ccls/main.cpp
2017-02-19 23:06:38 -08:00

1842 lines
54 KiB
C++

#include <algorithm>
#include <optional>
#include <iostream>
#include <cstdint>
#include <cassert>
#include <fstream>
#include <unordered_map>
#include "libclangmm/clangmm.h"
#include "libclangmm/Utility.h"
#include "utils.h"
#include <rapidjson/writer.h>
#include <rapidjson/prettywriter.h>
#include <rapidjson/stringbuffer.h>
#include <rapidjson/document.h>
//#include <clang-c\Index.h>
// TODO: Maybe we should use clang_indexSourceFile?
// While indexing, we should refer to symbols by USR. When joining into the db, we can have optimized access.
struct TypeDef;
struct FuncDef;
struct VarDef;
/*
template<typename T>
struct Id {
uint64_t file_id;
uint64_t local_id;
Id() : file_id(0), local_id(0) {} // Needed for containers. Do not use directly.
Id(uint64_t file_id, uint64_t local_id)
: file_id(file_id), local_id(local_id) {}
};
*/
template<typename T>
struct LocalId {
uint64_t local_id;
LocalId() : local_id(0) {} // Needed for containers. Do not use directly.
explicit LocalId(uint64_t local_id) : local_id(local_id) {}
};
using TypeId = LocalId<TypeDef>;
using FuncId = LocalId<FuncDef>;
using VarId = LocalId<VarDef>;
template<typename T>
struct Ref {
LocalId<T> id;
clang::SourceLocation loc;
Ref(LocalId<T> id, clang::SourceLocation loc) : id(id), loc(loc) {}
};
using TypeRef = Ref<TypeDef>;
using FuncRef = Ref<FuncDef>;
using VarRef = Ref<VarDef>;
// NOTE: declaration is empty if there is no forward declaration!
struct TypeDef {
// General metadata.
TypeId id;
std::string usr;
std::string short_name;
std::string qualified_name;
std::optional<clang::SourceLocation> declaration; // Forward decl. TODO: remove
std::optional<clang::SourceLocation> definition;
// If set, then this is the same underlying type as the given value (ie, this
// type comes from a using or typedef statement).
std::optional<TypeId> alias_of;
// Immediate parent and immediate derived types.
std::vector<TypeId> parents;
std::vector<TypeId> derived;
// Types, functions, and variables defined in this type.
std::vector<TypeId> types;
std::vector<FuncId> funcs;
std::vector<VarId> vars;
// Every usage, useful for things like renames.
std::vector<clang::SourceLocation> all_uses;
// Usages that a user is probably interested in.
std::vector<clang::SourceLocation> interesting_uses;
TypeDef(TypeId id, const std::string& usr) : id(id), usr(usr) {
assert(usr.size() > 0);
//std::cout << "Creating type with usr " << usr << std::endl;
}
};
struct FuncDef {
// General metadata.
FuncId id;
std::string usr;
std::string short_name;
std::string qualified_name;
std::optional<clang::SourceLocation> declaration;
std::optional<clang::SourceLocation> definition;
// Type which declares this one (ie, it is a method)
std::optional<TypeId> declaring_type;
// Method this method overrides.
std::optional<FuncId> base;
// Methods which directly override this one.
std::vector<FuncId> derived;
// Local variables defined in this function.
std::vector<VarId> locals;
// Functions which call this one.
// TODO: Functions can get called outside of just functions - for example,
// they can get called in static context (maybe redirect to main?)
// or in class initializer list (redirect to class ctor?)
// - Right now those usages will not get listed here (but they should be
// inside of all_uses).
std::vector<FuncRef> callers;
// Functions that this function calls.
std::vector<FuncRef> callees;
// All usages. For interesting usages, see callees.
std::vector<clang::SourceLocation> all_uses;
FuncDef(FuncId id, const std::string& usr) : id(id), usr(usr) {
assert(usr.size() > 0);
}
};
struct VarDef {
// General metadata.
VarId id;
std::string usr;
std::string short_name;
std::string qualified_name;
std::optional<clang::SourceLocation> declaration;
// Type of the variable.
std::optional<TypeId> variable_type;
// Type which declares this one (ie, it is a method)
std::optional<TypeId> declaring_type;
// Usages.
//std::vector<clang::SourceLocation> initializations; // TODO: See if we can support this.
std::vector<clang::SourceLocation> all_uses;
VarDef(VarId id, const std::string& usr) : id(id), usr(usr) {
assert(usr.size() > 0);
}
};
struct ParsingDatabase {
// NOTE: Every Id is resolved to a file_id of 0. The correct file_id needs
// to get fixed up when inserting into the real db.
std::unordered_map<std::string, TypeId> usr_to_type_id;
std::unordered_map<std::string, FuncId> usr_to_func_id;
std::unordered_map<std::string, VarId> usr_to_var_id;
std::vector<TypeDef> types;
std::vector<FuncDef> funcs;
std::vector<VarDef> vars;
ParsingDatabase();
TypeId ToTypeId(const std::string& usr);
FuncId ToFuncId(const std::string& usr);
VarId ToVarId(const std::string& usr);
TypeId ToTypeId(const CXCursor& usr);
FuncId ToFuncId(const CXCursor& usr);
VarId ToVarId(const CXCursor& usr);
TypeDef* Resolve(TypeId id);
FuncDef* Resolve(FuncId id);
VarDef* Resolve(VarId id);
std::string ToString();
};
ParsingDatabase::ParsingDatabase() {}
// TODO: Optimize for const char*?
