ccls/ipc.cc
Jacob Dufault 12acaa1b49 wip
2017-03-16 00:36:59 -07:00

395 lines
13 KiB
C++

#include "ipc.h"
#include "serializer.h"
#include "utils.h"
namespace {
// The absolute smallest partial payload we should send. This must be >0, ie, 1 is the
// minimum. Keep a reasonably high value so we don't send needlessly send tiny payloads.
const int kMinimumPartialPayloadSize = 128;
// JSON-encoded message that is passed across shared memory.
//
// Messages are funky objects. They contain potentially variable amounts of
// data and are passed between processes. This means that they need to be
// fully relocatable, ie, it is possible to memmove them in memory to a
// completely different address.
struct JsonMessage {
IpcId ipc_id;
int partial_message_id;
bool has_more_chunks;
size_t payload_size;
void* payload() {
return reinterpret_cast<char*>(this) + sizeof(JsonMessage);
}
void Setup(IpcId ipc_id, int partial_message_id, bool has_more_chunks, size_t payload_size, const char* payload) {
this->ipc_id = ipc_id;
this->partial_message_id = partial_message_id;
this->has_more_chunks = has_more_chunks;
this->payload_size = payload_size;
char* payload_dest = reinterpret_cast<char*>(this) + sizeof(JsonMessage);
memcpy(payload_dest, payload, payload_size);
}
};
std::string NameToServerName(const std::string& name) {
return name + "server";
}
std::string NameToClientName(const std::string& name, int client_id) {
return name + "client" + std::to_string(client_id);
}
}
IpcRegistry* IpcRegistry::instance_ = nullptr;
std::unique_ptr<IpcMessage> IpcRegistry::Allocate(IpcId id) {
assert(allocators_);
auto it = allocators_->find(id);
assert(it != allocators_->end() && "No registered allocator for id");
return std::unique_ptr<IpcMessage>(it->second());
}
struct IpcDirectionalChannel::MessageBuffer {
MessageBuffer(void* buffer, size_t buffer_size, bool initialize) {
real_buffer = buffer;
real_buffer_size = buffer_size;
if (initialize)
new(real_buffer) Metadata();
}
// Pointer to the start of the actual buffer and the
// amount of storage actually available.
void* real_buffer;
size_t real_buffer_size;
template<typename T>
T* Offset(size_t offset) const {
return reinterpret_cast<T*>(static_cast<char*>(real_buffer) + offset);
}
struct Metadata {
// The number of bytes that are currently used in the buffer minus the
// size of this Metadata struct.
size_t bytes_used = 0;
int next_partial_message_id = 0;
int num_outstanding_partial_messages = 0;
};
Metadata* metadata() const {
return Offset<Metadata>(0);
}
size_t bytes_available() const {
return real_buffer_size - sizeof(Metadata) - metadata()->bytes_used;
}
JsonMessage* message_at_offset(size_t offset) const {
return Offset<JsonMessage>(sizeof(Metadata) + offset);
}
// First json message.
JsonMessage* first_message() const {
return message_at_offset(0);
}
// First free, writable json message. Make sure to increase *bytes_used()
// by any written size.
JsonMessage* free_message() const {
return message_at_offset(metadata()->bytes_used);
}
struct Iterator {
void* buffer;
size_t remaining_bytes;
Iterator(void* buffer, size_t remaining_bytes) : buffer(buffer), remaining_bytes(remaining_bytes) {}
JsonMessage* get() const {
assert(buffer);
return reinterpret_cast<JsonMessage*>(buffer);
}
JsonMessage* operator*() const {
return get();
}
JsonMessage* operator->() const {
return get();
}
void operator++() {
size_t next_message_offset = sizeof(JsonMessage) + get()->payload_size;
if (next_message_offset >= remaining_bytes) {
assert(next_message_offset == remaining_bytes);
buffer = nullptr;
remaining_bytes = 0;
return;
}
buffer = (char*)buffer + next_message_offset;
remaining_bytes -= next_message_offset;
}
bool operator==(const Iterator& other) const {
return buffer == other.buffer && remaining_bytes == other.remaining_bytes;
}
bool operator!=(const Iterator& other) const {
return !(*this == other);
}
};
Iterator begin() const {
if (metadata()->bytes_used == 0)
return end();
return Iterator(first_message(), metadata()->bytes_used);
}
Iterator end() const {
return Iterator(nullptr, 0);
}
};
struct IpcDirectionalChannel::ResizableBuffer {
void* memory;
size_t size;
size_t capacity;
ResizableBuffer() {
memory = malloc(128);
size = 0;
capacity = 128;
}
~ResizableBuffer() {
free(memory);
size = 0;
capacity = 0;
}
void Append(void* content, size_t content_size) {
assert(capacity);
// Grow memory if needed.
