ccls/indexer.h
Jacob Dufault aaa3542670 rework-id
2017-02-26 11:45:59 -08:00

565 lines
15 KiB
C++

#pragma once
#include <algorithm>
#include <iostream>
#include <cstdint>
#include <cassert>
#include <fstream>
#include <unordered_map>
#include "libclangmm/clangmm.h"
#include "libclangmm/Utility.h"
#include "bitfield.h"
#include "utils.h"
#include "optional.h"
#include <rapidjson/writer.h>
#include <rapidjson/prettywriter.h>
#include <rapidjson/stringbuffer.h>
#include <rapidjson/document.h>
struct IndexedTypeDef;
struct IndexedFuncDef;
struct IndexedVarDef;
using namespace std::experimental;
using GroupId = int;
template<typename T>
struct Id {
GroupId group;
uint64_t id;
Id() : id(0) {} // Needed for containers. Do not use directly.
Id(GroupId group, uint64_t id) : group(group), id(id) {}
bool operator==(const Id<T>& other) const {
assert(group == other.group && "Cannot compare Ids from different groups");
return id == other.id;
}
bool operator<(const Id<T>& other) const {
assert(group == other.group);
return id < other.id;
}
};
namespace std {
template<typename T>
struct hash<Id<T>> {
size_t operator()(const Id<T>& k) const {
return ((hash<uint64_t>()(k.id) ^ (hash<int>()(k.group) << 1)) >> 1);
}
};
}
template<typename T>
bool operator==(const Id<T>& a, const Id<T>& b) {
assert(a.group == b.group && "Cannot compare Ids from different groups");
return a.id == b.id;
}
struct _FakeFileType {};
using FileId = Id<_FakeFileType>;
using TypeId = Id<IndexedTypeDef>;
using FuncId = Id<IndexedFuncDef>;
using VarId = Id<IndexedVarDef>;
struct Location {
bool interesting;
int raw_file_group;
int raw_file_id;
int line;
int column;
Location() {
interesting = false;
raw_file_group = -1;
raw_file_id = -1;
line = -1;
column = -1;
}
Location(bool interesting, FileId file, uint32_t line, uint32_t column) {
this->interesting = interesting;
this->raw_file_group = file.group;
this->raw_file_id = file.id;
this->line = line;
this->column = column;
}
FileId file_id() {
return FileId(raw_file_id, raw_file_group);
}
std::string ToString() {
// Output looks like this:
//
// *1:2:3
//
// * => interesting
// 1 => file id
// 2 => line
// 3 => column
std::string result;
if (interesting)
result += '*';
result += std::to_string(raw_file_id);
result += ':';
result += std::to_string(line);
result += ':';
result += std::to_string(column);
return result;
}
// Compare two Locations and check if they are equal. Ignores the value of
// |interesting|.
// operator== doesn't seem to work properly...
bool IsEqualTo(const Location& o) const {
// When comparing, ignore the value of |interesting|.
return
raw_file_group == o.raw_file_group &&
raw_file_id == o.raw_file_id &&
line == o.line &&
column == o.column;
}
bool operator==(const Location& o) const {
return IsEqualTo(o);
}
bool operator<(const Location& o) const {
return
interesting < o.interesting &&
raw_file_group < o.raw_file_group &&
raw_file_id < o.raw_file_id &&
line < o.line &&
column < o.column;
}
Location WithInteresting(bool interesting) {
Location result = *this;
result.interesting = interesting;
return result;
}
};
#if false
// TODO: Move off of this weird wrapper, use struct with custom wrappers
// directly.
BEGIN_BITFIELD_TYPE(Location, uint64_t)
ADD_BITFIELD_MEMBER(interesting, /*start:*/ 0, /*len:*/ 1); // 2 values
ADD_BITFIELD_MEMBER(raw_file_group, /*start:*/ 1, /*len:*/ 4); // 16 values, ok if they wrap around.
