ccls/main.cpp
2017-02-20 20:05:03 -08:00

1455 lines
44 KiB
C++

#include <algorithm>
#include <optional>
#include <iostream>
#include <cstdint>
#include <cassert>
#include <fstream>
#include <unordered_map>
#include "libclangmm/clangmm.h"
#include "libclangmm/Utility.h"
#include "bitfield.h"
#include "utils.h"
#include <rapidjson/writer.h>
#include <rapidjson/prettywriter.h>
#include <rapidjson/stringbuffer.h>
#include <rapidjson/document.h>
//#include <clang-c\Index.h>
// While indexing, we should refer to symbols by USR. When joining into the db, we can have optimized access.
struct TypeDef;
struct FuncDef;
struct VarDef;
/*
template<typename T>
struct Id {
uint64_t file_id;
uint64_t local_id;
Id() : file_id(0), local_id(0) {} // Needed for containers. Do not use directly.
Id(uint64_t file_id, uint64_t local_id)
: file_id(file_id), local_id(local_id) {}
};
*/
// TODO: Insert interesting usage for derived types. Maybe we should change out
// interesting usage approach for types, and instead find a list of "uninteresting" usages.
// Rather, what I think we should do is this
using FileId = int64_t;
BEGIN_BITFIELD_TYPE(Location, uint64_t)
Location(bool interesting, FileId file_id, uint32_t line, uint32_t column) {
this->interesting = false;
this->file_id = file_id;
this->line = line;
this->column = column;
}
std::string ToString() {
// Output looks like this:
//
// *1:2:3
//
// * => interesting
// 1 => file id
// 2 => line
// 3 => column
std::string result;
if (interesting)
result += '*';
result += std::to_string(file_id);
result += ':';
result += std::to_string(line);
result += ':';
result += std::to_string(column);
return result;
}
ADD_BITFIELD_MEMBER(interesting, /*start:*/ 0, /*len:*/ 1); // 2 values
ADD_BITFIELD_MEMBER(file_id, /*start:*/ 1, /*len:*/ 29); // 536,870,912 values
ADD_BITFIELD_MEMBER(line, /*start:*/ 30, /*len:*/ 20); // 1,048,576 values
ADD_BITFIELD_MEMBER(column, /*start:*/ 50, /*len:*/ 14); // 16,384 values
END_BITFIELD_TYPE()
struct FileDb {
std::unordered_map<std::string, FileId> file_path_to_file_id;
std::unordered_map<FileId, std::string> file_id_to_file_path;
FileDb() {
// Reserve id 0 for unfound.
file_path_to_file_id[""] = 0;
file_id_to_file_path[0] = "";
}
Location Resolve(const CXSourceLocation& cx_loc, bool is_interesting = false) {
CXFile file;
unsigned int line, column, offset;
clang_getSpellingLocation(cx_loc, &file, &line, &column, &offset);
FileId file_id;
if (file != nullptr) {
std::string path = clang::ToString(clang_getFileName(file));
auto it = file_path_to_file_id.find(path);
if (it != file_path_to_file_id.end()) {
file_id = it->second;
}
else {
file_id = file_path_to_file_id.size();
file_path_to_file_id[path] = file_id;
file_id_to_file_path[file_id] = path;
}
}
return Location(is_interesting, file_id, line, column);
}
Location Resolve(const CXIdxLoc& cx_idx_loc, bool is_interesting = false) {
CXSourceLocation cx_loc = clang_indexLoc_getCXSourceLocation(cx_idx_loc);
return Resolve(cx_loc, is_interesting);
}
Location Resolve(const CXCursor& cx_cursor, bool is_interesting = false) {
return Resolve(clang_getCursorLocation(cx_cursor), is_interesting);
}
Location Resolve(const clang::Cursor& cursor, bool is_interesting = false) {
return Resolve(cursor.cx_cursor, is_interesting);
}
};
template<typename T>
struct LocalId {
uint64_t local_id;
LocalId() : local_id(0) {} // Needed for containers. Do not use directly.
explicit LocalId(uint64_t local_id) : local_id(local_id) {}
};
using TypeId = LocalId<TypeDef>;
using FuncId = LocalId<FuncDef>;
using VarId = LocalId<VarDef>;
template<typename T>
struct Ref {
LocalId<T> id;
Location loc;
Ref(LocalId<T> id, Location loc) : id(id), loc(loc) {}
};
using TypeRef = Ref<TypeDef>;
using FuncRef = Ref<FuncDef>;
using VarRef = Ref<VarDef>;
// NOTE: declaration is empty if there is no forward declaration!
struct TypeDef {
// General metadata.
TypeId id;
std::string usr;
std::string short_name;
std::string qualified_name;
// While a class/type can technically have a separate declaration/definition,
// it doesn't really happen in practice. The declaration never contains
// comments or insightful information. The user always wants to jump from
// the declaration to the definition - never the other way around like in
// functions and (less often) variables.
//
// It's also difficult to identify a `class Foo;` statement with the clang
// indexer API (it's doable using cursor AST traversal), so we don't bother
// supporting the feature.
std::optional<Location> definition;
// If set, then this is the same underlying type as the given value (ie, this
// type comes from a using or typedef statement).
std::optional<TypeId> alias_of;
// Immediate parent and immediate derived types.
std::vector<TypeId> parents;
std::vector<TypeId> derived;
// Types, functions, and variables defined in this type.
std::vector<TypeId> types;
std::vector<FuncId> funcs;
std::vector<VarId> vars;
// Every usage, useful for things like renames.
