr(decl->entityInfo->USR));
IndexType* type = db->Resolve(type_id);
// TODO: Eventually run with this if. Right now I want to iron out bugs
// this may shadow.
// TODO: For type section, verify if this ever runs for non definitions?
// if (!decl->isRedeclaration) {
SetTypeName(type, decl_cursor, decl->semanticContainer,
decl->entityInfo->name, param);
type->def.kind = GetSymbolKind(decl->entityInfo->kind);
type->def.comments = decl_cursor.get_comments();
// }
if (decl->isDefinition) {
SetUse(db, &type->def.spell, decl_spell, lex_parent, Role::Definition);
SetUse(db, &type->def.extent, decl_cursor.get_extent(), lex_parent, Role::None);
if (decl_cursor.get_kind() == CXCursor_EnumDecl) {
ClangType enum_type = clang_getEnumDeclIntegerType(decl->cursor);
if (!enum_type.is_fundamental()) {
IndexType* int_type =
db->Resolve(db->ToTypeId(enum_type.get_usr_hash()));
AddUse(db, int_type->uses, decl_spell, fromContainer(decl->lexicalContainer));
// type is invalidated.
type = db->Resolve(type_id);
}
}
} else
UniqueAddUse(db, type->uses, decl_spell, fromContainer(decl->lexicalContainer));
switch (decl->entityInfo->templateKind) {
default:
break;
case CXIdxEntity_TemplateSpecialization:
case CXIdxEntity_TemplatePartialSpecialization: {
// TODO Use a different dimension
ClangCursor origin_cursor =
decl_cursor.template_specialization_to_template_definition();
IndexTypeId origin_id = db->ToTypeId(origin_cursor.get_usr_hash());
IndexType* origin = db->Resolve(origin_id);
// |type| may be invalidated.
type = db->Resolve(type_id);
// template<class T> class function; // not visited by
// OnIndexDeclaration template<> class function<int> {}; // current
// cursor
if (origin->def.detailed_name.empty()) {
SetTypeName(origin, origin_cursor, nullptr,
&type->def.ShortName()[0], param);
origin->def.kind = type->def.kind;
}
// TODO The name may be assigned in |ResolveToDeclarationType| but
// |spell| is nullopt.
if (!origin->def.spell) {
SetUse(db, &origin->def.spell, origin_cursor.get_spelling_range(), lex_parent, Role::Definition);
SetUse(db, &origin->def.extent, origin_cursor.get_extent(), lex_parent, Role::None);
}
origin->derived.push_back(type_id);
type->def.parents.push_back(origin_id);
}
// fallthrough
case CXIdxEntity_Template: {
TemplateVisitorData data;
data.db = db;
data.container = decl_cursor;
data.param = param;
decl_cursor.VisitChildren(&TemplateVisitor, &data);
break;
}
}
// type_def->alias_of
// type_def->funcs
// type_def->types
// type_def->uses
// type_def->vars
// Add type-level inheritance information.
CXIdxCXXClassDeclInfo const* class_info =
clang_index_getCXXClassDeclInfo(decl);
if (class_info) {
for (unsigned int i = 0; i < class_info->numBases; ++i) {
const CXIdxBaseClassInfo* base_class = class_info->bases[i];
AddDeclTypeUsages(db, base_class->cursor, nullopt,
decl->semanticContainer, decl->lexicalContainer);
optional<IndexTypeId> parent_type_id =
ResolveToDeclarationType(db, base_class->cursor, param);
// type_def ptr could be invalidated by ResolveToDeclarationType and
// TemplateVisitor.