ADD_BITFIELD_MEMBER(raw_file_id, /*start:*/ 5, /*len:*/ 25); // 33,554,432 values
ADD_BITFIELD_MEMBER(line, /*start:*/ 30, /*len:*/ 20); // 1,048,576 values
ADD_BITFIELD_MEMBER(column, /*start:*/ 50, /*len:*/ 14); // 16,384 values
Location(bool interesting, FileId file, uint32_t line, uint32_t column) {
this->interesting = interesting;
this->raw_file_group = file.group;
this->raw_file_id = file.id;
this->line = line;
this->column = column;
}
FileId file_id() {
return FileId(raw_file_id, raw_file_group);
}
std::string ToString() {
// Output looks like this:
//
// *1:2:3
//
// * => interesting
// 1 => file id
// 2 => line
// 3 => column
std::string result;
if (interesting)
result += '*';
result += std::to_string(raw_file_id);
result += ':';
result += std::to_string(line);
result += ':';
result += std::to_string(column);
return result;
}
// Compare two Locations and check if they are equal. Ignores the value of
// |interesting|.
// operator== doesn't seem to work properly...
bool IsEqualTo(const Location& o) {
// When comparing, ignore the value of |interesting|.
return (wrapper.value >> 1) == (o.wrapper.value >> 1);
}
Location WithInteresting(bool interesting) {
Location result = *this;
result.interesting = interesting;
return result;
}
END_BITFIELD_TYPE()
#endif
struct FileDb {
GroupId group;
std::unordered_map<std::string, FileId> file_path_to_file_id;
std::unordered_map<FileId, std::string> file_id_to_file_path;
FileDb(GroupId group) : group(group) {
// Reserve id 0 for unfound.
file_path_to_file_id[""] = FileId(group, 0);
file_id_to_file_path[FileId(group, 0)] = "";
}
Location Resolve(const CXSourceLocation& cx_loc, bool interesting) {
CXFile file;
unsigned int line, column, offset;
clang_getSpellingLocation(cx_loc, &file, &line, &column, &offset);
FileId file_id(-1, -1);
if (file != nullptr) {
std::string path = clang::ToString(clang_getFileName(file));
auto it = file_path_to_file_id.find(path);
if (it != file_path_to_file_id.end()) {
file_id = it->second;
}
else {
file_id = FileId(group, file_path_to_file_id.size());
file_path_to_file_id[path] = file_id;
file_id_to_file_path[file_id] = path;
}
}
return Location(interesting, file_id, line, column);
}
Location Resolve(const CXIdxLoc& cx_idx_loc, bool interesting) {
CXSourceLocation cx_loc = clang_indexLoc_getCXSourceLocation(cx_idx_loc);
return Resolve(cx_loc, interesting);
}
Location Resolve(const CXCursor& cx_cursor, bool interesting) {
return Resolve(clang_getCursorLocation(cx_cursor), interesting);
}
Location Resolve(const clang::Cursor& cursor, bool interesting) {
return Resolve(cursor.cx_cursor, interesting);
}
};
template<typename T>
struct Ref {
Id<T> id;
Location loc;
Ref(Id<T> id, Location loc) : id(id), loc(loc) {}
bool operator==(const Ref<T>& other) {
return id == other.id && loc == other.loc;
}
bool operator!=(const Ref<T>& other) {
return !(*this == other);
}
bool operator<(const Ref<T>& other) const {
return id < other.id && loc < other.loc;
}
};
template<typename T>
bool operator==(const Ref<T>& a, const Ref<T>& b) {
return a.id == b.id && a.loc == b.loc;
}
template<typename T>
bool operator!=(const Ref<T>& a, const Ref<T>& b) {
return !(a == b);
}
using TypeRef = Ref<IndexedTypeDef>;
using FuncRef = Ref<IndexedFuncDef>;
using VarRef = Ref<IndexedVarDef>;
// TODO: skip as much forward-processing as possible when |is_system_def| is
// set to false.