// NOTE: Do not insert directly! Use AddUsage instead.
std::vector<Location> all_uses;
TypeDef(TypeId id, const std::string& usr) : id(id), usr(usr) {
assert(usr.size() > 0);
//std::cout << "Creating type with usr " << usr << std::endl;
}
void AddUsage(Location loc) {
Location interesting = loc;
interesting.interesting = true;
Location uninteresting = loc;
uninteresting.interesting = false;
for (int i = all_uses.size() - 1; i >= 0; --i) {
if (all_uses[i] == interesting || all_uses[i] == uninteresting) {
if (loc.interesting)
all_uses[i].interesting = true;
return;
}
}
all_uses.push_back(loc);
}
};
struct FuncDef {
// General metadata.
FuncId id;
std::string usr;
std::string short_name;
std::string qualified_name;
std::optional<Location> declaration;
std::optional<Location> definition;
// Type which declares this one (ie, it is a method)
std::optional<TypeId> declaring_type;
// Method this method overrides.
std::optional<FuncId> base;
// Methods which directly override this one.
std::vector<FuncId> derived;
// Local variables defined in this function.
std::vector<VarId> locals;
// Functions which call this one.
// TODO: Functions can get called outside of just functions - for example,
// they can get called in static context (maybe redirect to main?)
// or in class initializer list (redirect to class ctor?)
// - Right now those usages will not get listed here (but they should be
// inside of all_uses).
std::vector<FuncRef> callers;
// Functions that this function calls.
std::vector<FuncRef> callees;
// All usages. For interesting usages, see callees.
std::vector<Location> all_uses;
FuncDef(FuncId id, const std::string& usr) : id(id), usr(usr) {
assert(usr.size() > 0);
}
};
struct VarDef {
// General metadata.
VarId id;
std::string usr;
std::string short_name;
std::string qualified_name;
std::optional<Location> declaration;
// TODO: definitions should be a list of locations, since there can be more
// than one.
std::optional<Location> definition;
// Type of the variable.
std::optional<TypeId> variable_type;
// Type which declares this one (ie, it is a method)
std::optional<TypeId> declaring_type;
// Usages.
std::vector<Location> all_uses;
VarDef(VarId id, const std::string& usr) : id(id), usr(usr) {
assert(usr.size() > 0);
}
};
struct ParsingDatabase {
// NOTE: Every Id is resolved to a file_id of 0. The correct file_id needs
// to get fixed up when inserting into the real db.
std::unordered_map<std::string, TypeId> usr_to_type_id;
std::unordered_map<std::string, FuncId> usr_to_func_id;
std::unordered_map<std::string, VarId> usr_to_var_id;
std::vector<TypeDef> types;
std::vector<FuncDef> funcs;
std::vector<VarDef> vars;
FileDb file_db;
ParsingDatabase();
TypeId ToTypeId(const std::string& usr);
FuncId ToFuncId(const std::string& usr);
VarId ToVarId(const std::string& usr);
TypeId ToTypeId(const CXCursor& usr);
FuncId ToFuncId(const CXCursor& usr);
VarId ToVarId(const CXCursor& usr);
TypeDef* Resolve(TypeId id);
FuncDef* Resolve(FuncId id);
VarDef* Resolve(VarId id);
std::string ToString();
};
ParsingDatabase::ParsingDatabase() {}
// TODO: Optimize for const char*?
TypeId ParsingDatabase::ToTypeId(const std::string& usr) {
auto it = usr_to_type_id.find(usr);
if (it != usr_to_type_id.end())
return it->second;
TypeId id(types.size());
types.push_back(TypeDef(id, usr));
usr_to_type_id[usr] = id;
return id;
}
FuncId ParsingDatabase::ToFuncId(const std::string& usr) {
auto it = usr_to_func_id.find(usr);
if (it != usr_to_func_id.end())
return it->second;
FuncId id(funcs.size());
funcs.push_back(FuncDef(id, usr));
usr_to_func_id[usr] = id;
return id;
}
VarId ParsingDatabase::ToVarId(const std::string& usr) {
auto it = usr_to_var_id.find(usr);
if (it != usr_to_var_id.end())
return it->second;
VarId id(vars.size());
vars.push_back(VarDef(id, usr));
usr_to_var_id[usr] = id;
return id;
}
TypeId ParsingDatabase::ToTypeId(const CXCursor& cursor) {
return ToTypeId(clang::Cursor(cursor).get_usr());
}
FuncId ParsingDatabase::ToFuncId(const CXCursor& cursor) {
return ToFuncId(clang::Cursor(cursor).get_usr());
}
VarId ParsingDatabase::ToVarId(const CXCursor& cursor) {
return ToVarId(clang::Cursor(cursor).get_usr());
}
TypeDef* ParsingDatabase::Resolve(TypeId id) {
return &types[id.local_id];
}
FuncDef* ParsingDatabase::Resolve(FuncId id) {
return &funcs[id.local_id];
}
VarDef* ParsingDatabase::Resolve(VarId id) {
return &vars[id.local_id];
}
