ccls/src/working_files.cc
Jacob Dufault a392301be3 Format
2018-01-29 16:27:43 -08:00

649 lines
21 KiB
C++

#include "working_files.h"
#include "lex_utils.h"
#include "position.h"
#include <doctest/doctest.h>
#include <loguru.hpp>
#include <algorithm>
#include <climits>
#include <numeric>
namespace {
// When finding a best match of buffer line and index line, limit the max edit
// distance.
constexpr int kMaxDiff = 20;
// Don't align index line to buffer line if one of the lengths is larger than
// |kMaxColumnAlignSize|.
constexpr int kMaxColumnAlignSize = 200;
lsPosition GetPositionForOffset(const std::string& content, int offset) {
if (offset >= content.size())
offset = (int)content.size() - 1;
lsPosition result;
int i = 0;
while (i < offset) {
if (content[i] == '\n') {
result.line += 1;
result.character = 0;
} else {
result.character += 1;
}
++i;
}
return result;
}
// Computes the edit distance of strings [a,a+la) and [b,b+lb) with Eugene W.
// Myers' O(ND) diff algorithm.
// Costs: insertion=1, deletion=1, no substitution.
// If the distance is larger than threshold, returns threshould + 1.
int MyersDiff(const char* a, int la, const char* b, int lb, int threshold) {
assert(threshold <= kMaxDiff);
static int v_static[kMaxDiff + 2];
const char *ea = a + la, *eb = b + lb;
// Strip prefix
for (; a < ea && b < eb && *a == *b; a++, b++) {
}
// Strip suffix
for (; a < ea && b < eb && ea[-1] == eb[-1]; ea--, eb--) {
}
la = int(ea - a);
lb = int(eb - b);
int* v = v_static + lb;
v[1] = 0;
for (int di = 0; di <= threshold; di++) {
int low = -di + 2 * std::max(0, di - lb),
high = di - 2 * std::max(0, di - la);
for (int i = low; i <= high; i += 2) {
int x = i == -di || (i != di && v[i - 1] < v[i + 1]) ? v[i + 1]
: v[i - 1] + 1,
y = x - i;
while (x < la && y < lb && a[x] == b[y])
x++, y++;
v[i] = x;
if (x == la && y == lb)
return di;
}
}
return threshold + 1;
}
int MyersDiff(const std::string& a, const std::string& b, int threshold) {
return MyersDiff(a.data(), a.size(), b.data(), b.size(), threshold);
}
// Computes edit distance with O(N*M) Needleman-Wunsch algorithm
// and returns a distance vector where d[i] = cost of aligning a to b[0,i).
//
// Myers' diff algorithm is used to find best matching line while this one is
// used to align a single column because Myers' needs some twiddling to return
// distance vector.
std::vector<int> EditDistanceVector(std::string a, std::string b) {
std::vector<int> d(b.size() + 1);
std::iota(d.begin(), d.end(), 0);
for (int i = 0; i < (int)a.size(); i++) {
int ul = d[0];
d[0] = i + 1;
for (int j = 0; j < (int)b.size(); j++) {
int t = d[j + 1];
d[j + 1] = a[i] == b[j] ? ul : std::min(d[j], d[j + 1]) + 1;
ul = t;
}
}
return d;
}
// Find matching position of |a[column]| in |b|.
// This is actually a single step of Hirschberg's sequence alignment algorithm.
int AlignColumn(const std::string& a, int column, std::string b, bool is_end) {
int head = 0, tail = 0;
while (head < (int)a.size() && head < (int)b.size() && a[head] == b[head])
head++;
while (tail < (int)a.size() && tail < (int)b.size() &&
a[a.size() - 1 - tail] == b[b.size() - 1 - tail])
tail++;
if (column < head)
return column;
if ((int)a.size() - tail < column)
return column + b.size() - a.size();
if (std::max(a.size(), b.size()) - head - tail >= kMaxColumnAlignSize)
return std::min(column, (int)b.size());
// b[head, b.size() - tail)
b = b.substr(head, b.size() - tail - head);
// left[i] = cost of aligning a[head, column) to b[head, head + i)
std::vector<int> left = EditDistanceVector(a.substr(head, column - head), b);
// right[i] = cost of aligning a[column, a.size() - tail) to b[head + i,
// b.size() - tail)
std::string a_rev = a.substr(column, a.size() - tail - column);
std::reverse(a_rev.begin(), a_rev.end());
std::reverse(b.begin(), b.end());
std::vector<int> right = EditDistanceVector(a_rev, b);
std::reverse(right.begin(), right.end());
int best = 0, best_cost = INT_MAX;
for (size_t i = 0; i < left.size(); i++) {
int cost = left[i] + right[i];
if (is_end ? cost < best_cost : cost <= best_cost) {
best_cost = cost;
best = i;
}
}
return head + best;
}
// Find matching buffer line of index_lines[line].