// TODO: Either eliminate the defs created as a by-product of cross-referencing,
// or do not emit things we don't have definitions for.
template<typename TypeId = TypeId, typename FuncId = FuncId, typename VarId = VarId>
struct TypeDefDefinitionData {
// General metadata.
TypeId id;
std::string usr;
std::string short_name;
std::string qualified_name;
// While a class/type can technically have a separate declaration/definition,
// it doesn't really happen in practice. The declaration never contains
// comments or insightful information. The user always wants to jump from
// the declaration to the definition - never the other way around like in
// functions and (less often) variables.
//
// It's also difficult to identify a `class Foo;` statement with the clang
// indexer API (it's doable using cursor AST traversal), so we don't bother
// supporting the feature.
optional<Location> definition;
// If set, then this is the same underlying type as the given value (ie, this
// type comes from a using or typedef statement).
optional<TypeId> alias_of;
// Immediate parent types.
std::vector<TypeId> parents;
// Types, functions, and variables defined in this type.
std::vector<TypeId> types;
std::vector<FuncId> funcs;
std::vector<VarId> vars;
TypeDefDefinitionData(TypeId id, const std::string& usr) : id(id), usr(usr) {}
bool operator==(const TypeDefDefinitionData<TypeId, FuncId, VarId>& other) const {
return
id == other.id &&
usr == other.usr &&
short_name == other.short_name &&
qualified_name == other.qualified_name &&
definition == other.definition &&
alias_of == other.alias_of &&
parents == other.parents &&
types == other.types &&
funcs == other.funcs &&
vars == other.vars;
}
bool operator!=(const TypeDefDefinitionData<TypeId, FuncId, VarId>& other) const {
return !(*this == other);
}
};
struct IndexedTypeDef {
TypeDefDefinitionData<> def;
// Immediate derived types.
std::vector<TypeId> derived;
// Every usage, useful for things like renames.
// NOTE: Do not insert directly! Use AddUsage instead.
std::vector<Location> uses;
bool is_bad_def = true;
IndexedTypeDef(TypeId id, const std::string& usr);
void AddUsage(Location loc, bool insert_if_not_present = true);
bool operator<(const IndexedTypeDef& other) const {
return def.id < other.def.id;
}
};
namespace std {
template <>
struct hash<IndexedTypeDef> {
size_t operator()(const IndexedTypeDef& k) const {
return hash<string>()(k.def.usr);
}
};
}
template<typename TypeId = TypeId, typename FuncId = FuncId, typename VarId = VarId, typename FuncRef = FuncRef>
struct FuncDefDefinitionData {
// General metadata.
FuncId id;
std::string usr;
std::string short_name;
std::string qualified_name;
optional<Location> definition;
// Type which declares this one (ie, it is a method)
optional<TypeId> declaring_type;
// Method this method overrides.
optional<FuncId> base;
// Local variables defined in this function.
std::vector<VarId> locals;
// Functions that this function calls.
std::vector<FuncRef> callees;
FuncDefDefinitionData(FuncId id, const std::string& usr) : id(id), usr(usr) {
assert(usr.size() > 0);
}
bool operator==(const FuncDefDefinitionData<TypeId, FuncId, VarId, FuncRef>& other) const {
return
id == other.id &&
usr == other.usr &&
short_name == other.short_name &&
qualified_name == other.qualified_name &&
definition == other.definition &&
declaring_type == other.declaring_type &&
base == other.base &&
locals == other.locals &&
callees == other.callees;
}
bool operator!=(const FuncDefDefinitionData<TypeId, FuncId, VarId, FuncRef>& other) const {
return !(*this == other);
}
};
struct IndexedFuncDef {
FuncDefDefinitionData<> def;
// Places the function is forward-declared.
std::vector<Location> declarations;
// Methods which directly override this one.
std::vector<FuncId> derived;
// Functions which call this one.