using Writer = rapidjson::PrettyWriter<rapidjson::StringBuffer>;
void Write(Writer& writer, const char* key, Location location) {
if (key) writer.Key(key);
std::string s = location.ToString();
writer.String(s.c_str());
}
void Write(Writer& writer, const char* key, std::optional<Location> location) {
if (location) {
Write(writer, key, location.value());
}
//else {
// if (key) writer.Key(key);
// writer.Null();
//}
}
void Write(Writer& writer, const char* key, const std::vector<Location>& locs) {
if (locs.size() == 0)
return;
if (key) writer.Key(key);
writer.StartArray();
for (const Location& loc : locs)
Write(writer, nullptr, loc);
writer.EndArray();
}
template<typename T>
void Write(Writer& writer, const char* key, LocalId<T> id) {
if (key) writer.Key(key);
writer.Uint64(id.local_id);
}
template<typename T>
void Write(Writer& writer, const char* key, std::optional<LocalId<T>> id) {
if (id) {
Write(writer, key, id.value());
}
//else {
// if (key) writer.Key(key);
// writer.Null();
//}
}
template<typename T>
void Write(Writer& writer, const char* key, const std::vector<LocalId<T>>& ids) {
if (ids.size() == 0)
return;
if (key) writer.Key(key);
writer.StartArray();
for (LocalId<T> id : ids)
Write(writer, nullptr, id);
writer.EndArray();
}
template<typename T>
void Write(Writer& writer, const char* key, Ref<T> ref) {
if (key) writer.Key(key);
std::string s = std::to_string(ref.id.local_id) + "@" + ref.loc.ToString();
writer.String(s.c_str());
}
template<typename T>
void Write(Writer& writer, const char* key, const std::vector<Ref<T>>& refs) {
if (refs.size() == 0)
return;
if (key) writer.Key(key);
writer.StartArray();
for (Ref<T> ref : refs)
Write(writer, nullptr, ref);
writer.EndArray();
}
void Write(Writer& writer, const char* key, const std::string& value) {
if (value.size() == 0)
return;
if (key) writer.Key(key);
writer.String(value.c_str());
}
void Write(Writer& writer, const char* key, uint64_t value) {
if (key) writer.Key(key);
writer.Uint64(value);
}
std::string ParsingDatabase::ToString() {
auto it = usr_to_type_id.find("");
if (it != usr_to_type_id.end()) {
Resolve(it->second)->short_name = "<fundamental>";
assert(Resolve(it->second)->all_uses.size() == 0);
}
#define WRITE(name) Write(writer, #name, def.name)
rapidjson::StringBuffer output;
rapidjson::PrettyWriter<rapidjson::StringBuffer> writer(output);
writer.SetFormatOptions(
rapidjson::PrettyFormatOptions::kFormatSingleLineArray);
writer.SetIndent(' ', 2);
writer.StartObject();
// Types
writer.Key("types");
writer.StartArray();
for (TypeDef& def : types) {
writer.StartObject();
WRITE(id);
WRITE(usr);
WRITE(short_name);
WRITE(qualified_name);
WRITE(definition);
WRITE(alias_of);
WRITE(parents);
WRITE(derived);
WRITE(types);
WRITE(funcs);
WRITE(vars);
WRITE(all_uses);
writer.EndObject();
}
writer.EndArray();
// Functions
writer.Key("functions");
writer.StartArray();
for (FuncDef& def : funcs) {
writer.StartObject();
WRITE(id);
WRITE(usr);
WRITE(short_name);
WRITE(qualified_name);
WRITE(declaration);
WRITE(definition);
WRITE(declaring_type);
WRITE(base);
WRITE(derived);
WRITE(locals);
WRITE(callers);
WRITE(callees);
WRITE(all_uses);
writer.EndObject();
}
writer.EndArray();
// Variables
writer.Key("variables");
writer.StartArray();
for (VarDef& def : vars) {
writer.StartObject();
WRITE(id);
WRITE(usr);
WRITE(short_name);
WRITE(qualified_name);
WRITE(declaration);
WRITE(definition);
WRITE(variable_type);
WRITE(declaring_type);
//WRITE(initializations);
WRITE(all_uses);
writer.EndObject();
}
writer.EndArray();
writer.EndObject();
return output.GetString();
#undef WRITE
}
struct FileDef {
uint64_t id;
std::string path;
std::vector<TypeDef> types;
std::vector<FuncDef> funcs;
std::vector<VarDef> vars;
};
/*
struct Database {
std::unordered_map<std::string, TypeId> usr_to_type_id;
std::unordered_map<std::string, FuncId> usr_to_func_id;
std::unordered_map<std::string, VarId> usr_to_var_id;
std::vector<FileDef> files;
TypeId ToTypeId(const std::string& usr);
FuncId ToFuncId(const std::string& usr);
VarId ToVarId(const std::string& usr);
};
TypeId Database::ToTypeId(const std::string& usr) {
auto it = usr_to_type_id.find(usr);
assert(it != usr_to_type_id.end() && "Usr is not registered");
return it->second;
}
FuncId Database::ToFuncId(const std::string& usr) {
auto it = usr_to_func_id.find(usr);
assert(it != usr_to_func_id.end() && "Usr is not registered");
return it->second;
}
