ccls/indexer.cpp
2017-03-12 13:28:30 -07:00

1110 lines
37 KiB
C++

#include "indexer.h"
#include <chrono>
#include "serializer.h"
IndexedFile::IndexedFile(const std::string& path)
: path(path) {
// TODO: Reconsider if we should still be reusing the same id_cache.
// Preallocate any existing resolved ids.
for (const auto& entry : id_cache.usr_to_type_id)
types.push_back(IndexedTypeDef(entry.second, entry.first));
for (const auto& entry : id_cache.usr_to_func_id)
funcs.push_back(IndexedFuncDef(entry.second, entry.first));
for (const auto& entry : id_cache.usr_to_var_id)
vars.push_back(IndexedVarDef(entry.second, entry.first));
}
// TODO: Optimize for const char*?
TypeId IndexedFile::ToTypeId(const std::string& usr) {
auto it = id_cache.usr_to_type_id.find(usr);
if (it != id_cache.usr_to_type_id.end())
return it->second;
TypeId id(types.size());
types.push_back(IndexedTypeDef(id, usr));
id_cache.usr_to_type_id[usr] = id;
id_cache.type_id_to_usr[id] = usr;
return id;
}
FuncId IndexedFile::ToFuncId(const std::string& usr) {
auto it = id_cache.usr_to_func_id.find(usr);
if (it != id_cache.usr_to_func_id.end())
return it->second;
FuncId id(funcs.size());
funcs.push_back(IndexedFuncDef(id, usr));
id_cache.usr_to_func_id[usr] = id;
id_cache.func_id_to_usr[id] = usr;
return id;
}
VarId IndexedFile::ToVarId(const std::string& usr) {
auto it = id_cache.usr_to_var_id.find(usr);
if (it != id_cache.usr_to_var_id.end())
return it->second;
VarId id(vars.size());
vars.push_back(IndexedVarDef(id, usr));
id_cache.usr_to_var_id[usr] = id;
id_cache.var_id_to_usr[id] = usr;
return id;
}
TypeId IndexedFile::ToTypeId(const CXCursor& cursor) {
return ToTypeId(clang::Cursor(cursor).get_usr());
}
FuncId IndexedFile::ToFuncId(const CXCursor& cursor) {
return ToFuncId(clang::Cursor(cursor).get_usr());
}
VarId IndexedFile::ToVarId(const CXCursor& cursor) {
return ToVarId(clang::Cursor(cursor).get_usr());
}
IndexedTypeDef* IndexedFile::Resolve(TypeId id) {
return &types[id.id];
}
IndexedFuncDef* IndexedFile::Resolve(FuncId id) {
return &funcs[id.id];
}
IndexedVarDef* IndexedFile::Resolve(VarId id) {
return &vars[id.id];
}
std::string IndexedFile::ToString() {
return Serialize(*this);
}
IndexedTypeDef::IndexedTypeDef(TypeId id, const std::string& usr) : id(id), def(usr) {
assert(usr.size() > 0);
//std::cerr << "Creating type with usr " << usr << std::endl;
}
void IndexedTypeDef::AddUsage(Location loc, bool insert_if_not_present) {
for (int i = uses.size() - 1; i >= 0; --i) {
if (uses[i].IsEqualTo(loc)) {
if (loc.interesting)
uses[i].interesting = true;
return;
}
}
if (insert_if_not_present)
uses.push_back(loc);
}
std::string Location::ToPrettyString(IdCache* id_cache) {
// Output looks like this:
//
// *1:2:3
//
// * => interesting
// 1 => file id
// 2 => line
// 3 => column
std::string result;
if (interesting)
result += '*';
result += id_cache->file_id_to_file_path[raw_file_id];
result += ':';
result += std::to_string(line);
result += ':';
result += std::to_string(column);
return result;
}
IdCache::IdCache() {
// Reserve id 0 for unfound.