// By symmetry, this can also be used to find matching index line of a buffer
// line.
optional<int> FindMatchingLine(const std::vector<std::string>& index_lines,
const std::vector<int>& index_to_buffer,
int line,
int* column,
const std::vector<std::string>& buffer_lines,
bool is_end) {
// If this is a confident mapping, returns.
if (index_to_buffer[line] >= 0) {
int ret = index_to_buffer[line];
if (column)
*column =
AlignColumn(index_lines[line], *column, buffer_lines[ret], is_end);
return ret;
}
// Find the nearest two confident lines above and below.
int up = line, down = line;
while (--up >= 0 && index_to_buffer[up] < 0) {
}
while (++down < int(index_to_buffer.size()) && index_to_buffer[down] < 0) {
}
up = up < 0 ? 0 : index_to_buffer[up];
down = down >= int(index_to_buffer.size()) ? int(buffer_lines.size()) - 1
: index_to_buffer[down];
if (up > down)
return nullopt;
// Search for lines [up,down] and use Myers's diff algorithm to find the best
// match (least edit distance).
int best = up, best_dist = kMaxDiff + 1;
const std::string& needle = index_lines[line];
for (int i = up; i <= down; i++) {
int dist = MyersDiff(needle, buffer_lines[i], kMaxDiff);
if (dist < best_dist) {
best_dist = dist;
best = i;
}
}
if (column)
*column =
AlignColumn(index_lines[line], *column, buffer_lines[best], is_end);
return best;
}
} // namespace
std::vector<CXUnsavedFile> WorkingFiles::Snapshot::AsUnsavedFiles() const {
std::vector<CXUnsavedFile> result;
result.reserve(files.size());
for (auto& file : files) {
CXUnsavedFile unsaved;
unsaved.Filename = file.filename.c_str();
unsaved.Contents = file.content.c_str();
unsaved.Length = (unsigned long)file.content.size();
result.push_back(unsaved);
}
return result;
}
WorkingFile::WorkingFile(const std::string& filename,
const std::string& buffer_content)
: filename(filename), buffer_content(buffer_content) {
OnBufferContentUpdated();
// SetIndexContent gets called when the file is opened.
}
void WorkingFile::SetIndexContent(const std::string& index_content) {
index_lines = ToLines(index_content, false /*trim_whitespace*/);
index_to_buffer.clear();
buffer_to_index.clear();
}
void WorkingFile::OnBufferContentUpdated() {
buffer_lines = ToLines(buffer_content, false /*trim_whitespace*/);
index_to_buffer.clear();
buffer_to_index.clear();
}
// Variant of Paul Heckel's diff algorithm to compute |index_to_buffer| and
// |buffer_to_index|.
// The core idea is that if a line is unique in both index and buffer,
// we are confident that the line appeared in index maps to the one appeared in
// buffer. And then using them as start points to extend upwards and downwards
// to align other identical lines (but not unique).
void WorkingFile::ComputeLineMapping() {
std::unordered_map<uint64_t, int> hash_to_unique;
std::vector<uint64_t> index_hashes(index_lines.size());
std::vector<uint64_t> buffer_hashes(buffer_lines.size());
index_to_buffer.resize(index_lines.size());
buffer_to_index.resize(buffer_lines.size());
hash_to_unique.reserve(
std::max(index_to_buffer.size(), buffer_to_index.size()));
// For index line i, set index_to_buffer[i] to -1 if line i is duplicated.
int i = 0;
for (auto& line : index_lines) {
std::string trimmed = Trim(line);
uint64_t h = HashUsr(trimmed);
auto it = hash_to_unique.find(h);
if (it == hash_to_unique.end()) {
hash_to_unique[h] = i;
index_to_buffer[i] = i;
} else {
if (it->second >= 0)
index_to_buffer[it->second] = -1;
index_to_buffer[i] = it->second = -1;
}
index_hashes[i++] = h;
}
// For buffer line i, set buffer_to_index[i] to -1 if line i is duplicated.