TypeId ParsingDatabase::ToTypeId(const std::string& usr) {
auto it = usr_to_type_id.find(usr);
if (it != usr_to_type_id.end())
return it->second;
TypeId id(types.size());
types.push_back(TypeDef(id, usr));
usr_to_type_id[usr] = id;
return id;
}
FuncId ParsingDatabase::ToFuncId(const std::string& usr) {
auto it = usr_to_func_id.find(usr);
if (it != usr_to_func_id.end())
return it->second;
FuncId id(funcs.size());
funcs.push_back(FuncDef(id, usr));
usr_to_func_id[usr] = id;
return id;
}
VarId ParsingDatabase::ToVarId(const std::string& usr) {
auto it = usr_to_var_id.find(usr);
if (it != usr_to_var_id.end())
return it->second;
VarId id(vars.size());
vars.push_back(VarDef(id, usr));
usr_to_var_id[usr] = id;
return id;
}
TypeId ParsingDatabase::ToTypeId(const CXCursor& cursor) {
return ToTypeId(clang::Cursor(cursor).get_usr());
}
FuncId ParsingDatabase::ToFuncId(const CXCursor& cursor) {
return ToFuncId(clang::Cursor(cursor).get_usr());
}
VarId ParsingDatabase::ToVarId(const CXCursor& cursor) {
return ToVarId(clang::Cursor(cursor).get_usr());
}
TypeDef* ParsingDatabase::Resolve(TypeId id) {
return &types[id.local_id];
}
FuncDef* ParsingDatabase::Resolve(FuncId id) {
return &funcs[id.local_id];
}
VarDef* ParsingDatabase::Resolve(VarId id) {
return &vars[id.local_id];
}
using Writer = rapidjson::PrettyWriter<rapidjson::StringBuffer>;
void Write(Writer& writer, const char* key, clang::SourceLocation location) {
if (key) writer.Key(key);
std::string s = location.ToString();
writer.String(s.c_str());
}
void Write(Writer& writer, const char* key, std::optional<clang::SourceLocation> location) {
if (location) {
Write(writer, key, location.value());
}
//else {
// if (key) writer.Key(key);
// writer.Null();
//}
}
void Write(Writer& writer, const char* key, const std::vector<clang::SourceLocation>& locs) {
if (locs.size() == 0)
return;
if (key) writer.Key(key);
writer.StartArray();
for (const clang::SourceLocation& loc : locs)
Write(writer, nullptr, loc);
writer.EndArray();
}
template<typename T>
void Write(Writer& writer, const char* key, LocalId<T> id) {
if (key) writer.Key(key);
writer.Uint64(id.local_id);
}
template<typename T>
void Write(Writer& writer, const char* key, std::optional<LocalId<T>> id) {
if (id) {
Write(writer, key, id.value());
}
//else {
// if (key) writer.Key(key);
// writer.Null();
//}
}
template<typename T>
void Write(Writer& writer, const char* key, const std::vector<LocalId<T>>& ids) {
if (ids.size() == 0)
return;
if (key) writer.Key(key);
writer.StartArray();
for (LocalId<T> id : ids)
Write(writer, nullptr, id);
writer.EndArray();
}
template<typename T>
void Write(Writer& writer, const char* key, Ref<T> ref) {
if (key) writer.Key(key);
std::string s = std::to_string(ref.id.local_id) + "@" + ref.loc.ToString();
writer.String(s.c_str());
}
template<typename T>
void Write(Writer& writer, const char* key, const std::vector<Ref<T>>& refs) {
if (refs.size() == 0)
return;
if (key) writer.Key(key);
writer.StartArray();
for (Ref<T> ref : refs)
Write(writer, nullptr, ref);
writer.EndArray();
}
void Write(Writer& writer, const char* key, const std::string& value) {
if (value.size() == 0)
return;
if (key) writer.Key(key);
writer.String(value.c_str());
}
void Write(Writer& writer, const char* key, uint64_t value) {
if (key) writer.Key(key);
writer.Uint64(value);
}
std::string ParsingDatabase::ToString() {
auto it = usr_to_type_id.find("");
if (it != usr_to_type_id.end()) {
Resolve(it->second)->short_name = "<fundamental>";
assert(Resolve(it->second)->all_uses.size() == 0);
assert(Resolve(it->second)->interesting_uses.size() == 0);
}
#define WRITE(name) Write(writer, #name, def.name)
rapidjson::StringBuffer output;
rapidjson::PrettyWriter<rapidjson::StringBuffer> writer(output);
writer.SetFormatOptions(
rapidjson::PrettyFormatOptions::kFormatSingleLineArray);
writer.SetIndent(' ', 2);
writer.StartObject();
// Types
writer.Key("types");
writer.StartArray();
for (TypeDef& def : types) {
writer.StartObject();
WRITE(id);
WRITE(usr);
WRITE(short_name);
WRITE(qualified_name);
WRITE(declaration);
WRITE(definition);
WRITE(alias_of);
WRITE(parents);
WRITE(derived);
WRITE(types);
WRITE(funcs);
WRITE(vars);
WRITE(all_uses);
WRITE(interesting_uses);
writer.EndObject();
}
writer.EndArray();
// Functions
writer.Key("functions");
writer.StartArray();
for (FuncDef& def : funcs) {
writer.StartObject();
WRITE(id);
WRITE(usr);
WRITE(short_name);
WRITE(qualified_name);
WRITE(declaration);
WRITE(definition);
WRITE(declaring_type);
WRITE(base);
WRITE(derived);
WRITE(locals);
WRITE(callers);
WRITE(callees);
WRITE(all_uses);
writer.EndObject();
}
writer.EndArray();
// Variables
writer.Key("variables");
writer.StartArray();
for (VarDef& def : vars) {
writer.StartObject();
WRITE(id);
WRITE(usr);
WRITE(short_name);
WRITE(qualified_name);
WRITE(declaration);
WRITE(variable_type);
WRITE(declaring_type);
//WRITE(initializations);
WRITE(all_uses);
writer.EndObject();
}
writer.EndArray();
writer.EndObject();
return output.GetString();
#undef WRITE
}
struct FileDef {
uint64_t id;
std::string path;
std::vector<TypeDef> types;
std::vector<FuncDef> funcs;
std::vector<VarDef> vars;
};
/*
struct Database {
std::unordered_map<std::string, TypeId> usr_to_type_id;
std::unordered_map<std::string, FuncId> usr_to_func_id;
std::unordered_map<std::string, VarId> usr_to_var_id;
std::vector<FileDef> files;
TypeId ToTypeId(const std::string& usr);
FuncId ToFuncId(const std::string& usr);
VarId ToVarId(const std::string& usr);
};
TypeId Database::ToTypeId(const std::string& usr) {
auto it = usr_to_type_id.find(usr);
assert(it != usr_to_type_id.end() && "Usr is not registered");
return it->second;
}
FuncId Database::ToFuncId(const std::string& usr) {
auto it = usr_to_func_id.find(usr);
assert(it != usr_to_func_id.end() && "Usr is not registered");
return it->second;
}
VarId Database::ToVarId(const std::string& usr) {
auto it = usr_to_var_id.find(usr);
assert(it != usr_to_var_id.end() && "Usr is not registered");
return it->second;
}
TypeDef* Resolve(FileDef* file, TypeId id) {
assert(file->id == id.file_id);
return &file->types[id.local_id];
}
FuncDef* Resolve(FileDef* file, FuncId id) {
assert(file->id == id.file_id);
return &file->funcs[id.local_id];
}
VarDef* Resolve(FileDef* file, VarId id) {
assert(file->id == id.file_id);
return &file->vars[id.local_id];
}
TypeDef* Resolve(Database* db, TypeId id) {
return Resolve(&db->files[id.file_id], id);
}
FuncDef* Resolve(Database* db, FuncId id) {
return Resolve(&db->files[id.file_id], id);
}
VarDef* Resolve(Database* db, VarId id) {
return Resolve(&db->files[id.file_id], id);
}
*/
#if false
struct NamespaceStack {
std::vector<std::string> stack;
void Push(const std::string& ns);
void Pop();
std::string ComputeQualifiedName(
ParsingDatabase* db, std::optional<TypeId> declaring_type, std::string short_name);
static NamespaceStack kEmpty;
};
NamespaceStack NamespaceStack::kEmpty;
void NamespaceStack::Push(const std::string& ns) {
stack.push_back(ns);
}
void NamespaceStack::Pop() {
stack.pop_back();
}
std::string NamespaceStack::ComputeQualifiedName(
ParsingDatabase* db, std::optional<TypeId> declaring_type, std::string short_name) {
if (declaring_type) {
TypeDef* def = db->Resolve(declaring_type.value());
return def->qualified_name + "::" + short_name;
}
std::string result;
for (const std::string& ns : stack)
result += ns + "::";
result += short_name;
return result;
}
std::optional<TypeId> ResolveDeclaringType(CXCursorKind kind, ParsingDatabase* db, const clang::Cursor& cursor, std::optional<TypeId> declaring_type) {
// Resolve the declaring type for out-of-line method definitions.