file_path_to_file_id[""] = FileId(0);
file_id_to_file_path[FileId(0)] = "";
}
Location IdCache::Resolve(const CXSourceLocation& cx_loc, bool interesting) {
CXFile file;
unsigned int line, column, offset;
clang_getSpellingLocation(cx_loc, &file, &line, &column, &offset);
FileId file_id(-1);
if (file != nullptr) {
std::string path = clang::ToString(clang_getFileName(file));
auto it = file_path_to_file_id.find(path);
if (it != file_path_to_file_id.end()) {
file_id = it->second;
}
else {
file_id = FileId(file_path_to_file_id.size());
file_path_to_file_id[path] = file_id;
file_id_to_file_path[file_id] = path;
}
}
return Location(interesting, file_id, line, column);
}
Location IdCache::Resolve(const CXIdxLoc& cx_idx_loc, bool interesting) {
CXSourceLocation cx_loc = clang_indexLoc_getCXSourceLocation(cx_idx_loc);
return Resolve(cx_loc, interesting);
}
Location IdCache::Resolve(const CXCursor& cx_cursor, bool interesting) {
return Resolve(clang_getCursorLocation(cx_cursor), interesting);
}
Location IdCache::Resolve(const clang::Cursor& cursor, bool interesting) {
return Resolve(cursor.cx_cursor, interesting);
}
template<typename T>
bool Contains(const std::vector<T>& vec, const T& element) {
for (const T& entry : vec) {
if (entry == element)
return true;
}
return false;
}
struct NamespaceHelper {
std::unordered_map<std::string, std::string> container_usr_to_qualified_name;
void RegisterQualifiedName(std::string usr, const CXIdxContainerInfo* container, std::string qualified_name) {
if (container) {
std::string container_usr = clang::Cursor(container->cursor).get_usr();
auto it = container_usr_to_qualified_name.find(container_usr);
if (it != container_usr_to_qualified_name.end()) {
container_usr_to_qualified_name[usr] = it->second + qualified_name + "::";
return;
}
}
container_usr_to_qualified_name[usr] = qualified_name + "::";
}
std::string QualifiedName(const CXIdxContainerInfo* container, std::string unqualified_name) {
if (container) {
std::string container_usr = clang::Cursor(container->cursor).get_usr();
auto it = container_usr_to_qualified_name.find(container_usr);
if (it != container_usr_to_qualified_name.end())
return it->second + unqualified_name;
// Anonymous namespaces are not processed by indexDeclaration. If we
// encounter one insert it into map.
if (container->cursor.kind == CXCursor_Namespace) {
//assert(clang::Cursor(container->cursor).get_spelling() == "");
container_usr_to_qualified_name[container_usr] = "::";
return "::" + unqualified_name;
}
}
return unqualified_name;
}
};
struct IndexParam {
IndexedFile* db;
NamespaceHelper* ns;
// Record the last type usage location we recorded. Clang will sometimes
// visit the same expression twice so we wan't to avoid double-reporting
// usage information for those locations.
Location last_type_usage_location;
Location last_func_usage_location;
IndexParam(IndexedFile* db, NamespaceHelper* ns) : db(db), ns(ns) {}
};
int abortQuery(CXClientData client_data, void *reserved) {
// 0 -> continue
return 0;
}
void diagnostic(CXClientData client_data, CXDiagnosticSet diagnostics, void *reserved) {
IndexParam* param = static_cast<IndexParam*>(client_data);
// Print any diagnostics to std::cerr
for (unsigned i = 0; i < clang_getNumDiagnosticsInSet(diagnostics); ++i) {
CXDiagnostic diagnostic = clang_getDiagnosticInSet(diagnostics, i);
std::string spelling = clang::ToString(clang_getDiagnosticSpelling(diagnostic));
Location location = param->db->id_cache.Resolve(clang_getDiagnosticLocation(diagnostic), false /*interesting*/);
std::cerr << location.ToPrettyString(&param->db->id_cache) << ": " << spelling << std::endl;
clang_disposeDiagnostic(diagnostic);
}
}
CXIdxClientFile enteredMainFile(CXClientData client_data, CXFile mainFile, void *reserved) {
return nullptr;
}
CXIdxClientFile ppIncludedFile(CXClientData client_data, const CXIdxIncludedFileInfo *) {
return nullptr;
}
CXIdxClientASTFile importedASTFile(CXClientData client_data, const CXIdxImportedASTFileInfo *) {
return nullptr;
}
CXIdxClientContainer startedTranslationUnit(CXClientData client_data, void *reserved) {
return nullptr;
}
clang::VisiterResult DumpVisitor(clang::Cursor cursor, clang::Cursor parent, int* level) {
for (int i = 0; i < *level; ++i)
std::cerr << " ";
std::cerr << clang::ToString(cursor.get_kind()) << " " << cursor.get_spelling() << std::endl;
*level += 1;
cursor.VisitChildren(&DumpVisitor, level);
*level -= 1;
return clang::VisiterResult::Continue;
}
void Dump(clang::Cursor cursor) {
int level = 0;
cursor.VisitChildren(&DumpVisitor, &level);
}
struct FindChildOfKindParam {