VarId Database::ToVarId(const std::string& usr) {
auto it = usr_to_var_id.find(usr);
assert(it != usr_to_var_id.end() && "Usr is not registered");
return it->second;
}
TypeDef* Resolve(FileDef* file, TypeId id) {
assert(file->id == id.file_id);
return &file->types[id.local_id];
}
FuncDef* Resolve(FileDef* file, FuncId id) {
assert(file->id == id.file_id);
return &file->funcs[id.local_id];
}
VarDef* Resolve(FileDef* file, VarId id) {
assert(file->id == id.file_id);
return &file->vars[id.local_id];
}
TypeDef* Resolve(Database* db, TypeId id) {
return Resolve(&db->files[id.file_id], id);
}
FuncDef* Resolve(Database* db, FuncId id) {
return Resolve(&db->files[id.file_id], id);
}
VarDef* Resolve(Database* db, VarId id) {
return Resolve(&db->files[id.file_id], id);
}
*/
int abortQuery(CXClientData client_data, void *reserved) {
// 0 -> continue
return 0;
}
void diagnostic(CXClientData client_data, CXDiagnosticSet, void *reserved) {}
CXIdxClientFile enteredMainFile(CXClientData client_data, CXFile mainFile, void *reserved) {
return nullptr;
}
CXIdxClientFile ppIncludedFile(CXClientData client_data, const CXIdxIncludedFileInfo *) {
return nullptr;
}
CXIdxClientASTFile importedASTFile(CXClientData client_data, const CXIdxImportedASTFileInfo *) {
return nullptr;
}
CXIdxClientContainer startedTranslationUnit(CXClientData client_data, void *reserved) {
return nullptr;
}
clang::VisiterResult DumpVisitor(clang::Cursor cursor, clang::Cursor parent, int* level) {
for (int i = 0; i < *level; ++i)
std::cout << " ";
std::cout << clang::ToString(cursor.get_kind()) << " " << cursor.get_spelling() << std::endl;
*level += 1;
cursor.VisitChildren(&DumpVisitor, level);
*level -= 1;
return clang::VisiterResult::Continue;
}
void Dump(clang::Cursor cursor) {
int level = 0;
cursor.VisitChildren(&DumpVisitor, &level);
}
struct FindChildOfKindParam {
CXCursorKind target_kind;
std::optional<clang::Cursor> result;
FindChildOfKindParam(CXCursorKind target_kind) : target_kind(target_kind) {}
};
clang::VisiterResult FindChildOfKindVisitor(clang::Cursor cursor, clang::Cursor parent, FindChildOfKindParam* param) {
if (cursor.get_kind() == param->target_kind) {
param->result = cursor;
return clang::VisiterResult::Break;
}
return clang::VisiterResult::Recurse;
}
std::optional<clang::Cursor> FindChildOfKind(clang::Cursor cursor, CXCursorKind kind) {
FindChildOfKindParam param(kind);
cursor.VisitChildren(&FindChildOfKindVisitor, &param);
return param.result;
}
clang::VisiterResult FindTypeVisitor(clang::Cursor cursor, clang::Cursor parent, std::optional<clang::Cursor>* result) {
switch (cursor.get_kind()) {
case CXCursor_TypeRef:
case CXCursor_TemplateRef:
*result = cursor;
return clang::VisiterResult::Break;
}
return clang::VisiterResult::Recurse;
}
std::optional<clang::Cursor> FindType(clang::Cursor cursor) {
std::optional<clang::Cursor> result;
cursor.VisitChildren(&FindTypeVisitor, &result);
return result;
}
struct NamespaceHelper {
std::unordered_map<std::string, std::string> container_usr_to_qualified_name;
void RegisterQualifiedName(std::string usr, const CXIdxContainerInfo* container, std::string qualified_name) {
if (container) {
std::string container_usr = clang::Cursor(container->cursor).get_usr();
auto it = container_usr_to_qualified_name.find(container_usr);
if (it != container_usr_to_qualified_name.end()) {
container_usr_to_qualified_name[usr] = it->second + qualified_name + "::";
return;
}
}
container_usr_to_qualified_name[usr] = qualified_name + "::";
}
std::string QualifiedName(const CXIdxContainerInfo* container, std::string unqualified_name) {
if (container) {
std::string container_usr = clang::Cursor(container->cursor).get_usr();
auto it = container_usr_to_qualified_name.find(container_usr);
if (it != container_usr_to_qualified_name.end())
return it->second + unqualified_name;
// Anonymous namespaces are not processed by indexDeclaration. If we
// encounter one insert it into map.
if (container->cursor.kind == CXCursor_Namespace) {
assert(clang::Cursor(container->cursor).get_spelling() == "");
container_usr_to_qualified_name[container_usr] = "::";
return "::" + unqualified_name;
}
}
return unqualified_name;
}
};
struct IndexParam {
ParsingDatabase* db;
NamespaceHelper* ns;
// Record the last type usage location we recorded. Clang will sometimes
// visit the same expression twice so we wan't to avoid double-reporting
// usage information for those locations.