if (!declaring_type) {
clang::Cursor parent = cursor.get_semantic_parent();
switch (parent.get_kind()) {
case CXCursor_ClassDecl:
case CXCursor_StructDecl:
declaring_type = db->ToTypeId(parent.get_usr());
break;
}
}
// FieldDecl, etc must have a declaring type.
assert(cursor.get_kind() != kind || declaring_type);
return declaring_type;
}
// |func_id| is the function definition that is currently being processed.
void InsertReference(ParsingDatabase* db, std::optional<FuncId> func_id, clang::Cursor referencer) {
clang::SourceLocation loc = referencer.get_source_location();
clang::Cursor referenced = referencer.get_referenced();
// Try to reference the actual template, instead of a specialization.
CXCursor generic_def = clang_getSpecializedCursorTemplate(referenced.cx_cursor);
if (!clang_Cursor_isNull(generic_def))
referenced = clang::Cursor(generic_def);
switch (referenced.get_kind()) {
case CXCursor_Constructor:
case CXCursor_Destructor:
case CXCursor_CXXMethod:
case CXCursor_FunctionDecl:
case CXCursor_FunctionTemplate:
{
FuncId referenced_id = db->ToFuncId(referenced.get_usr());
FuncDef* referenced_def = db->Resolve(referenced_id);
if (func_id) {
FuncDef* func_def = db->Resolve(func_id.value());
func_def->callees.push_back(FuncRef(referenced_id, loc));
referenced_def->callers.push_back(FuncRef(func_id.value(), loc));
}
referenced_def->all_uses.push_back(loc);
break;
}
case CXCursor_ParmDecl:
case CXCursor_FieldDecl:
case CXCursor_VarDecl:
{
VarId referenced_id = db->ToVarId(referenced.get_usr());
VarDef* referenced_def = db->Resolve(referenced_id);
referenced_def->all_uses.push_back(loc);
break;
}
default:
std::cerr << "Unhandled reference from \"" << referencer.ToString()
<< "\" to \"" << referenced.ToString() << "\"" << std::endl;
break;
}
}
void InsertTypeUsageAtLocation(ParsingDatabase* db, clang::Type type, const clang::SourceLocation& location) {
clang::Type raw_type = type.strip_qualifiers();
std::string usr = raw_type.get_usr();
if (usr == "")
return;
// Add a usage to the type of the variable.
TypeId type_id = db->ToTypeId(raw_type.get_usr());
db->Resolve(type_id)->interesting_uses.push_back(location);
}
struct VarDeclVisitorParam {
ParsingDatabase* db;
std::optional<FuncId> func_id;
bool seen_type_ref = false;
VarDeclVisitorParam(ParsingDatabase* db, std::optional<FuncId> func_id)
: db(db), func_id(func_id) {}
};
// NOTE: This function does not process any of the definitions/etc defined
// inside of the call initializing the variable. That should be handled
// by the function-definition visitor!
clang::VisiterResult VarDeclVisitor(clang::Cursor cursor, clang::Cursor parent, VarDeclVisitorParam* param) {
switch (cursor.get_kind()) {
case CXCursor_TemplateRef:
InsertTypeUsageAtLocation(param->db, cursor.get_referenced().get_type(), cursor.get_source_location());
return clang::VisiterResult::Continue;
case CXCursor_TypeRef:
// This block of code will have two TypeRef nodes:
// Foo Foo::name = 3
// We try to avoid the second reference here by only processing the first one.
if (!param->seen_type_ref) {
param->seen_type_ref = true;
InsertTypeUsageAtLocation(param->db, cursor.get_referenced().get_type(), cursor.get_source_location());
}
return clang::VisiterResult::Continue;
case CXCursor_CallExpr:
case CXCursor_UnexposedExpr:
case CXCursor_UnaryOperator:
return clang::VisiterResult::Continue;
default:
std::cerr << "VarDeclVisitor unhandled " << cursor.ToString() << std::endl;
return clang::VisiterResult::Continue;
}
}
void HandleVarDecl(ParsingDatabase* db, NamespaceStack* ns, clang::Cursor var, std::optional<TypeId> declaring_type, std::optional<FuncId> func_id, bool declare_variable) {
//Dump(var);
// Add a usage to the type of the variable.
//if (var.is_definition())
// InsertTypeUsageAtLocation(db, var.get_type(), var.get_source_location());
// Add usage to types.
VarDeclVisitorParam varDeclVisitorParam(db, func_id);
var.VisitChildren(&VarDeclVisitor, &varDeclVisitorParam);
if (!declare_variable)
return;
// Note: if there is no USR then there can be no declaring type, as all
// member variables of a class must have a name. Only function parameters
// can be nameless.
std::string var_usr = var.get_usr();
if (var_usr.size() == 0) {
assert(var.get_kind() == CXCursor_ParmDecl);
return;
}
VarId var_id = db->ToVarId(var_usr);
VarDef* var_def = db->Resolve(var_id);
declaring_type = ResolveDeclaringType(CXCursor_FieldDecl, db, var, declaring_type);
if (declaring_type && !var_def->declaration) {
// Note: If USR is null there can be no declaring type.
db->Resolve(declaring_type.value())->vars.push_back(var_id);
var_def->declaring_type = declaring_type;
}
// TODO: We could use RAII to verify we don't modify db while have a *Def
// instance alive.
var_def->short_name = var.get_spelling();
var_def->qualified_name =
ns->ComputeQualifiedName(db, declaring_type, var_def->short_name);
// We don't do any additional processing for non-definitions.
if (!var.is_definition()) {
var_def->declaration = var.get_source_location();
return;
}
// If we're a definition and there hasn't been a forward decl, just assign
// declaration location to definition location.
else if (!var_def->declaration) {
var_def->declaration = var.get_source_location();
}
// TODO: Figure out how to scan initializations properly. We probably need
// to scan for assignment statement, or definition+ctor.