i = 0;
hash_to_unique.clear();
for (auto& line : buffer_lines) {
std::string trimmed = Trim(line);
uint64_t h = HashUsr(trimmed);
auto it = hash_to_unique.find(h);
if (it == hash_to_unique.end()) {
hash_to_unique[h] = i;
buffer_to_index[i] = i;
} else {
if (it->second >= 0)
buffer_to_index[it->second] = -1;
buffer_to_index[i] = it->second = -1;
}
buffer_hashes[i++] = h;
}
// If index line i is the identical to buffer line j, and they are both
// unique, align them by pointing from_index[i] to j.
i = 0;
for (auto h : index_hashes) {
if (index_to_buffer[i] >= 0) {
auto it = hash_to_unique.find(h);
if (it != hash_to_unique.end() && it->second >= 0 &&
buffer_to_index[it->second] >= 0)
index_to_buffer[i] = it->second;
else
index_to_buffer[i] = -1;
}
i++;
}
// Starting at unique lines, extend upwards and downwards.
for (i = 0; i < (int)index_hashes.size() - 1; i++) {
int j = index_to_buffer[i];
if (0 <= j && j + 1 < buffer_hashes.size() &&
index_hashes[i + 1] == buffer_hashes[j + 1])
index_to_buffer[i + 1] = j + 1;
}
for (i = (int)index_hashes.size(); --i > 0;) {
int j = index_to_buffer[i];
if (0 < j && index_hashes[i - 1] == buffer_hashes[j - 1])
index_to_buffer[i - 1] = j - 1;
}
// |buffer_to_index| is a inverse mapping of |index_to_buffer|.
std::fill(buffer_to_index.begin(), buffer_to_index.end(), -1);
for (i = 0; i < (int)index_hashes.size(); i++)
if (index_to_buffer[i] >= 0)
buffer_to_index[index_to_buffer[i]] = i;
}
optional<int> WorkingFile::GetBufferPosFromIndexPos(int line,
int* column,
bool is_end) {
// The implementation is simple but works pretty well for most cases. We
// lookup the line contents in the indexed file contents, and try to find the
// most similar line in the current buffer file.
//
// Previously, this was implemented by tracking edits and by running myers
// diff algorithm. They were complex implementations that did not work as
// well.
// Note: |index_line| and |buffer_line| are 1-based.
// TODO: reenable this assert once we are using the real indexed file.
// assert(index_line >= 1 && index_line <= index_lines.size());
if (line < 0 || line >= (int)index_lines.size()) {
loguru::Text stack = loguru::stacktrace();
LOG_S(WARNING) << "Bad index_line (got " << line << ", expected [0, "
<< index_lines.size() << ")) in " << filename
<< stack.c_str();
return nullopt;
}
if (index_to_buffer.empty())
ComputeLineMapping();
return FindMatchingLine(index_lines, index_to_buffer, line, column,
buffer_lines, is_end);
}
optional<int> WorkingFile::GetIndexPosFromBufferPos(int line,
int* column,
bool is_end) {
// See GetBufferLineFromIndexLine for additional comments.
if (line < 0 || line >= (int)buffer_lines.size())
return nullopt;
if (buffer_to_index.empty())
ComputeLineMapping();
return FindMatchingLine(buffer_lines, buffer_to_index, line, column,
index_lines, is_end);
}
std::string WorkingFile::FindClosestCallNameInBuffer(
lsPosition position,
int* active_parameter,
lsPosition* completion_position) const {
*active_parameter = 0;
int offset = GetOffsetForPosition(position, buffer_content);
// If vscode auto-inserts closing ')' we will begin on ')' token in foo()
// which will make the below algorithm think it's a nested call.
if (offset > 0 && buffer_content[offset] == ')')
--offset;
// Scan back out of call context.
int balance = 0;
while (offset > 0) {
char c = buffer_content[offset];
if (c == ')')
++balance;
else if (c == '(')
--balance;
if (balance == 0 && c == ',')
*active_parameter += 1;
--offset;
if (balance == -1)
break;
}
if (offset < 0)
return "";
// Scan back entire identifier.
int start_offset = offset;
while (offset > 0) {
char c = buffer_content[offset - 1];
if (isalnum(c) == false && c != '_')
break;
--offset;
}
if (completion_position)
*completion_position = GetPositionForOffset(buffer_content, offset);
return buffer_content.substr(offset, start_offset - offset + 1);
}
lsPosition WorkingFile::FindStableCompletionSource(
lsPosition position,
bool* is_global_completion,
std::string* existing_completion) const {
*is_global_completion = true;
int start_offset = GetOffsetForPosition(position, buffer_content);
int offset = start_offset;
while (offset > 0) {
char c = buffer_content[offset - 1];
if (!isalnum(c) && c != '_') {
// Global completion is everything except for dot (.), arrow (->), and
// double colon (::)
if (c == '.')