if ((size + content_size) >= capacity) {
size_t new_capacity = capacity * 2;
while (new_capacity < size + content_size)
new_capacity *= 2;
void* new_memory = malloc(new_capacity);
assert(size < capacity);
memcpy(new_memory, memory, size);
free(memory);
memory = new_memory;
capacity = new_capacity;
}
// Append new content into memory.
memcpy((char*)memory + size, content, content_size);
size += content_size;
}
void Reset() {
size = 0;
}
};
IpcDirectionalChannel::ResizableBuffer* IpcDirectionalChannel::CreateOrFindResizableBuffer(int id) {
auto it = resizable_buffers.find(id);
if (it != resizable_buffers.end())
return it->second.get();
return (resizable_buffers[id] = MakeUnique<ResizableBuffer>()).get();
}
void IpcDirectionalChannel::RemoveResizableBuffer(int id) {
resizable_buffers.erase(id);
}
IpcDirectionalChannel::IpcDirectionalChannel(const std::string& name, bool initialize_shared_memory) {
shared = CreatePlatformSharedMemory(name + "memory");
mutex = CreatePlatformMutex(name + "mutex");
local = std::unique_ptr<char>(new char[shmem_size]);
// TODO: connecting a client will allocate reset shared state on the
// buffer. We need to store if we "initialized".
shared_buffer = MakeUnique<MessageBuffer>(shared->shared, shmem_size, initialize_shared_memory);
local_buffer = MakeUnique<MessageBuffer>(local.get(), shmem_size, true /*initialize*/);
}
IpcDirectionalChannel::~IpcDirectionalChannel() {}
enum class DispatchResult {
RunAgain,
Break
};
// Run |action| an arbitrary number of times.
void IpcDispatch(PlatformMutex* mutex, std::function<DispatchResult()> action) {
bool first = true;
int log_iteration_count = 0;
int log_count = 0;
while (true) {
if (!first) {
if (log_iteration_count > 1000) {
log_iteration_count = 0;
std::cerr << "[info]: shmem full, waiting (" << log_count++ << ")" << std::endl; // TODO: remove
}
++log_iteration_count;
// TODO: See if we can figure out a way to use condition variables cross-process.
std::this_thread::sleep_for(std::chrono::microseconds(0));
}
first = false;
std::unique_ptr<PlatformScopedMutexLock> lock = CreatePlatformScopedMutexLock(mutex);
if (action() == DispatchResult::RunAgain)
continue;
break;
}
}
void IpcDirectionalChannel::PushMessage(IpcMessage* message) {
assert(message->ipc_id != IpcId::Invalid);
assert(shmem_size > sizeof(JsonMessage) + kMinimumPartialPayloadSize);
rapidjson::StringBuffer output;
rapidjson::PrettyWriter<rapidjson::StringBuffer> writer(output);
writer.SetFormatOptions(
rapidjson::PrettyFormatOptions::kFormatSingleLineArray);
writer.SetIndent(' ', 2);
message->Serialize(writer);
//std::cerr << "Sending message with id " << message->runtime_id() << " (hash " << message->hashed_runtime_id() << ")" << std::endl;
size_t payload_size = output.GetSize();
const char* payload = output.GetString();
if (payload_size == 0)
return;
int partial_message_id = 0; // TODO
std::cerr << "Starting dispatch of payload with size " << payload_size << std::endl;
int count = 0;
IpcDispatch(mutex.get(), [&]() {
assert(payload_size > 0);
// We cannot find the entire payload in the buffer. We
// have to send chunks of it over time.
if ((sizeof(JsonMessage) + payload_size) > shared_buffer->bytes_available()) {
if ((sizeof(JsonMessage) + kMinimumPartialPayloadSize) > shared_buffer->bytes_available())
return DispatchResult::RunAgain;
if (partial_message_id == 0)
partial_message_id = ++shared_buffer->metadata()->next_partial_message_id; // note: pre-increment so we 1 as initial value
size_t sent_payload_size = shared_buffer->bytes_available() - sizeof(JsonMessage);
shared_buffer->free_message()->Setup(message->ipc_id, partial_message_id, true /*has_more_chunks*/, sent_payload_size, payload);
shared_buffer->metadata()->bytes_used += sizeof(JsonMessage) + sent_payload_size;
//shared_buffer->free_message()->ipc_id = IpcId::Invalid; // Note: free_message() may be past writable memory.