//var_def->initializations.push_back(var.get_source_location());
clang::Type var_type = var.get_type().strip_qualifiers();
std::string var_type_usr = var.get_type().strip_qualifiers().get_usr();
if (var_type_usr != "") {
var_def->variable_type = db->ToTypeId(var_type_usr);
/*
for (clang::Type template_param_type : var_type.get_template_arguments()) {
std::string usr = template_param_type.get_usr();
if (usr == "")
continue;
//TypeId template_param_id = db->ToTypeId(usr);
InsertTypeUsageAtLocation(db, template_param_type, var.get_source_location());
//std::cout << template_param_type.get_usr() << std::endl;
}*/
//VarDeclVisitorParam varDeclVisitorParam(db, func_id);
//var.VisitChildren(&VarDeclVisitor, &varDeclVisitorParam);
}
}
// TODO: Should we declare variables on prototypes? ie,
//
// foo(int* x);
//
// I'm inclined to say yes if we want a rename refactoring.
struct FuncDefinitionParam {
ParsingDatabase* db;
NamespaceStack* ns;
FuncId func_id;
bool is_definition;
bool has_return_type;
FuncDefinitionParam(ParsingDatabase* db, NamespaceStack* ns, FuncId func_id, bool is_definition, bool has_return_type)
: db(db), ns(ns), func_id(func_id), is_definition(is_definition), has_return_type(has_return_type) {}
};
clang::VisiterResult VisitFuncDefinition(clang::Cursor cursor, clang::Cursor parent, FuncDefinitionParam* param) {
if (param->has_return_type) {
// Foo* Foo::Bar() {} will have two TypeRef nodes.
assert(cursor.get_kind() == CXCursor_TypeRef);
InsertTypeUsageAtLocation(param->db, cursor.get_referenced().get_type(), cursor.get_source_location());
param->has_return_type = false;
}
//std::cout << "VistFuncDefinition got " << cursor.ToString() << std::endl;
switch (cursor.get_kind()) {
case CXCursor_CallExpr:
// When CallExpr points to a constructor, it does not have a child
// DeclRefExpr which also points to the constructor. Normal function calls
// (to a function of any type) look like this:
//
// CallExpr func_name
// ... (setup this pointer)
// *RefExpr func_name
// ... (setup arguments)
//
// Constructors, on the other hand, look like this:
//
// CallExpr func_name
// ... (setup arguments)
//
// We can't check the parent for a VarDecl, because a normal CallExpr could
// point to that. We simply check if the cursor references a constructor,
// and if so, insert the reference now, since it won't happen later.
if (cursor.get_referenced().get_kind() == CXCursor_Constructor)
InsertReference(param->db, param->func_id, cursor);
return clang::VisiterResult::Recurse;
case CXCursor_MemberRefExpr:
case CXCursor_DeclRefExpr:
InsertReference(param->db, param->func_id, cursor);
return clang::VisiterResult::Recurse;
case CXCursor_VarDecl:
case CXCursor_ParmDecl:
//std::cout << "!! Parsing var decl " << cursor.ToString() << std::endl;
HandleVarDecl(param->db, param->ns, cursor, std::nullopt, param->func_id, param->is_definition);
return clang::VisiterResult::Recurse;
case CXCursor_ReturnStmt:
return clang::VisiterResult::Recurse;
default:
//std::cerr << "Unhandled VisitFuncDefinition kind " << clang::ToString(cursor.get_kind()) << std::endl;
return clang::VisiterResult::Recurse;
}
}
void HandleFunc(ParsingDatabase* db, NamespaceStack* ns, clang::Cursor func, std::optional<TypeId> declaring_type) {
// What this method must process:
// - function declaration
// - function definition
// - method declaration
// - method inline definition
// - method definition
// Resolve id before checking for is_definition so that we insert the
// function into the db even if it is only a prototype. This is needed for
// various file-level operations like outlining.
FuncId func_id = db->ToFuncId(func.get_usr());
// TODO: Consider skipping some of this processing if we've done it already
// (ie, parsed prototype, then parse definition).
declaring_type =
ResolveDeclaringType(CXCursor_CXXMethod, db, func, declaring_type);
FuncDef* func_def = db->Resolve(func_id);
func_def->short_name = func.get_spelling();
func_def->qualified_name =
ns->ComputeQualifiedName(db, declaring_type, func_def->short_name);
if (declaring_type && !func_def->declaration) {
db->Resolve(declaring_type.value())->funcs.push_back(func_id);
func_def->declaring_type = declaring_type;
}
// Don't process definition/body for declarations.
if (!func.is_definition()) {
func_def->declaration = func.get_source_location();
// We insert type references for arguments but don't use the normal visitor
// because that will add a definition for the variable. These are not
// "real" variables so we don't want to add definitions for them.
// We navigate using cursor arguments so we can get location data.
/*
for (clang::Cursor arg : func.get_arguments()) {
switch (arg.get_kind()) {
case CXCursor_ParmDecl:
InsertTypeUsageAtLocation(db, arg.get_type(), arg.get_source_location());
break;
}
}
*/
}
if (func.is_definition())
func_def->definition = func.get_source_location();
// Ignore any fundamental types for return. Note that void is a fundamental
// type.
bool has_return_type = !func.get_type().get_return_type().is_fundamental();
FuncDefinitionParam funcDefinitionParam(db, &NamespaceStack::kEmpty, func_id, func.is_definition(), has_return_type);
func.VisitChildren(&VisitFuncDefinition, &funcDefinitionParam);
}
struct UsingParam {
ParsingDatabase* db;
TypeId active_type;
UsingParam(ParsingDatabase* db, TypeId active_type)
: db(db), active_type(active_type) {}
};
clang::VisiterResult VisitUsing(clang::Cursor cursor, clang::Cursor parent, UsingParam* param) {
ParsingDatabase* db = param->db;
switch (cursor.get_kind()) {
case CXCursor_TypeRef:
{
TypeId source_type = db->ToTypeId(cursor.get_referenced().get_usr());
db->Resolve(param->active_type)->alias_of = source_type;
return clang::VisiterResult::Break;
}
default:
std::cerr << "Unhandled VisitClassDecl kind " << clang::ToString(cursor.get_kind()) << std::endl;
break;
}
return clang::VisiterResult::Continue;
}
struct ClassDeclParam {
ParsingDatabase* db;
NamespaceStack* ns;
TypeId active_type;
ClassDeclParam(ParsingDatabase* db, NamespaceStack* ns, TypeId active_type)
: db(db), ns(ns), active_type(active_type) {}
};
clang::VisiterResult VisitClassDecl(clang::Cursor cursor, clang::Cursor parent, ClassDeclParam* param) {
ParsingDatabase* db = param->db;
switch (cursor.get_kind()) {
case CXCursor_CXXAccessSpecifier:
break;
case CXCursor_Constructor:
case CXCursor_Destructor:
case CXCursor_CXXMethod:
HandleFunc(param->db, param->ns, cursor, param->active_type);
break;
case CXCursor_FieldDecl:
case CXCursor_VarDecl:
HandleVarDecl(param->db, param->ns, cursor, param->active_type, std::nullopt, true /*declare_variable*/);
break;
default:
std::cerr << "Unhandled VisitClassDecl kind " << clang::ToString(cursor.get_kind()) << std::endl;
break;
}
return clang::VisiterResult::Continue;
}
void HandleClassDecl(clang::Cursor cursor, ParsingDatabase* db, NamespaceStack* ns, bool is_alias) {
TypeId type_id = db->ToTypeId(cursor.get_usr());
TypeDef* type_def = db->Resolve(type_id);
type_def->short_name = cursor.get_spelling();
// TODO: Support nested classes (pass in declaring type insteaad of nullopt!)