*is_global_completion = false;
if (offset > 2) {
char pc = buffer_content[offset - 2];
if (pc == ':' && c == ':')
*is_global_completion = false;
else if (pc == '-' && c == '>')
*is_global_completion = false;
}
break;
}
--offset;
}
*existing_completion = buffer_content.substr(offset, start_offset - offset);
return GetPositionForOffset(buffer_content, offset);
}
WorkingFile* WorkingFiles::GetFileByFilename(const std::string& filename) {
std::lock_guard<std::mutex> lock(files_mutex);
return GetFileByFilenameNoLock(filename);
}
WorkingFile* WorkingFiles::GetFileByFilenameNoLock(
const std::string& filename) {
for (auto& file : files) {
if (file->filename == filename)
return file.get();
}
return nullptr;
}
void WorkingFiles::DoAction(const std::function<void()>& action) {
std::lock_guard<std::mutex> lock(files_mutex);
action();
}
void WorkingFiles::DoActionOnFile(
const std::string& filename,
const std::function<void(WorkingFile* file)>& action) {
std::lock_guard<std::mutex> lock(files_mutex);
WorkingFile* file = GetFileByFilenameNoLock(filename);
action(file);
}
WorkingFile* WorkingFiles::OnOpen(const lsTextDocumentItem& open) {
std::lock_guard<std::mutex> lock(files_mutex);
std::string filename = open.uri.GetPath();
std::string content = open.text;
// The file may already be open.
if (WorkingFile* file = GetFileByFilenameNoLock(filename)) {
file->version = open.version;
file->buffer_content = content;
file->OnBufferContentUpdated();
return file;
}
files.push_back(MakeUnique<WorkingFile>(filename, content));
return files[files.size() - 1].get();
}
void WorkingFiles::OnChange(const lsTextDocumentDidChangeParams& change) {
std::lock_guard<std::mutex> lock(files_mutex);
std::string filename = change.textDocument.uri.GetPath();
WorkingFile* file = GetFileByFilenameNoLock(filename);
if (!file) {
LOG_S(WARNING) << "Could not change " << filename
<< " because it was not open";
return;
}
// version: number | null
if (std::holds_alternative<int>(change.textDocument.version))
file->version = std::get<int>(change.textDocument.version);
for (const lsTextDocumentContentChangeEvent& diff : change.contentChanges) {
// Per the spec replace everything if the rangeLength and range are not set.
// See https://github.com/Microsoft/language-server-protocol/issues/9.
if (!diff.range) {
file->buffer_content = diff.text;
file->OnBufferContentUpdated();
} else {
int start_offset =
GetOffsetForPosition(diff.range->start, file->buffer_content);
// Ignore TextDocumentContentChangeEvent.rangeLength which causes trouble
// when UTF-16 surrogate pairs are used.