CXCursorKind target_kind;
optional<clang::Cursor> result;
FindChildOfKindParam(CXCursorKind target_kind) : target_kind(target_kind) {}
};
clang::VisiterResult FindChildOfKindVisitor(clang::Cursor cursor, clang::Cursor parent, FindChildOfKindParam* param) {
if (cursor.get_kind() == param->target_kind) {
param->result = cursor;
return clang::VisiterResult::Break;
}
return clang::VisiterResult::Recurse;
}
optional<clang::Cursor> FindChildOfKind(clang::Cursor cursor, CXCursorKind kind) {
FindChildOfKindParam param(kind);
cursor.VisitChildren(&FindChildOfKindVisitor, &param);
return param.result;
}
clang::VisiterResult FindTypeVisitor(clang::Cursor cursor, clang::Cursor parent, optional<clang::Cursor>* result) {
switch (cursor.get_kind()) {
case CXCursor_TypeRef:
case CXCursor_TemplateRef:
*result = cursor;
return clang::VisiterResult::Break;
}
return clang::VisiterResult::Recurse;
}
optional<clang::Cursor> FindType(clang::Cursor cursor) {
optional<clang::Cursor> result;
cursor.VisitChildren(&FindTypeVisitor, &result);
return result;
}
/*
std::string GetNamespacePrefx(const CXIdxDeclInfo* decl) {
const CXIdxContainerInfo* container = decl->lexicalContainer;
while (container) {
}
}
*/
bool IsTypeDefinition(const CXIdxContainerInfo* container) {
if (!container)
return false;
switch (container->cursor.kind) {
case CXCursor_EnumDecl:
case CXCursor_UnionDecl:
case CXCursor_StructDecl:
case CXCursor_ClassDecl:
return true;
default:
return false;
}
}
struct VisitDeclForTypeUsageParam {
IndexedFile* db;
bool is_interesting;
int has_processed_any = false;
optional<clang::Cursor> previous_cursor;
optional<TypeId> initial_type;
VisitDeclForTypeUsageParam(IndexedFile* db, bool is_interesting)
: db(db), is_interesting(is_interesting) {}
};
void VisitDeclForTypeUsageVisitorHandler(clang::Cursor cursor, VisitDeclForTypeUsageParam* param) {
param->has_processed_any = true;
IndexedFile* db = param->db;
std::string referenced_usr = cursor.get_referenced().template_specialization_to_template_definition().get_usr();
// TODO: things in STL cause this to be empty. Figure out why and document it.
if (referenced_usr == "")
return;
TypeId ref_type_id = db->ToTypeId(referenced_usr);
if (!param->initial_type)
param->initial_type = ref_type_id;
if (param->is_interesting) {
IndexedTypeDef* ref_type_def = db->Resolve(ref_type_id);
Location loc = db->id_cache.Resolve(cursor, true /*interesting*/);
ref_type_def->AddUsage(loc);
}
}
clang::VisiterResult VisitDeclForTypeUsageVisitor(clang::Cursor cursor, clang::Cursor parent, VisitDeclForTypeUsageParam* param) {
switch (cursor.get_kind()) {
case CXCursor_TemplateRef:
case CXCursor_TypeRef:
if (param->previous_cursor) {
VisitDeclForTypeUsageVisitorHandler(param->previous_cursor.value(), param);
// This if is inside the above if because if there are multiple TypeRefs,
// we always want to process the first one. If we did not always process
// the first one, we cannot tell if there are more TypeRefs after it and
// logic for fetching the return type breaks. This happens in ParmDecl
// instances which only have one TypeRef child but are not interesting
// usages.
if (!param->is_interesting)
return clang::VisiterResult::Break;
}
param->previous_cursor = cursor;
break;
// We do not want to recurse for everything, since if we do that we will end
// up visiting method definition bodies/etc. Instead, we only recurse for
// things that can logically appear as part of an inline variable initializer,
// ie,
//
// class Foo {
// int x = (Foo)3;
// }
case CXCursor_CallExpr:
case CXCursor_CStyleCastExpr:
case CXCursor_CXXStaticCastExpr:
case CXCursor_CXXReinterpretCastExpr:
return clang::VisiterResult::Recurse;
}
return clang::VisiterResult::Continue;
}
// Finds the cursor associated with the declaration type of |cursor|. This strips
// qualifies from |cursor| (ie, Foo* => Foo) and removes template arguments
// (ie, Foo<A,B> => Foo<*,*>).
optional<TypeId> ResolveToDeclarationType(IndexedFile* db, clang::Cursor cursor) {
clang::Cursor declaration = cursor.get_type().strip_qualifiers().get_declaration();
declaration = declaration.template_specialization_to_template_definition();
std::string usr = declaration.get_usr();
if (usr != "")
return db->ToTypeId(usr);
return nullopt;
}
// Add usages to any seen TypeRef or TemplateRef under the given |decl_cursor|. This
// returns the first seen TypeRef or TemplateRef value, which can be useful if trying
// to figure out ie, what a using statement refers to. If trying to generally resolve
// a cursor to a type, use ResolveToDeclarationType, which works in more scenarios.