type_def->qualified_name =
ns->ComputeQualifiedName(db, std::nullopt, type_def->short_name);
if (!cursor.is_definition()) {
if (!type_def->declaration)
type_def->declaration = cursor.get_source_location();
return;
}
type_def->definition = cursor.get_source_location();
if (is_alias) {
UsingParam usingParam(db, type_id);
cursor.VisitChildren(&VisitUsing, &usingParam);
}
else {
ClassDeclParam classDeclParam(db, ns, type_id);
cursor.VisitChildren(&VisitClassDecl, &classDeclParam);
}
}
struct FileParam {
ParsingDatabase* db;
NamespaceStack* ns;
FileParam(ParsingDatabase* db, NamespaceStack* ns) : db(db), ns(ns) {}
};
clang::VisiterResult VisitFile(clang::Cursor cursor, clang::Cursor parent, FileParam* param) {
switch (cursor.get_kind()) {
case CXCursor_Namespace:
// For a namespace, visit the children of the namespace, but this time with
// a pushed namespace stack.
param->ns->Push(cursor.get_display_name());
cursor.VisitChildren(&VisitFile, param);
param->ns->Pop();
break;
case CXCursor_TypeAliasDecl:
case CXCursor_TypedefDecl:
HandleClassDecl(cursor, param->db, param->ns, true /*is_alias*/);
break;
case CXCursor_ClassTemplate:
case CXCursor_StructDecl:
case CXCursor_ClassDecl:
// TODO: Cleanup Handle* param order.
HandleClassDecl(cursor, param->db, param->ns, false /*is_alias*/);
break;
case CXCursor_CXXMethod:
case CXCursor_FunctionDecl:
case CXCursor_FunctionTemplate:
HandleFunc(param->db, param->ns, cursor, std::nullopt);
break;
case CXCursor_VarDecl:
HandleVarDecl(param->db, param->ns, cursor, std::nullopt, std::nullopt, true /*declare_variable*/);
break;
default:
std::cerr << "Unhandled VisitFile kind " << clang::ToString(cursor.get_kind()) << std::endl;
break;
}
return clang::VisiterResult::Continue;
}
ParsingDatabase Parse2(std::string filename) {
std::vector<std::string> args;
clang::Index index(0 /*excludeDeclarationsFromPCH*/, 0 /*displayDiagnostics*/);
clang::TranslationUnit tu(index, filename, args);
std::cout << "Start document dump" << std::endl;
Dump(tu.document_cursor());
std::cout << "Done document dump" << std::endl << std::endl;
ParsingDatabase db;
NamespaceStack ns;
FileParam file_param(&db, &ns);
tu.document_cursor().VisitChildren(&VisitFile, &file_param);
return db;
}
#endif
int abortQuery(CXClientData client_data, void *reserved) {
// 0 -> continue
return 0;
}
void diagnostic(CXClientData client_data, CXDiagnosticSet, void *reserved) {}
CXIdxClientFile enteredMainFile(CXClientData client_data, CXFile mainFile, void *reserved) {
return nullptr;
}
CXIdxClientFile ppIncludedFile(CXClientData client_data, const CXIdxIncludedFileInfo *) {
return nullptr;
}
CXIdxClientASTFile importedASTFile(CXClientData client_data, const CXIdxImportedASTFileInfo *) {
return nullptr;
}
CXIdxClientContainer startedTranslationUnit(CXClientData client_data, void *reserved) {
return nullptr;
}
clang::VisiterResult DumpVisitor(clang::Cursor cursor, clang::Cursor parent, int* level) {
for (int i = 0; i < *level; ++i)
std::cout << " ";
std::cout << clang::ToString(cursor.get_kind()) << " " << cursor.get_spelling() << std::endl;
*level += 1;
cursor.VisitChildren(&DumpVisitor, level);
*level -= 1;
return clang::VisiterResult::Continue;
}
void Dump(clang::Cursor cursor) {
int level = 0;
cursor.VisitChildren(&DumpVisitor, &level);
}
struct FindChildOfKindParam {
CXCursorKind target_kind;
std::optional<clang::Cursor> result;
FindChildOfKindParam(CXCursorKind target_kind) : target_kind(target_kind) {}
};
clang::VisiterResult FindChildOfKindVisitor(clang::Cursor cursor, clang::Cursor parent, FindChildOfKindParam* param) {
if (cursor.get_kind() == param->target_kind) {
param->result = cursor;
return clang::VisiterResult::Break;
}
return clang::VisiterResult::Recurse;
}
std::optional<clang::Cursor> FindChildOfKind(clang::Cursor cursor, CXCursorKind kind) {
FindChildOfKindParam param(kind);
cursor.VisitChildren(&FindChildOfKindVisitor, &param);
return param.result;
}
struct NamespaceHelper {
std::unordered_map<std::string, std::string> container_usr_to_qualified_name;
void RegisterQualifiedName(std::string usr, const CXIdxContainerInfo* container, std::string qualified_name) {
if (container) {
std::string container_usr = clang::Cursor(container->cursor).get_usr();
auto it = container_usr_to_qualified_name.find(container_usr);
if (it != container_usr_to_qualified_name.end()) {
container_usr_to_qualified_name[usr] = it->second + qualified_name + "::";
return;
}
}
container_usr_to_qualified_name[usr] = qualified_name + "::";
}
std::string QualifiedName(const CXIdxContainerInfo* container, std::string unqualified_name) {
if (container) {
std::string container_usr = clang::Cursor(container->cursor).get_usr();
auto it = container_usr_to_qualified_name.find(container_usr);
if (it != container_usr_to_qualified_name.end())
return it->second + unqualified_name;
// Anonymous namespaces are not processed by indexDeclaration. If we
// encounter one insert it into map.
if (container->cursor.kind == CXCursor_Namespace) {
assert(clang::Cursor(container->cursor).get_spelling() == "");
container_usr_to_qualified_name[container_usr] = "::";
return "::" + unqualified_name;
}
}
return unqualified_name;
}
};
struct IndexParam {
ParsingDatabase* db;
NamespaceHelper* ns;
// Record the last type usage location we recorded. Clang will sometimes
// visit the same expression twice so we wan't to avoid double-reporting
// usage information for those locations.
clang::SourceLocation last_type_usage_location;
clang::SourceLocation last_func_usage_location;
IndexParam(ParsingDatabase* db, NamespaceHelper* ns) : db(db), ns(ns) {}
};
/*
std::string GetNamespacePrefx(const CXIdxDeclInfo* decl) {
const CXIdxContainerInfo* container = decl->lexicalContainer;
while (container) {
}
}
*/
// TODO: Let's switch over to the indexer api. It can index
// the int x = get_value() bit...
// - problem: prototype ParmDecl are not parsed - we can parse this info though using FuncDecl and checking if it prototype
// - make sure type hierarchy is possible - CXIdxCXXClassDeclInfo
// - make sure namespace is possible - look at container/lexicalContainer
// - make sure method overload is possible - should be doable using existing approach
//
// - make sure template logic is possible
// * it doesn't seem like we get any template specialization logic
// * we get two decls to the same template... resolved by checking parent? maybe this will break. not sure.