Location last_type_usage_location;
Location last_func_usage_location;
IndexParam(ParsingDatabase* db, NamespaceHelper* ns) : db(db), ns(ns) {}
};
/*
std::string GetNamespacePrefx(const CXIdxDeclInfo* decl) {
const CXIdxContainerInfo* container = decl->lexicalContainer;
while (container) {
}
}
*/
bool IsTypeDefinition(const CXIdxContainerInfo* container) {
if (!container)
return false;
switch (container->cursor.kind) {
case CXCursor_StructDecl:
case CXCursor_ClassDecl:
return true;
default:
return false;
}
}
struct VisitDeclForTypeUsageParam {
ParsingDatabase* db;
bool is_interesting;
int has_processed_any = false;
std::optional<clang::Cursor> previous_cursor;
std::optional<TypeId> initial_type;
VisitDeclForTypeUsageParam(ParsingDatabase* db, bool is_interesting)
: db(db), is_interesting(is_interesting) {}
};
void VisitDeclForTypeUsageVisitorHandler(clang::Cursor cursor, VisitDeclForTypeUsageParam* param) {
param->has_processed_any = true;
ParsingDatabase* db = param->db;
TypeId ref_type_id = db->ToTypeId(cursor.get_referenced().get_usr());
if (!param->initial_type)
param->initial_type = ref_type_id;
if (param->is_interesting) {
TypeDef* ref_type_def = db->Resolve(ref_type_id);
Location loc = db->file_db.Resolve(cursor);
loc.interesting = true;
ref_type_def->AddUsage(loc);
}
}
clang::VisiterResult VisitDeclForTypeUsageVisitor(clang::Cursor cursor, clang::Cursor parent, VisitDeclForTypeUsageParam* param) {
switch (cursor.get_kind()) {
case CXCursor_TemplateRef:
case CXCursor_TypeRef:
if (param->previous_cursor) {
VisitDeclForTypeUsageVisitorHandler(param->previous_cursor.value(), param);
// This if is inside the above if because if there are multiple TypeRefs,
// we always want to process the first one. If we did not always process
// the first one, we cannot tell if there are more TypeRefs after it and
// logic for fetching the return type breaks. This happens in ParmDecl
// instances which only have one TypeRef child but are not interesting
// usages.
if (!param->is_interesting)
return clang::VisiterResult::Break;
}
param->previous_cursor = cursor;
}
return clang::VisiterResult::Continue;
}
std::optional<TypeId> ResolveDeclToType(ParsingDatabase* db, clang::Cursor decl_cursor,
bool is_interesting, const CXIdxContainerInfo* semantic_container,
const CXIdxContainerInfo* lexical_container) {
//
// The general AST format for definitions follows this pattern:
//
// template<typename A, typename B>
// struct Container;
//
// struct S1;
// struct S2;
//
// Container<Container<S1, S2>, S2> foo;
//
// =>
//
// VarDecl
// TemplateRef Container
// TemplateRef Container
// TypeRef struct S1
// TypeRef struct S2
// TypeRef struct S2
//
// We skip the last type reference for methods/variables which are defined
// out-of-line w.r.t. the parent type.
//
// S1* Foo::foo() {}
//
// The above example looks like this in the AST:
//
// CXXMethod foo
// TypeRef struct S1
// TypeRef class Foo
// CompoundStmt
// ...
//
// The second TypeRef is an uninteresting usage.
bool process_last_type_ref = true;
if (IsTypeDefinition(semantic_container) && !IsTypeDefinition(lexical_container)) {
assert(decl_cursor.is_definition());
process_last_type_ref = false;
}
VisitDeclForTypeUsageParam param(db, is_interesting);
decl_cursor.VisitChildren(&VisitDeclForTypeUsageVisitor, &param);
// VisitDeclForTypeUsageVisitor guarantees that if there are multiple TypeRef
// children, the first one will always be visited.
if (param.previous_cursor && process_last_type_ref) {
VisitDeclForTypeUsageVisitorHandler(param.previous_cursor.value(), &param);
}
else {
// If we are not processing the last type ref, it *must* be a TypeRef (ie,
// and not a TemplateRef).
assert(!param.previous_cursor.has_value() ||
param.previous_cursor.value().get_kind() == CXCursor_TypeRef);
}
return param.initial_type;
}
void indexDeclaration(CXClientData client_data, const CXIdxDeclInfo* decl) {
IndexParam* param = static_cast<IndexParam*>(client_data);
ParsingDatabase* db = param->db;
NamespaceHelper* ns = param->ns;
switch (decl->entityInfo->kind) {
case CXIdxEntity_CXXNamespace:
{
ns->RegisterQualifiedName(decl->entityInfo->USR, decl->semanticContainer, decl->entityInfo->name);
break;
}
case CXIdxEntity_Field:
case CXIdxEntity_Variable:
case CXIdxEntity_CXXStaticVariable:
{
clang::Cursor decl_cursor = decl->cursor;
VarId var_id = db->ToVarId(decl->entityInfo->USR);
VarDef* var_def = db->Resolve(var_id);
// TODO: Eventually run with this if. Right now I want to iron out bugs this may shadow.
// TODO: Verify this gets called multiple times
//if (!decl->isRedeclaration) {
var_def->short_name = decl->entityInfo->name;
var_def->qualified_name = ns->QualifiedName(decl->semanticContainer, var_def->short_name);
//}
Location decl_loc = db->file_db.Resolve(decl->loc);
if (decl->isDefinition)
var_def->definition = decl_loc;
else
var_def->declaration = decl_loc;
var_def->all_uses.push_back(decl_loc);
std::optional<TypeId> var_type = ResolveDeclToType(db, decl_cursor, decl_cursor.get_kind() != CXCursor_ParmDecl /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer);
if (var_type.has_value())
var_def->variable_type = var_type.value();
// Declaring variable type information.
