ccls/src/query_utils.cc
Fangrui Song 62d0c49b0a Rename hierarchies to $ccls/{call,inheritance,member}
bool flat = false; -> bool hierarchy = false; (set it to true to enable hierarchical view)

Delete $ccls/callers (which is what $ccls/call does now)
2019-11-09 19:58:32 -08:00

347 lines
10 KiB
C++

// Copyright 2017-2018 ccls Authors
// SPDX-License-Identifier: Apache-2.0
#include "query_utils.h"
#include "pipeline.hh"
#include <limits.h>
#include <unordered_set>
namespace {
// Computes roughly how long |range| is.
int ComputeRangeSize(const Range &range) {
if (range.start.line != range.end.line)
return INT_MAX;
return range.end.column - range.start.column;
}
template <typename Q>
std::vector<Use>
GetDeclarations(llvm::DenseMap<Usr, int, DenseMapInfoForUsr> &entity_usr,
std::vector<Q> &entities, const std::vector<Usr> &usrs) {
std::vector<Use> ret;
ret.reserve(usrs.size());
for (Usr usr : usrs) {
Q &entity = entities[entity_usr[{usr}]];
bool has_def = false;
for (auto &def : entity.def)
if (def.spell) {
ret.push_back(*def.spell);
has_def = true;
break;
}
if (!has_def && entity.declarations.size())
ret.push_back(entity.declarations[0]);
}
return ret;
}
} // namespace
Maybe<Use> GetDefinitionSpell(DB *db, SymbolIdx sym) {
Maybe<Use> ret;
EachEntityDef(db, sym, [&](const auto &def) { return !(ret = def.spell); });
return ret;
}
Maybe<Use> GetDefinitionExtent(DB *db, SymbolIdx sym) {
// Used to jump to file.
if (sym.kind == SymbolKind::File)
return Use{{Range{{0, 0}, {0, 0}}, sym.usr, sym.kind, Role::None},
int(sym.usr)};
Maybe<Use> ret;
EachEntityDef(db, sym, [&](const auto &def) { return !(ret = def.extent); });
return ret;
}
std::vector<Use> GetFuncDeclarations(DB *db, const std::vector<Usr> &usrs) {
return GetDeclarations(db->func_usr, db->funcs, usrs);
}
std::vector<Use> GetTypeDeclarations(DB *db, const std::vector<Usr> &usrs) {
return GetDeclarations(db->type_usr, db->types, usrs);
}
std::vector<Use> GetVarDeclarations(DB *db, const std::vector<Usr> &usrs,
unsigned kind) {
std::vector<Use> ret;
ret.reserve(usrs.size());
for (Usr usr : usrs) {
QueryVar &var = db->Var(usr);
bool has_def = false;
for (auto &def : var.def)
if (def.spell) {
has_def = true;
// See messages/ccls_vars.cc
if (def.kind == lsSymbolKind::Field) {
if (!(kind & 1))
break;
} else if (def.kind == lsSymbolKind::Variable) {
if (!(kind & 2))
break;
} else if (def.kind == lsSymbolKind::Parameter) {
if (!(kind & 4))
break;
}
ret.push_back(*def.spell);
break;
}
if (!has_def && var.declarations.size())
ret.push_back(var.declarations[0]);
}
return ret;
}
std::vector<Use> GetNonDefDeclarations(DB *db, SymbolIdx sym) {
std::vector<Use> ret;
switch (sym.kind) {
case SymbolKind::Func:
for (auto &d : db->GetFunc(sym).declarations)
ret.push_back(d);
break;
case SymbolKind::Type:
for (auto &d : db->GetType(sym).declarations)
ret.push_back(d);
break;
case SymbolKind::Var:
for (auto &d : db->GetVar(sym).declarations)
ret.push_back(d);
break;
default:
break;
}
return ret;
}
std::vector<Use> GetUsesForAllBases(DB *db, QueryFunc &root) {
std::vector<Use> ret;
std::vector<QueryFunc *> stack{&root};
std::unordered_set<Usr> seen;
seen.insert(root.usr);
while (!stack.empty()) {
QueryFunc &func = *stack.back();
stack.pop_back();
if (auto *def = func.AnyDef()) {
EachDefinedFunc(db, def->bases, [&](QueryFunc &func1) {
if (!seen.count(func1.usr)) {
seen.insert(func1.usr);
stack.push_back(&func1);
ret.insert(ret.end(), func1.uses.begin(), func1.uses.end());
}
});
}
}
return ret;
}
std::vector<Use> GetUsesForAllDerived(DB *db, QueryFunc &root) {
std::vector<Use> ret;
std::vector<QueryFunc *> stack{&root};
std::unordered_set<Usr> seen;
seen.insert(root.usr);
while (!stack.empty()) {
QueryFunc &func = *stack.back();
stack.pop_back();
EachDefinedFunc(db, func.derived, [&](QueryFunc &func1) {
if (!seen.count(func1.usr)) {
seen.insert(func1.usr);
stack.push_back(&func1);
ret.insert(ret.end(), func1.uses.begin(), func1.uses.end());
}
});
}
return ret;
}
std::optional<lsRange> GetLsRange(WorkingFile *wfile,
const Range &location) {
if (!wfile || wfile->index_lines.empty())
return lsRange{lsPosition{location.start.line, location.start.column},
lsPosition{location.end.line, location.end.column}};
int start_column = location.start.column, end_column = location.end.column;
std::optional<int> start = wfile->GetBufferPosFromIndexPos(
location.start.line, &start_column, false);
std::optional<int> end = wfile->GetBufferPosFromIndexPos(
location.end.line, &end_column, true);
if (!start || !end)
return std::nullopt;
// If remapping end fails (end can never be < start), just guess that the