type = db->Resolve(type_id);
if (parent_type_id) {
IndexType* parent_type_def = db->Resolve(parent_type_id.value());
parent_type_def->derived.push_back(type_id);
type->def.parents.push_back(*parent_type_id);
}
}
}
break;
}
default:
std::cerr
<< "!! Unhandled indexDeclaration: "
<< ClangCursor(decl->cursor).ToString() << " at "
<< ClangCursor(decl->cursor).get_spelling_range().start.ToString()
<< std::endl;
std::cerr << " entityInfo->kind = " << decl->entityInfo->kind
<< std::endl;
std::cerr << " entityInfo->USR = " << decl->entityInfo->USR
<< std::endl;
if (decl->declAsContainer)
std::cerr << " declAsContainer = "
<< ClangCursor(decl->declAsContainer->cursor).ToString()
<< std::endl;
if (decl->semanticContainer)
std::cerr << " semanticContainer = "
<< ClangCursor(decl->semanticContainer->cursor).ToString()
<< std::endl;
if (decl->lexicalContainer)
std::cerr << " lexicalContainer = "
<< ClangCursor(decl->lexicalContainer->cursor).get_usr_hash()
<< std::endl;
break;
}
}
// https://github.com/jacobdufault/cquery/issues/174
// Type-dependent member access expressions do not have accurate spelling
// ranges.
//
// Not type dependent
// C<int> f; f.x // .x produces a MemberRefExpr which has a spelling range
// of `x`.
//
// Type dependent
// C<T> e; e.x // .x produces a MemberRefExpr which has a spelling range
// of `e` (weird) and an empty spelling name.
//
// To attribute the use of `x` in `e.x`, we use cursor extent `e.x`
// minus cursor spelling `e` minus the period.
void CheckTypeDependentMemberRefExpr(Range* spell,
const ClangCursor& cursor,
IndexParam* param,
const IndexFile* db) {
if (cursor.get_kind() == CXCursor_MemberRefExpr &&
cursor.get_spelling().empty()) {
*spell = cursor.get_extent().RemovePrefix(spell->end);
const FileContents& fc = param->file_contents[db->path];
optional<int> maybe_period = fc.ToOffset(spell->start);
if (maybe_period) {
int i = *maybe_period;
if (fc.content[i] == '.')
spell->start.column++;
// -> is likely unexposed.
}
}
}
void OnIndexReference(CXClientData client_data, const CXIdxEntityRefInfo* ref) {
// TODO: Use clang_getFileUniqueID
CXFile file;
clang_getSpellingLocation(clang_indexLoc_getCXSourceLocation(ref->loc), &file,
nullptr, nullptr, nullptr);
IndexParam* param = static_cast<IndexParam*>(client_data);
IndexFile* db = ConsumeFile(param, file);
if (!db)
return;
ClangCursor cursor(ref->cursor);
ClangCursor lex_parent(fromContainer(ref->container));
SetUsePreflight(db, lex_parent);
switch (ref->referencedEntity->kind) {
case CXIdxEntity_CXXNamespaceAlias:
case CXIdxEntity_CXXNamespace: {
ClangCursor referenced = ref->referencedEntity->cursor;
IndexType* ns = db->Resolve(db->ToTypeId(referenced.get_usr_hash()));
AddUse(db, ns->uses, cursor.get_spelling_range(), fromContainer(ref->container));
break;
}
case CXIdxEntity_ObjCProperty:
case CXIdxEntity_ObjCIvar:
case CXIdxEntity_EnumConstant:
case CXIdxEntity_CXXStaticVariable:
case CXIdxEntity_Variable:
case CXIdxEntity_Field: {
ClangCursor ref_cursor(ref->cursor);
Range loc = ref_cursor.get_spelling_range();
CheckTypeDependentMemberRefExpr(&loc, ref_cursor, param, db);
ClangCursor referenced = ref->referencedEntity->cursor;
referenced = referenced.template_specialization_to_template_definition();
IndexVarId var_id = db->ToVarId(referenced.get_usr_hash());
IndexVar* var = db->Resolve(var_id);
// Lambda paramaters are not processed by OnIndexDeclaration and
// may not have a short_name yet. Note that we only process the lambda
// parameter as a definition if it is in the same file as the reference,
// as lambdas cannot be split across files.