// Insert a reference to |type_id| using the location of the first TypeRef under |cursor|.
void InsertInterestingTypeReference(ParsingDatabase* db, TypeId type_id, clang::Cursor cursor) {
std::optional<clang::Cursor> child = FindChildOfKind(cursor, CXCursor_TypeRef);
assert(child.has_value()); // If this assert ever fails just use |cursor| loc.
TypeDef* def = db->Resolve(type_id);
def->interesting_uses.push_back(child.value().get_source_location());
}
bool IsTypeDefinition(const CXIdxContainerInfo* container) {
if (!container)
return false;
switch (container->cursor.kind) {
case CXCursor_StructDecl:
case CXCursor_ClassDecl:
return true;
default:
return false;
}
}
void indexDeclaration(CXClientData client_data, const CXIdxDeclInfo* decl) {
IndexParam* param = static_cast<IndexParam*>(client_data);
ParsingDatabase* db = param->db;
NamespaceHelper* ns = param->ns;
switch (decl->entityInfo->kind) {
case CXIdxEntity_CXXNamespace:
{
ns->RegisterQualifiedName(decl->entityInfo->USR, decl->semanticContainer, decl->entityInfo->name);
break;
}
case CXIdxEntity_Field:
case CXIdxEntity_Variable:
case CXIdxEntity_CXXStaticVariable:
{
VarId var_id = db->ToVarId(decl->entityInfo->USR);
VarDef* var_def = db->Resolve(var_id);
// TODO: Eventually run with this if. Right now I want to iron out bugs this may shadow.
// TODO: Verify this gets called multiple times
//if (!decl->isRedeclaration) {
var_def->short_name = decl->entityInfo->name;
var_def->qualified_name = ns->QualifiedName(decl->semanticContainer, var_def->short_name);
//}
var_def->declaration = decl->loc;
var_def->all_uses.push_back(decl->loc);
// Declaring variable type information.
std::string var_type_usr = clang::Cursor(decl->cursor).get_type().strip_qualifiers().get_usr();
if (var_type_usr != "") {
TypeId var_type_id = db->ToTypeId(var_type_usr);
var_def->variable_type = var_type_id;
// Insert an interesting type usage for variable declarations. Parameters
// are handled when a function is declared because clang doesn't provide
// parameter declarations for unnamed parameters.
if (decl->cursor.kind != CXCursor_ParmDecl)
InsertInterestingTypeReference(db, var_type_id, decl->cursor);
}
if (decl->isDefinition && IsTypeDefinition(decl->semanticContainer)) {
TypeId declaring_type_id = db->ToTypeId(decl->semanticContainer->cursor);
TypeDef* declaring_type_def = db->Resolve(declaring_type_id);
var_def->declaring_type = declaring_type_id;
declaring_type_def->vars.push_back(var_id);
}
// std::optional<clang::SourceLocation> declaration;
// std::vector<clang::SourceLocation> initializations;
// std::optional<TypeId> variable_type;
// std::optional<TypeId> declaring_type;
// std::vector<clang::SourceLocation> uses;
break;
}
case CXIdxEntity_Function:
case CXIdxEntity_CXXConstructor:
case CXIdxEntity_CXXDestructor:
case CXIdxEntity_CXXInstanceMethod:
case CXIdxEntity_CXXStaticMethod:
{
FuncId func_id = db->ToFuncId(decl->entityInfo->USR);
FuncDef* func_def = db->Resolve(func_id);
// TODO: Eventually run with this if. Right now I want to iron out bugs this may shadow.
//if (!decl->isRedeclaration) {
func_def->short_name = decl->entityInfo->name;
func_def->qualified_name = ns->QualifiedName(decl->semanticContainer, func_def->short_name);
//}
if (decl->isDefinition)
func_def->definition = decl->loc;
func_def->all_uses.push_back(decl->loc);
bool is_pure_virtual = clang_CXXMethod_isPureVirtual(decl->cursor);
// Add function usage information. We only want to do it once per
// definition/declaration. Do it on definition since there should only ever
// be one of those in the entire program.
if ((decl->isDefinition || is_pure_virtual) && IsTypeDefinition(decl->semanticContainer)) {
TypeId declaring_type_id = db->ToTypeId(decl->semanticContainer->cursor);
TypeDef* declaring_type_def = db->Resolve(declaring_type_id);
func_def->declaring_type = declaring_type_id;
declaring_type_def->funcs.push_back(func_id);
}
std::string return_type_usr = clang::Cursor(decl->cursor).get_type().get_return_type().strip_qualifiers().get_usr();
if (return_type_usr != "")
InsertInterestingTypeReference(db, db->ToTypeId(return_type_usr), decl->cursor);
if (decl->isDefinition || is_pure_virtual) {
// Mark type usage for parameters as interesting. We handle this here
// instead of inside var declaration because clang will not emit a var
// declaration for an unnamed parameter, but we still want to mark the
// usage as interesting.
// TODO: Do a similar thing for function decl parameter usages.
clang::Cursor cursor = decl->cursor;
for (clang::Cursor arg : cursor.get_arguments()) {
switch (arg.get_kind()) {
case CXCursor_ParmDecl:
std::string param_type_usr = arg.get_type().strip_qualifiers().get_usr();
if (param_type_usr != "") {
InsertInterestingTypeReference(db, db->ToTypeId(param_type_usr), arg);
}
break;
}
}
// Process inheritance.
//void clang_getOverriddenCursors(CXCursor cursor, CXCursor **overridden, unsigned *num_overridden);
//void clang_disposeOverriddenCursors(CXCursor *overridden);
if (clang_CXXMethod_isVirtual(decl->cursor)) {
CXCursor* overridden;
unsigned int num_overridden;
clang_getOverriddenCursors(decl->cursor, &overridden, &num_overridden);
// TODO: How to handle multiple parent overrides??
for (unsigned int i = 0; i < num_overridden; ++i) {
clang::Cursor parent = overridden[i];
FuncId parent_id = db->ToFuncId(parent.get_usr());
FuncDef* parent_def = db->Resolve(parent_id);
func_def = db->Resolve(func_id); // ToFuncId invalidated func_def
func_def->base = parent_id;
parent_def->derived.push_back(func_id);
}
clang_disposeOverriddenCursors(overridden);
}
}
/*
std::optional<FuncId> base;
std::vector<FuncId> derived;
std::vector<VarId> locals;
std::vector<FuncRef> callers;
std::vector<FuncRef> callees;
std::vector<clang::SourceLocation> uses;
*/
break;
}
case CXIdxEntity_Typedef:
case CXIdxEntity_CXXTypeAlias:
{
TypeId type_id = db->ToTypeId(decl->entityInfo->USR);
std::optional<clang::Cursor> type_ref = FindChildOfKind(decl->cursor, CXCursor_TypeRef);
assert(type_ref.has_value());
TypeId alias_of = db->ToTypeId(type_ref.value().get_referenced().get_usr());
TypeDef* type_def = db->Resolve(type_id);
type_def->alias_of = alias_of;
db->Resolve(alias_of)->interesting_uses.push_back(type_ref.value().get_source_location());
type_def->short_name = decl->entityInfo->name;
type_def->qualified_name = ns->QualifiedName(decl->semanticContainer, type_def->short_name);
type_def->definition = decl->loc;
type_def->all_uses.push_back(decl->loc);
break;
}
case CXIdxEntity_Struct:
case CXIdxEntity_CXXClass:
{
ns->RegisterQualifiedName(decl->entityInfo->USR, decl->semanticContainer, decl->entityInfo->name);
TypeId type_id = db->ToTypeId(decl->entityInfo->USR);
TypeDef* type_def = db->Resolve(type_id);
// TODO: Eventually run with this if. Right now I want to iron out bugs this may shadow.