if (count++ > 50) {
std::cerr << "x50 Sending partial message with payload_size=" << sent_payload_size << std::endl;
count = 0;
}
// Prepare for next time.
payload_size -= sent_payload_size;
payload += sent_payload_size;
return DispatchResult::RunAgain;
}
// The entire payload fits. Send it all now.
else {
// Include partial message id, as there could have been previous parts of this payload.
shared_buffer->free_message()->Setup(message->ipc_id, partial_message_id, false /*has_more_chunks*/, payload_size, payload);
shared_buffer->metadata()->bytes_used += sizeof(JsonMessage) + payload_size;
shared_buffer->free_message()->ipc_id = IpcId::Invalid;
//std::cerr << "Sending full message with payload_size=" << payload_size << std::endl;
return DispatchResult::Break;
}
});
}
void AddIpcMessageFromJsonMessage(std::vector<std::unique_ptr<IpcMessage>>& result, IpcId ipc_id, void* payload, size_t payload_size) {
rapidjson::Document document;
document.Parse(reinterpret_cast<const char*>(payload), payload_size);
bool has_error = document.HasParseError();
auto error = document.GetParseError();
std::unique_ptr<IpcMessage> base_message = IpcRegistry::instance()->Allocate(ipc_id);
base_message->Deserialize(document);
result.emplace_back(std::move(base_message));
}
std::vector<std::unique_ptr<IpcMessage>> IpcDirectionalChannel::TakeMessages() {
std::vector<std::unique_ptr<IpcMessage>> result;
do {
// Move data from shared memory into a local buffer. Do this
// before parsing the blocks so that other processes can begin
// posting data as soon as possible.
{
std::unique_ptr<PlatformScopedMutexLock> lock = CreatePlatformScopedMutexLock(mutex.get());
assert(shared_buffer->metadata()->bytes_used <= shmem_size);
memcpy(local.get(), shared->shared, sizeof(MessageBuffer::Metadata) + shared_buffer->metadata()->bytes_used);
shared_buffer->metadata()->bytes_used = 0;
shared_buffer->free_message()->ipc_id = IpcId::Invalid;
}
// Parse blocks from shared memory.
for (JsonMessage* message : *local_buffer) {
//std::cerr << "Got message with payload_size=" << message->payload_size << std::endl;
if (message->partial_message_id != 0) {
auto* buf = CreateOrFindResizableBuffer(message->partial_message_id);
buf->Append(message->payload(), message->payload_size);
if (!message->has_more_chunks) {
AddIpcMessageFromJsonMessage(result, message->ipc_id, buf->memory, buf->size);
RemoveResizableBuffer(message->partial_message_id);
}
}
else {
assert(!message->has_more_chunks);
AddIpcMessageFromJsonMessage(result, message->ipc_id, message->payload(), message->payload_size);
}
}
local_buffer->metadata()->bytes_used = 0;
// Let other threads run. We still want to run as fast as possible, though.
std::this_thread::sleep_for(std::chrono::microseconds(0));
} while (resizable_buffers.size() > 0);
return result;
}
IpcServer::IpcServer(const std::string& name, int num_clients)
: server_(NameToServerName(name), true /*initialize_shared_memory*/) {
for (int i = 0; i < num_clients; ++i) {
clients_.push_back(MakeUnique<IpcDirectionalChannel>(NameToClientName(name, i), true /*initialize_shared_memory*/));
}
}
void IpcServer::SendToClient(int client_id, IpcMessage* message) {
clients_[client_id]->PushMessage(message);
}
std::vector<std::unique_ptr<IpcMessage>> IpcServer::TakeMessages() {
return server_.TakeMessages();
}
IpcClient::IpcClient(const std::string& name, int client_id)
: server_(NameToServerName(name), false /*initialize_shared_memory*/),
client_(NameToClientName(name, client_id), false /*initialize_shared_memory*/) {}
void IpcClient::SendToServer(IpcMessage* message) {
server_.PushMessage(message);
}
std::vector<std::unique_ptr<IpcMessage>> IpcClient::TakeMessages() {
return client_.TakeMessages();
}