/*
TypeResolution var_type = ResolveToType(db, decl_cursor.get_type());
if (var_type.resolved_type) {
var_def->variable_type = var_type.resolved_type.value();
// Insert an interesting type usage for variable declarations. Parameters
// are handled when a function is declared because clang doesn't provide
// parameter declarations for unnamed parameters.
if (decl_cursor.get_kind() != CXCursor_ParmDecl)
AddInterestingUsageToType(db, var_type, FindLocationOfTypeSpecifier(decl_cursor));
}
*/
if (decl->isDefinition && IsTypeDefinition(decl->semanticContainer)) {
TypeId declaring_type_id = db->ToTypeId(decl->semanticContainer->cursor);
TypeDef* declaring_type_def = db->Resolve(declaring_type_id);
var_def->declaring_type = declaring_type_id;
declaring_type_def->vars.push_back(var_id);
}
// std::optional<Location> declaration;
// std::vector<Location> initializations;
// std::optional<TypeId> variable_type;
// std::optional<TypeId> declaring_type;
// std::vector<Location> uses;
break;
}
case CXIdxEntity_Function:
case CXIdxEntity_CXXConstructor:
case CXIdxEntity_CXXDestructor:
case CXIdxEntity_CXXInstanceMethod:
case CXIdxEntity_CXXStaticMethod:
{
clang::Cursor decl_cursor = decl->cursor;
FuncId func_id = db->ToFuncId(decl->entityInfo->USR);
FuncDef* func_def = db->Resolve(func_id);
// TODO: Eventually run with this if. Right now I want to iron out bugs this may shadow.
//if (!decl->isRedeclaration) {
func_def->short_name = decl->entityInfo->name;
func_def->qualified_name = ns->QualifiedName(decl->semanticContainer, func_def->short_name);
//}
Location decl_loc = db->file_db.Resolve(decl->loc);
if (decl->isDefinition)
func_def->definition = decl_loc;
else
func_def->declaration = decl_loc;
func_def->all_uses.push_back(decl_loc);
bool is_pure_virtual = clang_CXXMethod_isPureVirtual(decl->cursor);
// Add function usage information. We only want to do it once per
// definition/declaration. Do it on definition since there should only ever
// be one of those in the entire program.
if ((decl->isDefinition || is_pure_virtual) && IsTypeDefinition(decl->semanticContainer)) {
TypeId declaring_type_id = db->ToTypeId(decl->semanticContainer->cursor);
TypeDef* declaring_type_def = db->Resolve(declaring_type_id);
func_def->declaring_type = declaring_type_id;
declaring_type_def->funcs.push_back(func_id);
}
// We don't actually need to know the return type, but we need to mark it
// as an interesting usage.
ResolveDeclToType(db, decl_cursor, true /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer);
//TypeResolution ret_type = ResolveToType(db, decl_cursor.get_type().get_return_type());
//if (ret_type.resolved_type)
// AddInterestingUsageToType(db, ret_type, FindLocationOfTypeSpecifier(decl_cursor));
if (decl->isDefinition || is_pure_virtual) {
// Mark type usage for parameters as interesting. We handle this here
// instead of inside var declaration because clang will not emit a var
// declaration for an unnamed parameter, but we still want to mark the
// usage as interesting.
// TODO: Do a similar thing for function decl parameter usages. Mark
// prototype params as interesting type usages but also relate mark
// them as as usages on the primary variable - requires USR to be
// the same. We can work around it by declaring which variables a
// parameter has declared and update the USR in the definition.
clang::Cursor cursor = decl->cursor;
for (clang::Cursor arg : cursor.get_arguments()) {
switch (arg.get_kind()) {
case CXCursor_ParmDecl:
// We don't need to know the arg type, but we do want to mark it as
// an interesting usage.
ResolveDeclToType(db, arg, true /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer);
//TypeResolution arg_type = ResolveToType(db, arg.get_type());
//if (arg_type.resolved_type)
// AddInterestingUsageToType(db, arg_type, FindLocationOfTypeSpecifier(arg));
break;
}
}
// Process inheritance.
//void clang_getOverriddenCursors(CXCursor cursor, CXCursor **overridden, unsigned *num_overridden);
//void clang_disposeOverriddenCursors(CXCursor *overridden);
if (clang_CXXMethod_isVirtual(decl->cursor)) {
CXCursor* overridden;
unsigned int num_overridden;
clang_getOverriddenCursors(decl->cursor, &overridden, &num_overridden);
// TODO: How to handle multiple parent overrides??
for (unsigned int i = 0; i < num_overridden; ++i) {
clang::Cursor parent = overridden[i];
FuncId parent_id = db->ToFuncId(parent.get_usr());
FuncDef* parent_def = db->Resolve(parent_id);
func_def = db->Resolve(func_id); // ToFuncId invalidated func_def
func_def->base = parent_id;
parent_def->derived.push_back(func_id);
}
clang_disposeOverriddenCursors(overridden);
}
}
/*
std::optional<FuncId> base;
std::vector<FuncId> derived;
std::vector<VarId> locals;
std::vector<FuncRef> callers;
std::vector<FuncRef> callees;
std::vector<Location> uses;
*/
break;
}
case CXIdxEntity_Typedef:
case CXIdxEntity_CXXTypeAlias:
{
std::optional<TypeId> alias_of = ResolveDeclToType(db, decl->cursor, true /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer);
TypeId type_id = db->ToTypeId(decl->entityInfo->USR);
TypeDef* type_def = db->Resolve(type_id);
if (alias_of)
type_def->alias_of = alias_of.value();
type_def->short_name = decl->entityInfo->name;
type_def->qualified_name = ns->QualifiedName(decl->semanticContainer, type_def->short_name);
Location decl_loc = db->file_db.Resolve(decl->loc);
type_def->definition = decl_loc;
type_def->AddUsage(decl_loc);
break;
}
case CXIdxEntity_Struct:
case CXIdxEntity_CXXClass:
{
ns->RegisterQualifiedName(decl->entityInfo->USR, decl->semanticContainer, decl->entityInfo->name);
TypeId type_id = db->ToTypeId(decl->entityInfo->USR);
TypeDef* type_def = db->Resolve(type_id);
// TODO: Eventually run with this if. Right now I want to iron out bugs this may shadow.