// TODO: For type section, verify if this ever runs for non definitions?
//if (!decl->isRedeclaration) {
type_def->short_name = decl->entityInfo->name;
type_def->qualified_name = ns->QualifiedName(decl->semanticContainer, type_def->short_name);
// }
type_def->definition = decl->loc;
type_def->all_uses.push_back(decl->loc);
//type_def->alias_of
//type_def->funcs
//type_def->types
//type_def->uses
//type_def->vars
// Add type-level inheritance information.
CXIdxCXXClassDeclInfo const* class_info = clang_index_getCXXClassDeclInfo(decl);
for (unsigned int i = 0; i < class_info->numBases; ++i) {
const CXIdxBaseClassInfo* base_class = class_info->bases[i];
TypeId parent_type_id = db->ToTypeId(clang::Cursor(base_class->cursor).get_referenced().get_usr());
TypeDef* parent_type_def = db->Resolve(parent_type_id);
TypeDef* type_def = db->Resolve(type_id); // type_def ptr could be invalidated by ToTypeId.
parent_type_def->derived.push_back(type_id);
type_def->parents.push_back(parent_type_id);
}
break;
}
default:
std::cout << "!! Unhandled indexDeclaration: " << clang::Cursor(decl->cursor).ToString() << " at " << clang::SourceLocation(decl->loc).ToString() << std::endl;
std::cout << " entityInfo->kind = " << decl->entityInfo->kind << std::endl;
std::cout << " entityInfo->USR = " << decl->entityInfo->USR << std::endl;
if (decl->declAsContainer)
std::cout << " declAsContainer = " << clang::Cursor(decl->declAsContainer->cursor).ToString() << std::endl;
if (decl->semanticContainer)
std::cout << " semanticContainer = " << clang::Cursor(decl->semanticContainer->cursor).ToString() << std::endl;
if (decl->lexicalContainer)
std::cout << " lexicalContainer = " << clang::Cursor(decl->lexicalContainer->cursor).get_usr() << std::endl;
break;
}
}
bool IsFunction(CXCursorKind kind) {
switch (kind) {
case CXCursor_CXXMethod:
case CXCursor_FunctionDecl:
return true;
}
return false;
}
void indexEntityReference(CXClientData client_data, const CXIdxEntityRefInfo* ref) {
IndexParam* param = static_cast<IndexParam*>(client_data);
ParsingDatabase* db = param->db;
clang::Cursor cursor(ref->cursor);
// TODO: Index entity call/ctor creation, like Foo().x = 3
switch (ref->referencedEntity->kind) {
case CXIdxEntity_CXXStaticVariable:
case CXIdxEntity_Variable:
case CXIdxEntity_Field:
{
VarId var_id = db->ToVarId(ref->referencedEntity->cursor);
VarDef* var_def = db->Resolve(var_id);
var_def->all_uses.push_back(ref->loc);
break;
}
case CXIdxEntity_CXXStaticMethod:
case CXIdxEntity_CXXInstanceMethod:
case CXIdxEntity_Function:
case CXIdxEntity_CXXConstructor:
{
// TODO: Redirect container to constructor for
// int Gen() { return 5; }
// class Foo {
// int x = Gen();
// }
// Don't report duplicate usages.
// TODO: search full history?
clang::SourceLocation loc = ref->loc;
if (param->last_func_usage_location == loc) break;
param->last_func_usage_location = loc;
// Note: be careful, calling db->ToFuncId invalidates the FuncDef* ptrs.
FuncId called_id = db->ToFuncId(ref->referencedEntity->USR);
if (IsFunction(ref->container->cursor.kind)) {
FuncId caller_id = db->ToFuncId(ref->container->cursor);
FuncDef* caller_def = db->Resolve(caller_id);
FuncDef* called_def = db->Resolve(called_id);
caller_def->callees.push_back(FuncRef(called_id, loc));
called_def->callers.push_back(FuncRef(caller_id, loc));
called_def->all_uses.push_back(loc);
}
else {
FuncDef* called_def = db->Resolve(called_id);
called_def->all_uses.push_back(loc);
}
break;
}
case CXIdxEntity_Typedef:
case CXIdxEntity_CXXTypeAlias:
case CXIdxEntity_Struct:
case CXIdxEntity_CXXClass:
{
std::cout << "Reference at " << clang::SourceLocation(ref->loc).ToString() << std::endl;
TypeId referenced_id = db->ToTypeId(ref->referencedEntity->USR);
TypeDef* referenced_def = db->Resolve(referenced_id);
//
// The following will generate two TypeRefs to Foo, both located at the
// same spot (line 3, column 3). One of the parents will be set to
// CXIdxEntity_Variable, the other will be CXIdxEntity_Function. There does
// not appear to be a good way to disambiguate these references, as using
// parent type alone breaks other indexing tasks.
//
// To work around this, we store the last type usage location. If our
// current location is the same as that location, don't report it as a
// usage. We don't need to check active type id because there can only be
// one type reference at any location in code.
//
// struct Foo {};
// void Make() {
// Foo f;
// }
//
clang::SourceLocation loc = ref->loc;
//if (param->last_type_usage_location == loc) break;
//param->last_type_usage_location = loc;
// TODO: initializer list can many type refs...
bool do_break = false;
for (int i = referenced_def->all_uses.size() - 1; i >= 0; --i) {
if (referenced_def->all_uses[i] == loc) {
do_break = true;
break;
}
}
if (do_break)
break;
referenced_def->all_uses.push_back(loc);
/*
//
// Variable declarations have an embedded TypeRef.
//
if (cursor.get_kind() == CXCursor_TypeRef &&
ref->parentEntity && ref->parentEntity->kind == CXIdxEntity_Variable) {
referenced_def->interesting_uses.push_back(loc);
}
//
// If this is a type reference to a method then there will be two calls to
// this method with a TypeRef cursor kind. Only the return type is an
// interesting use (ie, Foo* is interesting, but not |Foo| in Foo::Hello).
//
// Foo* Foo::Hello() {}
//
// We handle this by adding a |needs_return_type_index| bool to FuncDef.
// It is only set to true when the type has a return value. We visit the
// return type TypeRef first, so we consume the bool and the second TypeRef
// will not get marked as interesting.