optional<TypeId> AddDeclUsages(IndexedFile* db, clang::Cursor decl_cursor,
bool is_interesting, const CXIdxContainerInfo* semantic_container,
const CXIdxContainerInfo* lexical_container) {
//std::cerr << std::endl << "AddDeclUsages " << decl_cursor.get_spelling() << std::endl;
//Dump(decl_cursor);
//
// The general AST format for definitions follows this pattern:
//
// template<typename A, typename B>
// struct Container;
//
// struct S1;
// struct S2;
//
// Container<Container<S1, S2>, S2> foo;
//
// =>
//
// VarDecl
// TemplateRef Container
// TemplateRef Container
// TypeRef struct S1
// TypeRef struct S2
// TypeRef struct S2
//
//
// Here is another example:
//
// enum A {};
// enum B {};
//
// template<typename T>
// struct Foo {
// struct Inner {};
// };
//
// Foo<A>::Inner a;
// Foo<B> b;
//
// =>
//
// EnumDecl A
// EnumDecl B
// ClassTemplate Foo
// TemplateTypeParameter T
// StructDecl Inner
// VarDecl a
// TemplateRef Foo
// TypeRef enum A
// TypeRef struct Foo<enum A>::Inner
// CallExpr Inner
// VarDecl b
// TemplateRef Foo
// TypeRef enum B
// CallExpr Foo
//
//
// Determining the actual type of the variable/declaration from just the
// children is tricky. Doing so would require looking up the template
// definition associated with a TemplateRef, figuring out how many children
// it has, and then skipping that many TypeRef values. This also has to work
// with the example below (skipping the last TypeRef). As a result, we
// determine variable types using |ResolveToDeclarationType|.
//
//
// We skip the last type reference for methods/variables which are defined
// out-of-line w.r.t. the parent type.
//
// S1* Foo::foo() {}
//
// The above example looks like this in the AST:
//
// CXXMethod foo
// TypeRef struct S1
// TypeRef class Foo
// CompoundStmt
// ...
//
// The second TypeRef is an uninteresting usage.
bool process_last_type_ref = true;
if (IsTypeDefinition(semantic_container) && !IsTypeDefinition(lexical_container)) {
//
// In some code, such as the following example, we receive a cursor which is not
// a definition and is not associated with a definition due to an error condition.
// In this case, it is the Foo::Foo constructor.
//
// struct Foo {};
//
// template<class T>
// Foo::Foo() {}
//
if (!decl_cursor.is_definition()) {
// TODO: I don't think this resolution ever works.
clang::Cursor def = decl_cursor.get_definition();
if (def.get_kind() != CXCursor_FirstInvalid) {
std::cerr << "Successful resolution of decl usage to definition" << std::endl;
decl_cursor = def;
}
}
process_last_type_ref = false;
}
VisitDeclForTypeUsageParam param(db, is_interesting);
decl_cursor.VisitChildren(&VisitDeclForTypeUsageVisitor, &param);
// VisitDeclForTypeUsageVisitor guarantees that if there are multiple TypeRef
// children, the first one will always be visited.
if (param.previous_cursor && process_last_type_ref) {
VisitDeclForTypeUsageVisitorHandler(param.previous_cursor.value(), &param);
}
else {
// If we are not processing the last type ref, it *must* be a TypeRef or
// TemplateRef.
//
// We will not visit every child if the is_interseting is false, so previous_cursor
// may not point to the last TemplateRef.
assert(
is_interesting == false ||
param.previous_cursor.has_value() == false ||
(param.previous_cursor.value().get_kind() == CXCursor_TypeRef ||
param.previous_cursor.value().get_kind() == CXCursor_TemplateRef));
}
return param.initial_type;
}
void indexDeclaration(CXClientData client_data, const CXIdxDeclInfo* decl) {
// TODO: we can minimize processing for cursors which return false for clang_Location_isFromMainFile (ie, only add usages)
bool is_system_def = clang_Location_isInSystemHeader(clang_getCursorLocation(decl->cursor));
if (is_system_def)
return;
IndexParam* param = static_cast<IndexParam*>(client_data);
IndexedFile* db = param->db;
NamespaceHelper* ns = param->ns;
switch (decl->entityInfo->kind) {
case CXIdxEntity_CXXNamespace:
{
ns->RegisterQualifiedName(decl->entityInfo->USR, decl->semanticContainer, decl->entityInfo->name);
break;
}
case CXIdxEntity_EnumConstant:
case CXIdxEntity_Field:
case CXIdxEntity_Variable:
case CXIdxEntity_CXXStaticVariable:
{
clang::Cursor decl_cursor = decl->cursor;
// Do not index implicit template instantiations.
if (decl_cursor != decl_cursor.template_specialization_to_template_definition())
break;
std::string decl_usr = decl_cursor.get_usr();
VarId var_id = db->ToVarId(decl->entityInfo->USR);
IndexedVarDef* var_def = db->Resolve(var_id);
var_def->is_bad_def = is_system_def;
// TODO: Eventually run with this if. Right now I want to iron out bugs this may shadow.
// TODO: Verify this gets called multiple times
//if (!decl->isRedeclaration) {
var_def->def.short_name = decl->entityInfo->name;
var_def->def.qualified_name = ns->QualifiedName(decl->semanticContainer, var_def->def.short_name);
//}
Location decl_loc = db->id_cache.Resolve(decl->loc, false /*interesting*/);
if (decl->isDefinition)
var_def->def.definition = decl_loc;
else
var_def->def.declaration = decl_loc;
var_def->uses.push_back(decl_loc);
//std::cerr << std::endl << "Visiting declaration" << std::endl;
//Dump(decl_cursor);
// Declaring variable type information. Note that we do not insert an
// interesting reference for parameter declarations - that is handled when
// the function declaration is encountered since we won't receive ParmDecl
// declarations for unnamed parameters.