if (var->def.detailed_name.empty()) {
CXFile referenced_file;
Range spelling = referenced.get_spelling_range(&referenced_file);
if (file == referenced_file) {
SetUse(db, &var->def.spell, spelling, lex_parent, Role::Definition);
SetUse(db, &var->def.extent, referenced.get_extent(), lex_parent, Role::None);
// TODO Some of the logic here duplicates CXIdxEntity_Variable branch
// of OnIndexDeclaration. But there `decl` is of type CXIdxDeclInfo
// and has more information, thus not easy to reuse the code.
SetVarDetail(var, referenced.get_spelling(), referenced, nullptr,
true, db, param);
var->def.kind = ClangSymbolKind::Parameter;
}
}
UniqueAddUse(db, var->uses, loc, fromContainer(ref->container), GetRole(ref, Role::Reference));
break;
}
case CXIdxEntity_CXXConversionFunction:
case CXIdxEntity_CXXStaticMethod:
case CXIdxEntity_CXXInstanceMethod:
case CXIdxEntity_ObjCInstanceMethod:
case CXIdxEntity_ObjCClassMethod:
case CXIdxEntity_Function:
case CXIdxEntity_CXXConstructor:
case CXIdxEntity_CXXDestructor: {
// TODO: Redirect container to constructor for the following example, ie,
// we should be inserting an outgoing function call from the Foo
// ctor.
//
// int Gen() { return 5; }
// class Foo {
// int x = Gen();
// }
// TODO: search full history?
ClangCursor ref_cursor(ref->cursor);
Range loc = ref_cursor.get_spelling_range();
IndexFuncId called_id = db->ToFuncId(HashUsr(ref->referencedEntity->USR));
IndexFunc* called = db->Resolve(called_id);
std::string_view short_name = called->def.ShortName();
// libclang doesn't provide a nice api to check if the given function
// call is implicit. ref->kind should probably work (it's either direct
// or implicit), but libclang only supports implicit for objective-c.
bool is_implicit =
CanBeCalledImplicitly(ref->referencedEntity->kind) &&
// Treats empty short_name as an implicit call like implicit move
// constructor in `vector<int> a = f();`
(short_name.empty() ||
// For explicit destructor call, ref->cursor may be "~" while
// called->def.short_name is "~A"
// "~A" is not a substring of ref->cursor, but we should take this
// case as not `is_implicit`.
(short_name[0] != '~' &&
!CursorSpellingContainsString(ref->cursor, param->tu->cx_tu,
short_name)));
// Extents have larger ranges and thus less specific, and will be
// overriden by other functions if exist.
//
// Type-dependent member access expressions do not have useful spelling
// ranges. See the comment above for the CXIdxEntity_Field case.
if (is_implicit)
loc = ref_cursor.get_extent();
else
CheckTypeDependentMemberRefExpr(&loc, ref_cursor, param, db);
OnIndexReference_Function(
db, loc, ref->container->cursor, called_id,
GetRole(ref, Role::Call) |
(is_implicit ? Role::Implicit : Role::None));
// Checks if |str| starts with |start|. Ignores case.
auto str_begin = [](const char* start, const char* str) {
while (*start && *str) {
char a = tolower(*start);
char b = tolower(*str);
if (a != b)
return false;
++start;
++str;
}
return !*start;
};
bool is_template = ref->referencedEntity->templateKind !=
CXIdxEntityCXXTemplateKind::CXIdxEntity_NonTemplate;
if (param->config->index.attributeMakeCallsToCtor && is_template &&
str_begin("make", ref->referencedEntity->name)) {
// Try to find the return type of called function. That type will have
// the constructor function we add a usage to.