// TODO: Functions can get called outside of just functions - for example,
// they can get called in static context (maybe redirect to main?)
// or in class initializer list (redirect to class ctor?)
// - Right now those usages will not get listed here (but they should be
// inside of all_uses).
std::vector<FuncRef> callers;
// All usages. For interesting usages, see callees.
std::vector<Location> uses;
bool is_bad_def = true;
IndexedFuncDef(FuncId id, const std::string& usr) : def(id, usr) {
assert(usr.size() > 0);
}
bool operator<(const IndexedFuncDef& other) const {
return def.id < other.def.id;
}
};
namespace std {
template <>
struct hash<IndexedFuncDef> {
size_t operator()(const IndexedFuncDef& k) const {
return hash<string>()(k.def.usr);
}
};
}
template<typename TypeId = TypeId, typename FuncId = FuncId, typename VarId = VarId>
struct VarDefDefinitionData {
// General metadata.
VarId id;
std::string usr;
std::string short_name;
std::string qualified_name;
optional<Location> declaration;
// TODO: definitions should be a list of locations, since there can be more
// than one.
optional<Location> definition;
// Type of the variable.
optional<TypeId> variable_type;
// Type which declares this one (ie, it is a method)
optional<TypeId> declaring_type;
VarDefDefinitionData(VarId id, const std::string& usr) : id(id), usr(usr) {}
bool operator==(const VarDefDefinitionData<TypeId, FuncId, VarId>& other) const {
return
id == other.id &&
usr == other.usr &&
short_name == other.short_name &&
qualified_name == other.qualified_name &&
declaration == other.declaration &&
definition == other.definition &&
variable_type == other.variable_type &&
declaring_type == other.declaring_type;
}
bool operator!=(const VarDefDefinitionData<TypeId, FuncId, VarId>& other) const {
return !(*this == other);
}
};
struct IndexedVarDef {
VarDefDefinitionData<> def;
// Usages.
std::vector<Location> uses;
bool is_bad_def = true;
IndexedVarDef(VarId id, const std::string& usr) : def(id, usr) {
assert(usr.size() > 0);
}
bool operator<(const IndexedVarDef& other) const {
return def.id < other.def.id;
}
};
namespace std {
template <>
struct hash<IndexedVarDef> {
size_t operator()(const IndexedVarDef& k) const {
return hash<string>()(k.def.usr);
}
};
}
struct IdCache {
// NOTE: Every Id is resolved to a file_id of 0. The correct file_id needs
// to get fixed up when inserting into the real db.
GroupId group;
std::unordered_map<std::string, TypeId> usr_to_type_id;
std::unordered_map<std::string, FuncId> usr_to_func_id;
std::unordered_map<std::string, VarId> usr_to_var_id;
std::unordered_map<TypeId, std::string> type_id_to_usr;
std::unordered_map<FuncId, std::string> func_id_to_usr;
std::unordered_map<VarId, std::string> var_id_to_usr;
IdCache(GroupId group) : group(group) {}
};
struct IndexedFile {
FileDb* file_db;
IdCache* id_cache;
std::vector<IndexedTypeDef> types;
std::vector<IndexedFuncDef> funcs;
std::vector<IndexedVarDef> vars;
IndexedFile(IdCache* id_cache, FileDb* file_db);
TypeId ToTypeId(const std::string& usr);
FuncId ToFuncId(const std::string& usr);
VarId ToVarId(const std::string& usr);
TypeId ToTypeId(const CXCursor& usr);
FuncId ToFuncId(const CXCursor& usr);
VarId ToVarId(const CXCursor& usr);
IndexedTypeDef* Resolve(TypeId id);
IndexedFuncDef* Resolve(FuncId id);
IndexedVarDef* Resolve(VarId id);
std::string ToString();
};
IndexedFile Parse(IdCache* id_cache, FileDb* file_db, std::string filename, std::vector<std::string> args);