// TODO: For type section, verify if this ever runs for non definitions?
//if (!decl->isRedeclaration) {
type_def->short_name = decl->entityInfo->name;
type_def->qualified_name = ns->QualifiedName(decl->semanticContainer, type_def->short_name);
// }
assert(decl->isDefinition);
Location decl_loc = db->file_db.Resolve(decl->loc);
type_def->definition = decl_loc;
type_def->AddUsage(decl_loc);
//type_def->alias_of
//type_def->funcs
//type_def->types
//type_def->uses
//type_def->vars
// Add type-level inheritance information.
CXIdxCXXClassDeclInfo const* class_info = clang_index_getCXXClassDeclInfo(decl);
for (unsigned int i = 0; i < class_info->numBases; ++i) {
const CXIdxBaseClassInfo* base_class = class_info->bases[i];
std::optional<TypeId> parent_type_id = ResolveDeclToType(db, base_class->cursor, true /*is_interesting*/, decl->semanticContainer, decl->lexicalContainer);
TypeDef* type_def = db->Resolve(type_id); // type_def ptr could be invalidated by ResolveDeclToType.
if (parent_type_id) {
TypeDef* parent_type_def = db->Resolve(parent_type_id.value());
parent_type_def->derived.push_back(type_id);
type_def->parents.push_back(parent_type_id.value());
}
}
break;
}
default:
std::cout << "!! Unhandled indexDeclaration: " << clang::Cursor(decl->cursor).ToString() << " at " << db->file_db.Resolve(decl->loc).ToString() << std::endl;
std::cout << " entityInfo->kind = " << decl->entityInfo->kind << std::endl;
std::cout << " entityInfo->USR = " << decl->entityInfo->USR << std::endl;
if (decl->declAsContainer)
std::cout << " declAsContainer = " << clang::Cursor(decl->declAsContainer->cursor).ToString() << std::endl;
if (decl->semanticContainer)
std::cout << " semanticContainer = " << clang::Cursor(decl->semanticContainer->cursor).ToString() << std::endl;
if (decl->lexicalContainer)
std::cout << " lexicalContainer = " << clang::Cursor(decl->lexicalContainer->cursor).get_usr() << std::endl;
break;
}
}
bool IsFunction(CXCursorKind kind) {
switch (kind) {
case CXCursor_CXXMethod:
case CXCursor_FunctionDecl:
return true;
}
return false;
}
void indexEntityReference(CXClientData client_data, const CXIdxEntityRefInfo* ref) {
IndexParam* param = static_cast<IndexParam*>(client_data);
ParsingDatabase* db = param->db;
clang::Cursor cursor(ref->cursor);
// TODO: Index entity call/ctor creation, like Foo().x = 3
switch (ref->referencedEntity->kind) {
case CXIdxEntity_CXXStaticVariable:
case CXIdxEntity_Variable:
case CXIdxEntity_Field:
{
VarId var_id = db->ToVarId(ref->referencedEntity->cursor);
VarDef* var_def = db->Resolve(var_id);
var_def->all_uses.push_back(db->file_db.Resolve(ref->loc));
break;
}
case CXIdxEntity_CXXStaticMethod:
case CXIdxEntity_CXXInstanceMethod:
case CXIdxEntity_Function:
case CXIdxEntity_CXXConstructor:
case CXIdxEntity_CXXDestructor:
{
// TODO: Redirect container to constructor for
// int Gen() { return 5; }
// class Foo {
// int x = Gen();
// }
// Don't report duplicate usages.
// TODO: search full history?
Location loc = db->file_db.Resolve(ref->loc);
if (param->last_func_usage_location == loc) break;
param->last_func_usage_location = loc;
// Note: be careful, calling db->ToFuncId invalidates the FuncDef* ptrs.
FuncId called_id = db->ToFuncId(ref->referencedEntity->USR);
if (IsFunction(ref->container->cursor.kind)) {
FuncId caller_id = db->ToFuncId(ref->container->cursor);
FuncDef* caller_def = db->Resolve(caller_id);
FuncDef* called_def = db->Resolve(called_id);
caller_def->callees.push_back(FuncRef(called_id, loc));
called_def->callers.push_back(FuncRef(caller_id, loc));
called_def->all_uses.push_back(loc);
}
else {
FuncDef* called_def = db->Resolve(called_id);
called_def->all_uses.push_back(loc);
}
#if false
// For constructor/destructor, also add a usage against the type.