optional<ClangCursor> opt_found_type = FindType(ref->cursor);
if (opt_found_type) {
Usr ctor_type_usr = opt_found_type->get_referenced().get_usr_hash();
ClangCursor call_cursor = ref->cursor;
// Build a type description from the parameters of the call, so we
// can try to find a constructor with the same type description.
std::vector<std::string> call_type_desc;
for (ClangType type : call_cursor.get_type().get_arguments()) {
std::string type_desc = type.get_spelling();
if (!type_desc.empty())
call_type_desc.push_back(type_desc);
}
// Try to find the constructor and add a reference.
optional<Usr> ctor_usr =
param->ctors.TryFindConstructorUsr(ctor_type_usr, call_type_desc);
if (ctor_usr) {
IndexFunc* ctor = db->Resolve(db->ToFuncId(*ctor_usr));
AddFuncUse(&ctor->uses,
Use(loc, Id<void>(), SymbolKind::File,
Role::Call | Role::Implicit));
}
}
}
break;
}
case CXIdxEntity_ObjCCategory:
case CXIdxEntity_ObjCProtocol:
case CXIdxEntity_ObjCClass:
case CXIdxEntity_Typedef:
case CXIdxEntity_CXXTypeAlias:
case CXIdxEntity_Enum:
case CXIdxEntity_Union:
case CXIdxEntity_Struct:
case CXIdxEntity_CXXClass: {
ClangCursor ref_cursor = ref->referencedEntity->cursor;
ref_cursor = ref_cursor.template_specialization_to_template_definition();
IndexType* ref_type =
db->Resolve(db->ToTypeId(ref_cursor.get_usr_hash()));
// The following will generate two TypeRefs to Foo, both located at the
// same spot (line 3, column 3). One of the parents will be set to
// CXIdxEntity_Variable, the other will be CXIdxEntity_Function. There
// does not appear to be a good way to disambiguate these references, as
// using parent type alone breaks other indexing tasks.
//
// To work around this, we check to see if the usage location has been
// inserted into all_uses previously.
//
// struct Foo {};
// void Make() {
// Foo f;
// }
//
UniqueAddUseSpell(db, ref_type->uses, ref->cursor);
break;
}
default:
std::cerr
<< "!! Unhandled indexEntityReference: " << cursor.ToString()
<< " at "
<< ClangCursor(ref->cursor).get_spelling_range().start.ToString()
<< std::endl;
std::cerr << " ref->referencedEntity->kind = "
<< ref->referencedEntity->kind << std::endl;
if (ref->parentEntity)
std::cerr << " ref->parentEntity->kind = "
<< ref->parentEntity->kind << std::endl;
std::cerr
<< " ref->loc = "
<< ClangCursor(ref->cursor).get_spelling_range().start.ToString()
<< std::endl;
std::cerr << " ref->kind = " << ref->kind << std::endl;
if (ref->parentEntity)
std::cerr << " parentEntity = "
<< ClangCursor(ref->parentEntity->cursor).ToString()
<< std::endl;
if (ref->referencedEntity)
std::cerr << " referencedEntity = "
<< ClangCursor(ref->referencedEntity->cursor).ToString()
<< std::endl;
if (ref->container)
std::cerr << " container = "
<< ClangCursor(ref->container->cursor).ToString()
<< std::endl;
break;
}
}
optional<std::vector<std::unique_ptr<IndexFile>>> Parse(
Config* config,
FileConsumerSharedState* file_consumer_shared,
std::string file,
const std::vector<std::string>& args,
const std::vector<FileContents>& file_contents,
PerformanceImportFile* perf,
ClangIndex* index,
bool dump_ast) {
if (!config->enableIndexing)
return nullopt;
file = NormalizePath(file);
Timer timer;
std::vector<CXUnsavedFile> unsaved_files;
for (const FileContents& contents : file_contents) {
CXUnsavedFile unsaved;
unsaved.Filename = contents.path.c_str();