AddDeclUsages(db, decl_cursor, decl_cursor.get_kind() != CXCursor_ParmDecl /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer);
optional<TypeId> var_type = ResolveToDeclarationType(db, decl_cursor);
if (var_type.has_value())
var_def->def.variable_type = var_type.value();
if (decl->isDefinition && IsTypeDefinition(decl->semanticContainer)) {
TypeId declaring_type_id = db->ToTypeId(decl->semanticContainer->cursor);
IndexedTypeDef* declaring_type_def = db->Resolve(declaring_type_id);
var_def->def.declaring_type = declaring_type_id;
declaring_type_def->def.vars.push_back(var_id);
}
break;
}
case CXIdxEntity_Function:
case CXIdxEntity_CXXConstructor:
case CXIdxEntity_CXXDestructor:
case CXIdxEntity_CXXInstanceMethod:
case CXIdxEntity_CXXStaticMethod:
case CXIdxEntity_CXXConversionFunction:
{
clang::Cursor decl_cursor = decl->cursor;
clang::Cursor resolved = decl_cursor.template_specialization_to_template_definition();
FuncId func_id = db->ToFuncId(resolved.cx_cursor);
IndexedFuncDef* func_def = db->Resolve(func_id);
Location decl_loc = db->id_cache.Resolve(decl->loc, false /*interesting*/);
func_def->uses.push_back(decl_loc);
// We don't actually need to know the return type, but we need to mark it
// as an interesting usage.
AddDeclUsages(db, decl_cursor, true /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer);
// TODO: support multiple definitions per function; right now we are hacking the 'declarations' field by
// adding a definition when we really don't have one.
if (decl->isDefinition && !func_def->def.definition.has_value())
func_def->def.definition = decl_loc;
else
func_def->declarations.push_back(decl_loc);
// If decl_cursor != resolved, then decl_cursor is a template specialization. We
// don't want to override a lot of the function definition information in that
// scenario.
if (decl_cursor == resolved) {
func_def->is_bad_def = is_system_def;
// TODO: Eventually run with this if. Right now I want to iron out bugs this may shadow.
//if (!decl->isRedeclaration) {
func_def->def.short_name = decl->entityInfo->name;
func_def->def.qualified_name = ns->QualifiedName(decl->semanticContainer, func_def->def.short_name);
//}
bool is_pure_virtual = clang_CXXMethod_isPureVirtual(decl->cursor);
bool is_ctor_or_dtor = decl->entityInfo->kind == CXIdxEntity_CXXConstructor || decl->entityInfo->kind == CXIdxEntity_CXXDestructor;
//bool process_declaring_type = is_pure_virtual || is_ctor_or_dtor;
// Add function usage information. We only want to do it once per
// definition/declaration. Do it on definition since there should only ever
// be one of those in the entire program.
if (IsTypeDefinition(decl->semanticContainer)) {
TypeId declaring_type_id = db->ToTypeId(decl->semanticContainer->cursor);
IndexedTypeDef* declaring_type_def = db->Resolve(declaring_type_id);
func_def->def.declaring_type = declaring_type_id;
// Mark a type reference at the ctor/dtor location.
// TODO: Should it be interesting?
if (is_ctor_or_dtor) {
Location type_usage_loc = decl_loc;
declaring_type_def->AddUsage(type_usage_loc);
}
// Register function in declaring type if it hasn't been registered yet.
if (!Contains(declaring_type_def->def.funcs, func_id))
declaring_type_def->def.funcs.push_back(func_id);
}
//TypeResolution ret_type = ResolveToType(db, decl_cursor.get_type().get_return_type());
//if (ret_type.resolved_type)
// AddInterestingUsageToType(db, ret_type, FindLocationOfTypeSpecifier(decl_cursor));
if (decl->isDefinition || is_pure_virtual) {
// Mark type usage for parameters as interesting. We handle this here
// instead of inside var declaration because clang will not emit a var
// declaration for an unnamed parameter, but we still want to mark the
// usage as interesting.
// TODO: Do a similar thing for function decl parameter usages. Mark
// prototype params as interesting type usages but also relate mark
// them as as usages on the primary variable - requires USR to be
// the same. We can work around it by declaring which variables a
// parameter has declared and update the USR in the definition.
clang::Cursor cursor = decl->cursor;
for (clang::Cursor arg : cursor.get_arguments()) {
switch (arg.get_kind()) {
case CXCursor_ParmDecl:
// We don't need to know the arg type, but we do want to mark it as
// an interesting usage. Note that we use semanticContainer twice
// because a parameter is not really part of the lexical container.