// final location didn't move. This only screws up the highlighted code
// region if we guess wrong, so not a big deal.
//
// Remapping fails often in C++ since there are a lot of "};" at the end of
// class/struct definitions.
if (*end < *start)
*end = *start + (location.end.line - location.start.line);
if (*start == *end && start_column > end_column)
end_column = start_column;
return lsRange{lsPosition{*start, start_column},
lsPosition{*end, end_column}};
}
lsDocumentUri GetLsDocumentUri(DB *db, int file_id, std::string *path) {
QueryFile &file = db->files[file_id];
if (file.def) {
*path = file.def->path;
return lsDocumentUri::FromPath(*path);
} else {
*path = "";
return lsDocumentUri::FromPath("");
}
}
lsDocumentUri GetLsDocumentUri(DB *db, int file_id) {
QueryFile &file = db->files[file_id];
if (file.def) {
return lsDocumentUri::FromPath(file.def->path);
} else {
return lsDocumentUri::FromPath("");
}
}
std::optional<lsLocation> GetLsLocation(DB *db, WorkingFiles *working_files,
Use use) {
std::string path;
lsDocumentUri uri = GetLsDocumentUri(db, use.file_id, &path);
std::optional<lsRange> range =
GetLsRange(working_files->GetFileByFilename(path), use.range);
if (!range)
return std::nullopt;
return lsLocation{uri, *range};
}
std::optional<lsLocationEx> GetLsLocationEx(DB *db, WorkingFiles *working_files,
Use use, bool container) {
std::optional<lsLocation> ls_loc = GetLsLocation(db, working_files, use);
if (!ls_loc)
return std::nullopt;
lsLocationEx ret;
ret.lsLocation::operator=(*ls_loc);
if (container) {
ret.role = uint16_t(use.role);
EachEntityDef(db, use, [&](const auto &def) {
ret.containerName = std::string_view(def.detailed_name);
return false;
});
}
return ret;
}
std::vector<lsLocationEx> GetLsLocationExs(DB *db, WorkingFiles *working_files,
const std::vector<Use> &uses) {
std::vector<lsLocationEx> ret;
for (Use use : uses)
if (auto loc =
GetLsLocationEx(db, working_files, use, g_config->xref.container))
ret.push_back(*loc);
std::sort(ret.begin(), ret.end());
ret.erase(std::unique(ret.begin(), ret.end()), ret.end());
if (ret.size() > g_config->xref.maxNum)
ret.resize(g_config->xref.maxNum);
return ret;
}
lsSymbolKind GetSymbolKind(DB *db, SymbolIdx sym) {
lsSymbolKind ret;
if (sym.kind == SymbolKind::File)
ret = lsSymbolKind::File;
else {
ret = lsSymbolKind::Unknown;
WithEntity(db, sym, [&](const auto &entity) {
for (auto &def : entity.def) {
ret = def.kind;
break;
}
});
}
return ret;
}
std::optional<lsSymbolInformation> GetSymbolInfo(DB *db, SymbolIdx sym,
bool detailed) {
switch (sym.kind) {
case SymbolKind::Invalid:
break;
case SymbolKind::File: {
QueryFile &file = db->GetFile(sym);
if (!file.def)
break;
lsSymbolInformation info;
info.name = file.def->path;
info.kind = lsSymbolKind::File;
return info;
}
default: {
lsSymbolInformation info;
EachEntityDef(db, sym, [&](const auto &def) {
if (detailed)
info.name = def.detailed_name;
else
info.name = def.Name(true);
info.kind = def.kind;
return false;
});
return info;
}
}
return std::nullopt;
}
std::vector<SymbolRef> FindSymbolsAtLocation(WorkingFile *wfile,
QueryFile *file,
lsPosition &ls_pos) {
std::vector<SymbolRef> symbols;
// If multiVersion > 0, index may not exist and thus index_lines is empty.
if (wfile && wfile->index_lines.size()) {
if (auto line = wfile->GetIndexPosFromBufferPos(
ls_pos.line, &ls_pos.character, false)) {
ls_pos.line = *line;
} else {
ls_pos.line = -1;
return {};
}
}
for (auto [sym, refcnt] : file->symbol2refcnt)
if (refcnt > 0 && sym.range.Contains(ls_pos.line, ls_pos.character))
symbols.push_back(sym);
// Order shorter ranges first, since they are more detailed/precise. This is
// important for macros which generate code so that we can resolving the
// macro argument takes priority over the entire macro body.
//
// Order SymbolKind::Var before SymbolKind::Type. Macro calls are treated as
// Var currently. If a macro expands to tokens led by a SymbolKind::Type, the
// macro and the Type have the same range. We want to find the macro
// definition instead of the Type definition.
//
// Then order functions before other types, which makes goto definition work
// better on constructors.
std::sort(
symbols.begin(), symbols.end(),
[](const SymbolRef &a, const SymbolRef &b) {
int t = ComputeRangeSize(a.range) - ComputeRangeSize(b.range);
if (t)
return t < 0;
// MacroExpansion
if ((t = (a.role & Role::Dynamic) - (b.role & Role::Dynamic)))
return t > 0;
if ((t = (a.role & Role::Definition) - (b.role & Role::Definition)))
return t > 0;
// operator> orders Var/Func before Type.
t = static_cast<int>(a.kind) - static_cast<int>(b.kind);
if (t)
return t > 0;
return a.usr < b.usr;
});
return symbols;
}