unsaved.Contents = contents.content.c_str();
unsaved.Length = (unsigned long)contents.content.size();
unsaved_files.push_back(unsaved);
}
std::unique_ptr<ClangTranslationUnit> tu = ClangTranslationUnit::Create(
index, file, args, unsaved_files,
CXTranslationUnit_KeepGoing |
CXTranslationUnit_DetailedPreprocessingRecord);
if (!tu)
return nullopt;
perf->index_parse = timer.ElapsedMicrosecondsAndReset();
if (dump_ast)
Dump(clang_getTranslationUnitCursor(tu->cx_tu));
return ParseWithTu(config, file_consumer_shared, perf, tu.get(), index, file,
args, unsaved_files);
}
optional<std::vector<std::unique_ptr<IndexFile>>> ParseWithTu(
Config* config,
FileConsumerSharedState* file_consumer_shared,
PerformanceImportFile* perf,
ClangTranslationUnit* tu,
ClangIndex* index,
const std::string& file,
const std::vector<std::string>& args,
const std::vector<CXUnsavedFile>& file_contents) {
Timer timer;
IndexerCallbacks callback = {0};
// Available callbacks:
// - abortQuery
// - enteredMainFile
// - ppIncludedFile
// - importedASTFile
// - startedTranslationUnit
callback.diagnostic = &OnIndexDiagnostic;
callback.ppIncludedFile = &OnIndexIncludedFile;
callback.indexDeclaration = &OnIndexDeclaration;
callback.indexEntityReference = &OnIndexReference;
FileConsumer file_consumer(file_consumer_shared, file);
IndexParam param(config, tu, &file_consumer);
for (const CXUnsavedFile& contents : file_contents) {
param.file_contents[contents.Filename] = FileContents(
contents.Filename, std::string(contents.Contents, contents.Length));
}
CXFile cx_file = clang_getFile(tu->cx_tu, file.c_str());
param.primary_file = ConsumeFile(&param, cx_file);
CXIndexAction index_action = clang_IndexAction_create(index->cx_index);
// |index_result| is a CXErrorCode instance.
int index_result = clang_indexTranslationUnit(
index_action, &param, &callback, sizeof(IndexerCallbacks),
CXIndexOpt_IndexFunctionLocalSymbols |
CXIndexOpt_SkipParsedBodiesInSession |
CXIndexOpt_IndexImplicitTemplateInstantiations,
tu->cx_tu);
if (index_result != CXError_Success) {
LOG_S(ERROR) << "Indexing " << file
<< " failed with errno=" << index_result;
return nullopt;
}
clang_IndexAction_dispose(index_action);
ClangCursor(clang_getTranslationUnitCursor(tu->cx_tu))
.VisitChildren(&VisitMacroDefinitionAndExpansions, &param);
perf->index_build = timer.ElapsedMicrosecondsAndReset();
std::unordered_map<std::string, int> inc_to_line;
// TODO
if (param.primary_file)
for (auto& inc : param.primary_file->includes)
inc_to_line[inc.resolved_path] = inc.line;
auto result = param.file_consumer->TakeLocalState();
for (std::unique_ptr<IndexFile>& entry : result) {
entry->import_file = file;
entry->args = args;
if (param.primary_file) {
// If there are errors, show at least one at the include position.
auto it = inc_to_line.find(entry->path);
if (it != inc_to_line.end()) {
int line = it->second;
for (auto ls_diagnostic : entry->diagnostics_) {
if (ls_diagnostic.severity != lsDiagnosticSeverity::Error)
continue;
ls_diagnostic.range =
lsRange(lsPosition(line, 10), lsPosition(line, 10));
param.primary_file->diagnostics_.push_back(ls_diagnostic);
break;
}
}
}
// Update file contents and modification time.
entry->last_modification_time = param.file_modification_times[entry->path];
// Update dependencies for the file. Do not include the file in its own
// dependency set.