AddDeclUsages(db, arg, true /*is_interesting*/, decl->semanticContainer, decl->semanticContainer);
//TypeResolution arg_type = ResolveToType(db, arg.get_type());
//if (arg_type.resolved_type)
// AddInterestingUsageToType(db, arg_type, FindLocationOfTypeSpecifier(arg));
break;
}
}
// Process inheritance.
//void clang_getOverriddenCursors(CXCursor cursor, CXCursor **overridden, unsigned *num_overridden);
//void clang_disposeOverriddenCursors(CXCursor *overridden);
if (clang_CXXMethod_isVirtual(decl->cursor)) {
CXCursor* overridden;
unsigned int num_overridden;
clang_getOverriddenCursors(decl->cursor, &overridden, &num_overridden);
// TODO: How to handle multiple parent overrides??
for (unsigned int i = 0; i < num_overridden; ++i) {
clang::Cursor parent = overridden[i];
FuncId parent_id = db->ToFuncId(parent.get_usr());
IndexedFuncDef* parent_def = db->Resolve(parent_id);
func_def = db->Resolve(func_id); // ToFuncId invalidated func_def
func_def->def.base = parent_id;
parent_def->derived.push_back(func_id);
}
clang_disposeOverriddenCursors(overridden);
}
}
}
/*
optional<FuncId> base;
std::vector<FuncId> derived;
std::vector<VarId> locals;
std::vector<FuncRef> callers;
std::vector<FuncRef> callees;
std::vector<Location> uses;
*/
break;
}
case CXIdxEntity_Typedef:
case CXIdxEntity_CXXTypeAlias:
{
// Note we want to fetch the first TypeRef. Running ResolveCursorType(decl->cursor) would return
// the type of the typedef/using, not the type of the referenced type.
optional<TypeId> alias_of = AddDeclUsages(db, decl->cursor, true /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer);
TypeId type_id = db->ToTypeId(decl->entityInfo->USR);
IndexedTypeDef* type_def = db->Resolve(type_id);
type_def->is_bad_def = is_system_def;
if (alias_of)
type_def->def.alias_of = alias_of.value();
type_def->def.short_name = decl->entityInfo->name;
type_def->def.qualified_name = ns->QualifiedName(decl->semanticContainer, type_def->def.short_name);
Location decl_loc = db->id_cache.Resolve(decl->loc, true /*interesting*/);
type_def->def.definition = decl_loc.WithInteresting(false);
type_def->AddUsage(decl_loc);
break;
}
case CXIdxEntity_Enum:
case CXIdxEntity_Union:
case CXIdxEntity_Struct:
case CXIdxEntity_CXXClass:
{
TypeId type_id = db->ToTypeId(decl->entityInfo->USR);
IndexedTypeDef* type_def = db->Resolve(type_id);
type_def->is_bad_def = is_system_def;
// TODO: Eventually run with this if. Right now I want to iron out bugs this may shadow.
// TODO: For type section, verify if this ever runs for non definitions?
//if (!decl->isRedeclaration) {
// name can be null in an anonymous struct (see tests/types/anonymous_struct.cc).
if (decl->entityInfo->name) {
ns->RegisterQualifiedName(decl->entityInfo->USR, decl->semanticContainer, decl->entityInfo->name);
type_def->def.short_name = decl->entityInfo->name;
}
else {
type_def->def.short_name = "<anonymous>";
}
type_def->def.qualified_name = ns->QualifiedName(decl->semanticContainer, type_def->def.short_name);
// }
assert(decl->isDefinition);
Location decl_loc = db->id_cache.Resolve(decl->loc, true /*interesting*/);
type_def->def.definition = decl_loc.WithInteresting(false);
type_def->AddUsage(decl_loc);
//type_def->alias_of
//type_def->funcs
//type_def->types
//type_def->uses
//type_def->vars
// Add type-level inheritance information.
CXIdxCXXClassDeclInfo const* class_info = clang_index_getCXXClassDeclInfo(decl);
if (class_info) {
for (unsigned int i = 0; i < class_info->numBases; ++i) {
const CXIdxBaseClassInfo* base_class = class_info->bases[i];
AddDeclUsages(db, base_class->cursor, true /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer);
optional<TypeId> parent_type_id = ResolveToDeclarationType(db, base_class->cursor);
IndexedTypeDef* type_def = db->Resolve(type_id); // type_def ptr could be invalidated by ResolveDeclToType.