int end_offset =
GetOffsetForPosition(diff.range->end, file->buffer_content);
file->buffer_content.replace(file->buffer_content.begin() + start_offset,
file->buffer_content.begin() + end_offset,
diff.text);
file->OnBufferContentUpdated();
}
}
}
void WorkingFiles::OnClose(const lsTextDocumentIdentifier& close) {
std::lock_guard<std::mutex> lock(files_mutex);
std::string filename = close.uri.GetPath();
for (int i = 0; i < files.size(); ++i) {
if (files[i]->filename == filename) {
files.erase(files.begin() + i);
return;
}
}
LOG_S(WARNING) << "Could not close " << filename
<< " because it was not open";
}
WorkingFiles::Snapshot WorkingFiles::AsSnapshot(
const std::vector<std::string>& filter_paths) {
std::lock_guard<std::mutex> lock(files_mutex);
Snapshot result;
result.files.reserve(files.size());
for (const auto& file : files) {
if (filter_paths.empty() || FindAnyPartial(file->filename, filter_paths))
result.files.push_back({file->filename, file->buffer_content});
}
return result;
}
lsPosition CharPos(const WorkingFile& file,
char character,
int character_offset = 0) {
return CharPos(file.buffer_content, character, character_offset);
}
TEST_SUITE("WorkingFile") {
TEST_CASE("simple call") {
WorkingFile f("foo.cc", "abcd(1, 2");
int active_param = 0;
REQUIRE(f.FindClosestCallNameInBuffer(CharPos(f, '('), &active_param) ==
"abcd");
REQUIRE(active_param == 0);
REQUIRE(f.FindClosestCallNameInBuffer(CharPos(f, '1'), &active_param) ==
"abcd");
REQUIRE(active_param == 0);
REQUIRE(f.FindClosestCallNameInBuffer(CharPos(f, ','), &active_param) ==
"abcd");
REQUIRE(active_param == 1);
REQUIRE(f.FindClosestCallNameInBuffer(CharPos(f, ' '), &active_param) ==
"abcd");
REQUIRE(active_param == 1);
REQUIRE(f.FindClosestCallNameInBuffer(CharPos(f, '2'), &active_param) ==
"abcd");
REQUIRE(active_param == 1);
}
TEST_CASE("nested call") {
WorkingFile f("foo.cc", "abcd(efg(), 2");
int active_param = 0;
REQUIRE(f.FindClosestCallNameInBuffer(CharPos(f, '('), &active_param) ==
"abcd");
REQUIRE(active_param == 0);
REQUIRE(f.FindClosestCallNameInBuffer(CharPos(f, 'e'), &active_param) ==
"abcd");
REQUIRE(active_param == 0);
REQUIRE(f.FindClosestCallNameInBuffer(CharPos(f, 'f'), &active_param) ==
"abcd");
REQUIRE(active_param == 0);
REQUIRE(f.FindClosestCallNameInBuffer(CharPos(f, 'g'), &active_param) ==
"abcd");
REQUIRE(active_param == 0);
REQUIRE(f.FindClosestCallNameInBuffer(CharPos(f, 'g', 1), &active_param) ==
"efg");
REQUIRE(active_param == 0);
REQUIRE(f.FindClosestCallNameInBuffer(CharPos(f, 'g', 2), &active_param) ==
"efg");
REQUIRE(active_param == 0);
REQUIRE(f.FindClosestCallNameInBuffer(CharPos(f, ','), &active_param) ==
"abcd");
REQUIRE(active_param == 1);
REQUIRE(f.FindClosestCallNameInBuffer(CharPos(f, ' '), &active_param) ==
"abcd");
REQUIRE(active_param == 1);
}
TEST_CASE("auto-insert )") {
WorkingFile f("foo.cc", "abc()");
int active_param = 0;
REQUIRE(f.FindClosestCallNameInBuffer(CharPos(f, ')'), &active_param) ==
"abc");
REQUIRE(active_param == 0);
}
TEST_CASE("existing completion") {
WorkingFile f("foo.cc", "zzz.asdf");
bool is_global_completion;
std::string existing_completion;
f.FindStableCompletionSource(CharPos(f, '.'), &is_global_completion,
&existing_completion);
REQUIRE(existing_completion == "zzz");
f.FindStableCompletionSource(CharPos(f, 'a', 1), &is_global_completion,
&existing_completion);
REQUIRE(existing_completion == "a");
f.FindStableCompletionSource(CharPos(f, 's', 1), &is_global_completion,
&existing_completion);
REQUIRE(existing_completion == "as");
f.FindStableCompletionSource(CharPos(f, 'd', 1), &is_global_completion,
&existing_completion);
REQUIRE(existing_completion == "asd");
f.FindStableCompletionSource(CharPos(f, 'f', 1), &is_global_completion,
&existing_completion);
REQUIRE(existing_completion == "asdf");
}
TEST_CASE("existing completion underscore") {
WorkingFile f("foo.cc", "ABC_DEF");
bool is_global_completion;
std::string existing_completion;
f.FindStableCompletionSource(CharPos(f, 'C'), &is_global_completion,
&existing_completion);
REQUIRE(existing_completion == "AB");
f.FindStableCompletionSource(CharPos(f, '_'), &is_global_completion,
&existing_completion);
REQUIRE(existing_completion == "ABC");
f.FindStableCompletionSource(CharPos(f, 'D'), &is_global_completion,
&existing_completion);
REQUIRE(existing_completion == "ABC_");
}
}