entry->dependencies = param.seen_files;
entry->dependencies.erase(
std::remove(entry->dependencies.begin(), entry->dependencies.end(),
entry->path),
entry->dependencies.end());
}
return std::move(result);
}
void ConcatTypeAndName(std::string& type, const std::string& name) {
if (type.size() &&
(type.back() != ' ' && type.back() != '*' && type.back() != '&'))
type.push_back(' ');
type.append(name);
}
void IndexInit() {
clang_enableStackTraces();
if (!getenv("LIBCLANG_DISABLE_CRASH_RECOVERY"))
clang_toggleCrashRecovery(1);
}
void ClangSanityCheck() {
std::vector<const char*> args = {"clang", "index_tests/vars/class_member.cc"};
unsigned opts = 0;
CXIndex index = clang_createIndex(0, 1);
CXTranslationUnit tu;
clang_parseTranslationUnit2FullArgv(index, nullptr, args.data(), args.size(),
nullptr, 0, opts, &tu);
assert(tu);
IndexerCallbacks callback = {0};
callback.abortQuery = [](CXClientData client_data, void* reserved) {
return 0;
};
callback.diagnostic = [](CXClientData client_data,
CXDiagnosticSet diagnostics, void* reserved) {};
callback.enteredMainFile = [](CXClientData client_data, CXFile mainFile,
void* reserved) -> CXIdxClientFile {
return nullptr;
};
callback.ppIncludedFile =
[](CXClientData client_data,
const CXIdxIncludedFileInfo* file) -> CXIdxClientFile {
return nullptr;
};
callback.importedASTFile =
[](CXClientData client_data,
const CXIdxImportedASTFileInfo*) -> CXIdxClientASTFile {
return nullptr;
};
callback.startedTranslationUnit = [](CXClientData client_data,
void* reserved) -> CXIdxClientContainer {
return nullptr;
};
callback.indexDeclaration = [](CXClientData client_data,
const CXIdxDeclInfo* decl) {};
callback.indexEntityReference = [](CXClientData client_data,
const CXIdxEntityRefInfo* ref) {};
const unsigned kIndexOpts = 0;
CXIndexAction index_action = clang_IndexAction_create(index);
int index_param = 0;
clang_toggleCrashRecovery(0);
clang_indexTranslationUnit(index_action, &index_param, &callback,
sizeof(IndexerCallbacks), kIndexOpts, tu);
clang_IndexAction_dispose(index_action);
clang_disposeTranslationUnit(tu);
clang_disposeIndex(index);
}
std::string GetClangVersion() {
return ToString(clang_getClangVersion());
}
// |SymbolRef| is serialized this way.
// |Use| also uses this though it has an extra field |file|,
// which is not used by Index* so it does not need to be serialized.
void Reflect(Reader& visitor, Reference& value) {
if (visitor.Format() == SerializeFormat::Json) {
std::string t = visitor.GetString();
char* s = const_cast<char*>(t.c_str());
value.range = Range(s);
s = strchr(s, '|');
value.id.id = RawId(strtol(s + 1, &s, 10));
value.kind = static_cast<SymbolKind>(strtol(s + 1, &s, 10));
value.role = static_cast<Role>(strtol(s + 1, &s, 10));
} else {
Reflect(visitor, value.range);
Reflect(visitor, value.id);
Reflect(visitor, value.kind);
Reflect(visitor, value.role);
}
}
void Reflect(Writer& visitor, Reference& value) {
if (visitor.Format() == SerializeFormat::Json) {
std::string s = value.range.ToString();
// RawId(-1) -> "-1"
s += '|' + std::to_string(static_cast<std::make_signed<RawId>::type>(value.id.id));
s += '|' + std::to_string(int(value.kind));
s += '|' + std::to_string(int(value.role));
Reflect(visitor, s);
} else {
Reflect(visitor, value.range);
Reflect(visitor, value.id);
Reflect(visitor, value.kind);
Reflect(visitor, value.role);
}
}