if (parent_type_id) {
IndexedTypeDef* parent_type_def = db->Resolve(parent_type_id.value());
parent_type_def->derived.push_back(type_id);
type_def->def.parents.push_back(parent_type_id.value());
}
}
}
break;
}
default:
std::cerr << "!! Unhandled indexDeclaration: " << clang::Cursor(decl->cursor).ToString() << " at " << db->id_cache.Resolve(decl->loc, false /*interesting*/).ToString() << std::endl;
std::cerr << " entityInfo->kind = " << decl->entityInfo->kind << std::endl;
std::cerr << " entityInfo->USR = " << decl->entityInfo->USR << std::endl;
if (decl->declAsContainer)
std::cerr << " declAsContainer = " << clang::Cursor(decl->declAsContainer->cursor).ToString() << std::endl;
if (decl->semanticContainer)
std::cerr << " semanticContainer = " << clang::Cursor(decl->semanticContainer->cursor).ToString() << std::endl;
if (decl->lexicalContainer)
std::cerr << " lexicalContainer = " << clang::Cursor(decl->lexicalContainer->cursor).get_usr() << std::endl;
break;
}
}
bool IsFunction(CXCursorKind kind) {
switch (kind) {
case CXCursor_CXXMethod:
case CXCursor_FunctionDecl:
return true;
}
return false;
}
void indexEntityReference(CXClientData client_data, const CXIdxEntityRefInfo* ref) {
if (clang_Location_isInSystemHeader(clang_getCursorLocation(ref->cursor)) ||
clang_Location_isInSystemHeader(clang_getCursorLocation(ref->referencedEntity->cursor)))
return;
IndexParam* param = static_cast<IndexParam*>(client_data);
IndexedFile* db = param->db;
clang::Cursor cursor(ref->cursor);
switch (ref->referencedEntity->kind) {
case CXIdxEntity_CXXNamespace:
{
// We don't index namespace usages.
break;
}
case CXIdxEntity_EnumConstant:
case CXIdxEntity_CXXStaticVariable:
case CXIdxEntity_Variable:
case CXIdxEntity_Field:
{
clang::Cursor referenced = ref->referencedEntity->cursor;
referenced = referenced.template_specialization_to_template_definition();
VarId var_id = db->ToVarId(referenced.get_usr());
IndexedVarDef* var_def = db->Resolve(var_id);
Location loc = db->id_cache.Resolve(ref->loc, false /*interesting*/);
var_def->uses.push_back(loc);
break;
}
case CXIdxEntity_CXXConversionFunction:
case CXIdxEntity_CXXStaticMethod:
case CXIdxEntity_CXXInstanceMethod:
case CXIdxEntity_Function:
case CXIdxEntity_CXXConstructor:
case CXIdxEntity_CXXDestructor:
{
// TODO: Redirect container to constructor for the following example, ie,
// we should be inserting an outgoing function call from the Foo
// ctor.
//
// int Gen() { return 5; }
// class Foo {
// int x = Gen();
// }
// Don't report duplicate usages.
// TODO: search full history?
Location loc = db->id_cache.Resolve(ref->loc, false /*interesting*/);
if (param->last_func_usage_location == loc) break;
param->last_func_usage_location = loc;
// Note: be careful, calling db->ToFuncId invalidates the FuncDef* ptrs.
FuncId called_id = db->ToFuncId(ref->referencedEntity->USR);
if (IsFunction(ref->container->cursor.kind)) {
FuncId caller_id = db->ToFuncId(ref->container->cursor);
IndexedFuncDef* caller_def = db->Resolve(caller_id);
IndexedFuncDef* called_def = db->Resolve(called_id);
caller_def->def.callees.push_back(FuncRef(called_id, loc));
called_def->callers.push_back(FuncRef(caller_id, loc));
called_def->uses.push_back(loc);
}
else {
IndexedFuncDef* called_def = db->Resolve(called_id);
called_def->uses.push_back(loc);
}
// For constructor/destructor, also add a usage against the type. Clang
// will insert and visit implicit constructor references, so we also check
// the location of the ctor call compared to the parent call. If they are
// the same, this is most likely an implicit ctors.
clang::Cursor ref_cursor = ref->cursor;
if (ref->referencedEntity->kind == CXIdxEntity_CXXConstructor ||
ref->referencedEntity->kind == CXIdxEntity_CXXDestructor) {
Location parent_loc = db->id_cache.Resolve(ref->parentEntity->cursor, true /*interesting*/);
Location our_loc = db->id_cache.Resolve(ref->loc, true /*is_interesting*/);
if (!parent_loc.IsEqualTo(our_loc)) {
IndexedFuncDef* called_def = db->Resolve(called_id);
// I suspect it is possible for the declaring type to be null
// when the class is invalid.
if (called_def->def.declaring_type) {
//assert(called_def->def.declaring_type.has_value());
IndexedTypeDef* type_def = db->Resolve(called_def->def.declaring_type.value());
type_def->AddUsage(our_loc);
}
}
}
break;
}
case CXIdxEntity_Typedef:
case CXIdxEntity_CXXTypeAlias:
case CXIdxEntity_Enum:
case CXIdxEntity_Union:
case CXIdxEntity_Struct:
case CXIdxEntity_CXXClass:
{
clang::Cursor referenced = ref->referencedEntity->cursor;
referenced = referenced.template_specialization_to_template_definition();
TypeId referenced_id = db->ToTypeId(referenced.get_usr());
IndexedTypeDef* referenced_def = db->Resolve(referenced_id);
// We will not get a declaration visit for forward declared types. Try to mark them as non-bad
// defs here so we will output usages/etc.