//
if (cursor.get_kind() == CXCursor_TypeRef &&
ref->parentEntity && ref->parentEntity->kind == CXIdxEntity_CXXInstanceMethod) {
FuncId declaring_func_id = db->ToFuncId(ref->parentEntity->USR);
FuncDef* declaring_func_def = db->Resolve(declaring_func_id);
if (declaring_func_def->needs_return_type_index) {
declaring_func_def->needs_return_type_index = false;
referenced_def->interesting_uses.push_back(loc);
}
}
*/
break;
}
default:
std::cout << "!! Unhandled indexEntityReference: " << cursor.ToString() << " at " << clang::SourceLocation(ref->loc).ToString() << std::endl;
std::cout << " ref->referencedEntity->kind = " << ref->referencedEntity->kind << std::endl;
if (ref->parentEntity)
std::cout << " ref->parentEntity->kind = " << ref->parentEntity->kind << std::endl;
std::cout << " ref->loc = " << clang::SourceLocation(ref->loc).ToString() << std::endl;
std::cout << " ref->kind = " << ref->kind << std::endl;
if (ref->parentEntity)
std::cout << " parentEntity = " << clang::Cursor(ref->parentEntity->cursor).ToString() << std::endl;
if (ref->referencedEntity)
std::cout << " referencedEntity = " << clang::Cursor(ref->referencedEntity->cursor).ToString() << std::endl;
if (ref->container)
std::cout << " container = " << clang::Cursor(ref->container->cursor).ToString() << std::endl;
break;
}
}
ParsingDatabase Parse(std::string filename) {
std::vector<std::string> args;
clang::Index index(0 /*excludeDeclarationsFromPCH*/, 0 /*displayDiagnostics*/);
clang::TranslationUnit tu(index, filename, args);
Dump(tu.document_cursor());
CXIndexAction index_action = clang_IndexAction_create(index.cx_index);
IndexerCallbacks callbacks[] = {
{ &abortQuery, &diagnostic, &enteredMainFile, &ppIncludedFile, &importedASTFile, &startedTranslationUnit, &indexDeclaration, &indexEntityReference }
/*
callbacks.abortQuery = &abortQuery;
callbacks.diagnostic = &diagnostic;
callbacks.enteredMainFile = &enteredMainFile;
callbacks.ppIncludedFile = &ppIncludedFile;
callbacks.importedASTFile = &importedASTFile;
callbacks.startedTranslationUnit = &startedTranslationUnit;
callbacks.indexDeclaration = &indexDeclaration;
callbacks.indexEntityReference = &indexEntityReference;
*/
};
ParsingDatabase db;
NamespaceHelper ns;
IndexParam param(&db, &ns);
clang_indexTranslationUnit(index_action, &param, callbacks, sizeof(callbacks),
CXIndexOpt_IndexFunctionLocalSymbols, tu.cx_tu);
clang_IndexAction_dispose(index_action);
return db;
}
template<typename T>
bool AreEqual(const std::vector<T>& a, const std::vector<T>& b) {
if (a.size() != b.size())
return false;
for (int i = 0; i < a.size(); ++i) {
if (a[i] != b[i])
return false;
}
return true;
}
void Write(const std::vector<std::string>& strs) {
for (const std::string& str : strs) {
std::cout << str << std::endl;
}
}
std::string ToString(const rapidjson::Document& document) {
rapidjson::StringBuffer buffer;
rapidjson::PrettyWriter<rapidjson::StringBuffer> writer(buffer);
writer.SetFormatOptions(
rapidjson::PrettyFormatOptions::kFormatSingleLineArray);
writer.SetIndent(' ', 2);
buffer.Clear();
document.Accept(writer);
return buffer.GetString();
}
std::vector<std::string> split_string(const std::string& str, const std::string& delimiter) {
// http://stackoverflow.com/a/13172514
std::vector<std::string> strings;
std::string::size_type pos = 0;
std::string::size_type prev = 0;
while ((pos = str.find(delimiter, prev)) != std::string::npos) {
strings.push_back(str.substr(prev, pos - prev));
prev = pos + 1;
}
// To get the last substring (or only, if delimiter is not found)
strings.push_back(str.substr(prev));
return strings;
}
void DiffDocuments(rapidjson::Document& expected, rapidjson::Document& actual) {
std::vector<std::string> actual_output;
{
std::string buffer = ToString(actual);
actual_output = split_string(buffer, "\n");
}
std::vector<std::string> expected_output;
{
std::string buffer = ToString(expected);
expected_output = split_string(buffer, "\n");
}
int len = std::min(actual_output.size(), expected_output.size());
for (int i = 0; i < len; ++i) {
if (actual_output[i] != expected_output[i]) {
std::cout << "Line " << i << " differs:" << std::endl;
std::cout << " expected: " << expected_output[i] << std::endl;
std::cout << " actual: " << actual_output[i] << std::endl;
}
}
if (actual_output.size() > len) {
std::cout << "Additional output in actual:" << std::endl;
for (int i = len; i < actual_output.size(); ++i)
std::cout << " " << actual_output[i] << std::endl;
}
if (expected_output.size() > len) {
std::cout << "Additional output in expected:" << std::endl;
for (int i = len; i < expected_output.size(); ++i)
std::cout << " " << expected_output[i] << std::endl;
}
}
int main(int argc, char** argv) {
/*
ParsingDatabase db = Parse("tests/vars/function_local.cc");
std::cout << std::endl << "== Database ==" << std::endl;
std::cout << db.ToString();
std::cin.get();
return 0;
*/
for (std::string path : GetFilesInFolder("tests")) {
// TODO: Fix all existing tests.
//if (path == "tests/usage/type_usage_declare_extern.cc") continue;
//if (path != "tests/constructors/destructor.cc") continue;
//if (path != "tests/usage/usage_inside_of_call.cc") continue;
//if (path != "tests/usage/type_usage_typedef_and_using.cc") continue;
//if (path != "tests/usage/type_usage_declare_local.cc") continue;
//if (path != "tests/usage/func_usage_addr_method.cc") continue;
//if (path != "tests/usage/func_usage_template_func.cc") continue;
//if (path != "tests/usage/usage_inside_of_call.cc") continue;
//if (path != "tests/foobar.cc") continue;
// Parse expected output from the test, parse it into JSON document.
std::string expected_output;
ParseTestExpectation(path, &expected_output);
rapidjson::Document expected;
expected.Parse(expected_output.c_str());
// Run test.
std::cout << "[START] " << path << std::endl;
ParsingDatabase db = Parse(path);
std::string actual_output = db.ToString();
rapidjson::Document actual;
actual.Parse(actual_output.c_str());
if (actual == expected) {
std::cout << "[PASSED] " << path << std::endl;
}
else {
std::cout << "[FAILED] " << path << std::endl;
std::cout << "Expected output for " << path << ":" << std::endl;
std::cout << expected_output;
std::cout << "Actual output for " << path << ":" << std::endl;
std::cout << actual_output;
std::cout << std::endl;
std::cout << std::endl;
DiffDocuments(expected, actual);
break;
}
}
std::cin.get();
return 0;
}
// TODO: ctor/dtor, copy ctor, class inheritance, method inheritance