if (referenced_def->is_bad_def) {
bool is_system_def = clang_Location_isInSystemHeader(clang_getCursorLocation(ref->referencedEntity->cursor));
Location loc = db->id_cache.Resolve(ref->referencedEntity->cursor, false /*interesting*/);
if (!is_system_def && loc.raw_file_id != -1)
referenced_def->is_bad_def = false;
}
//
// The following will generate two TypeRefs to Foo, both located at the
// same spot (line 3, column 3). One of the parents will be set to
// CXIdxEntity_Variable, the other will be CXIdxEntity_Function. There does
// not appear to be a good way to disambiguate these references, as using
// parent type alone breaks other indexing tasks.
//
// To work around this, we check to see if the usage location has been
// inserted into all_uses previously.
//
// struct Foo {};
// void Make() {
// Foo f;
// }
//
referenced_def->AddUsage(db->id_cache.Resolve(ref->loc, false /*interesting*/));
break;
}
default:
std::cerr << "!! Unhandled indexEntityReference: " << cursor.ToString() << " at " << db->id_cache.Resolve(ref->loc, false /*interesting*/).ToString() << std::endl;
std::cerr << " ref->referencedEntity->kind = " << ref->referencedEntity->kind << std::endl;
if (ref->parentEntity)
std::cerr << " ref->parentEntity->kind = " << ref->parentEntity->kind << std::endl;
std::cerr << " ref->loc = " << db->id_cache.Resolve(ref->loc, false /*interesting*/).ToString() << std::endl;
std::cerr << " ref->kind = " << ref->kind << std::endl;
if (ref->parentEntity)
std::cerr << " parentEntity = " << clang::Cursor(ref->parentEntity->cursor).ToString() << std::endl;
if (ref->referencedEntity)
std::cerr << " referencedEntity = " << clang::Cursor(ref->referencedEntity->cursor).ToString() << std::endl;
if (ref->container)
std::cerr << " container = " << clang::Cursor(ref->container->cursor).ToString() << std::endl;
break;
}
}
void emptyIndexDeclaration(CXClientData client_data, const CXIdxDeclInfo* decl) {}
void emptyIndexEntityReference(CXClientData client_data, const CXIdxEntityRefInfo* ref) {}
struct Timer {
using Clock = std::chrono::high_resolution_clock;
std::chrono::time_point<Clock> start_;
Timer() {
Reset();
}
void Reset() {
start_ = Clock::now();
}
void PrintElapsed() {
std::chrono::time_point<Clock> end = Clock::now();
std::cerr << "Indexing took " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start_).count() << "ms" << std::endl;
}
};
IndexedFile Parse(std::string filename, std::vector<std::string> args, bool dump_ast) {
args.push_back("-std=c++11");
args.push_back("-fms-compatibility");
args.push_back("-fdelayed-template-parsing");
//args.push_back("-isystem C:\\Users\\jacob\\Desktop\\superindex\\indexer\\libcxx-3.9.1\\include");
//args.push_back("--sysroot C:\\Users\\jacob\\Desktop\\superindex\\indexer\\libcxx-3.9.1");
clang::Index index(0 /*excludeDeclarationsFromPCH*/, 0 /*displayDiagnostics*/);
clang::TranslationUnit tu(index, filename, args);
if (dump_ast)
Dump(tu.document_cursor());
CXIndexAction index_action = clang_IndexAction_create(index.cx_index);
IndexerCallbacks callbacks[] = {
{ &abortQuery, &diagnostic, &enteredMainFile, &ppIncludedFile, &importedASTFile, &startedTranslationUnit, &indexDeclaration, &indexEntityReference }
//{ &abortQuery, &diagnostic, &enteredMainFile, &ppIncludedFile, &importedASTFile, &startedTranslationUnit, &emptyIndexDeclaration, &emptyIndexEntityReference }
/*
callbacks.abortQuery = &abortQuery;
callbacks.diagnostic = &diagnostic;
callbacks.enteredMainFile = &enteredMainFile;
callbacks.ppIncludedFile = &ppIncludedFile;
callbacks.importedASTFile = &importedASTFile;
callbacks.startedTranslationUnit = &startedTranslationUnit;
callbacks.indexDeclaration = &indexDeclaration;
callbacks.indexEntityReference = &indexEntityReference;
*/
};
IndexedFile db(filename);
NamespaceHelper ns;
IndexParam param(&db, &ns);
Timer time;
clang_indexTranslationUnit(index_action, &param, callbacks, sizeof(callbacks),
CXIndexOpt_IndexFunctionLocalSymbols | CXIndexOpt_SkipParsedBodiesInSession, tu.cx_tu);
time.PrintElapsed();
clang_IndexAction_dispose(index_action);
return db;
}