// TODO: This will also process implicit constructors which we do not want.
clang::Cursor ref_cursor = ref->cursor;
if (ref->referencedEntity->kind == CXIdxEntity_CXXConstructor ||
ref->referencedEntity->kind == CXIdxEntity_CXXDestructor &&
ref_cursor.get_spelling() != "") {
FuncDef* called_def = db->Resolve(called_id);
assert(called_def->declaring_type.has_value());
TypeDef* type_def = db->Resolve(called_def->declaring_type.value());
type_def->AddUsage(db->file_db.Resolve(ref->loc, true /*is_interesting*/));
}
#endif
break;
}
case CXIdxEntity_Typedef:
case CXIdxEntity_CXXTypeAlias:
case CXIdxEntity_Struct:
case CXIdxEntity_CXXClass:
{
TypeId referenced_id = db->ToTypeId(ref->referencedEntity->USR);
TypeDef* referenced_def = db->Resolve(referenced_id);
//
// The following will generate two TypeRefs to Foo, both located at the
// same spot (line 3, column 3). One of the parents will be set to
// CXIdxEntity_Variable, the other will be CXIdxEntity_Function. There does
// not appear to be a good way to disambiguate these references, as using
// parent type alone breaks other indexing tasks.
//
// To work around this, we check to see if the usage location has been
// inserted into all_uses previously.
//
// struct Foo {};
// void Make() {
// Foo f;
// }
//
referenced_def->AddUsage(db->file_db.Resolve(ref->loc));
break;
}
default:
std::cout << "!! Unhandled indexEntityReference: " << cursor.ToString() << " at " << db->file_db.Resolve(ref->loc).ToString() << std::endl;
std::cout << " ref->referencedEntity->kind = " << ref->referencedEntity->kind << std::endl;
if (ref->parentEntity)
std::cout << " ref->parentEntity->kind = " << ref->parentEntity->kind << std::endl;
std::cout << " ref->loc = " << db->file_db.Resolve(ref->loc).ToString() << std::endl;
std::cout << " ref->kind = " << ref->kind << std::endl;
if (ref->parentEntity)
std::cout << " parentEntity = " << clang::Cursor(ref->parentEntity->cursor).ToString() << std::endl;
if (ref->referencedEntity)
std::cout << " referencedEntity = " << clang::Cursor(ref->referencedEntity->cursor).ToString() << std::endl;
if (ref->container)
std::cout << " container = " << clang::Cursor(ref->container->cursor).ToString() << std::endl;
break;
}
}
ParsingDatabase Parse(std::string filename) {
std::vector<std::string> args;
clang::Index index(0 /*excludeDeclarationsFromPCH*/, 0 /*displayDiagnostics*/);
clang::TranslationUnit tu(index, filename, args);
Dump(tu.document_cursor());
CXIndexAction index_action = clang_IndexAction_create(index.cx_index);
IndexerCallbacks callbacks[] = {
{ &abortQuery, &diagnostic, &enteredMainFile, &ppIncludedFile, &importedASTFile, &startedTranslationUnit, &indexDeclaration, &indexEntityReference }
/*
callbacks.abortQuery = &abortQuery;
callbacks.diagnostic = &diagnostic;
callbacks.enteredMainFile = &enteredMainFile;
callbacks.ppIncludedFile = &ppIncludedFile;
callbacks.importedASTFile = &importedASTFile;
callbacks.startedTranslationUnit = &startedTranslationUnit;
callbacks.indexDeclaration = &indexDeclaration;
callbacks.indexEntityReference = &indexEntityReference;
*/
};
ParsingDatabase db;
NamespaceHelper ns;
IndexParam param(&db, &ns);
clang_indexTranslationUnit(index_action, &param, callbacks, sizeof(callbacks),
CXIndexOpt_IndexFunctionLocalSymbols, tu.cx_tu);
clang_IndexAction_dispose(index_action);
return db;
}
template<typename T>
bool AreEqual(const std::vector<T>& a, const std::vector<T>& b) {
if (a.size() != b.size())
return false;
for (int i = 0; i < a.size(); ++i) {
if (a[i] != b[i])
return false;
}
return true;
}
void Write(const std::vector<std::string>& strs) {
for (const std::string& str : strs) {
std::cout << str << std::endl;
}
}
std::string ToString(const rapidjson::Document& document) {
rapidjson::StringBuffer buffer;
rapidjson::PrettyWriter<rapidjson::StringBuffer> writer(buffer);
writer.SetFormatOptions(
rapidjson::PrettyFormatOptions::kFormatSingleLineArray);
writer.SetIndent(' ', 2);
buffer.Clear();
document.Accept(writer);
return buffer.GetString();
}
std::vector<std::string> split_string(const std::string& str, const std::string& delimiter) {
// http://stackoverflow.com/a/13172514
std::vector<std::string> strings;
std::string::size_type pos = 0;
std::string::size_type prev = 0;
while ((pos = str.find(delimiter, prev)) != std::string::npos) {
strings.push_back(str.substr(prev, pos - prev));
prev = pos + 1;
}
// To get the last substring (or only, if delimiter is not found)
strings.push_back(str.substr(prev));
return strings;
}
void DiffDocuments(rapidjson::Document& expected, rapidjson::Document& actual) {
std::vector<std::string> actual_output;
{
std::string buffer = ToString(actual);
actual_output = split_string(buffer, "\n");
}
std::vector<std::string> expected_output;
{
std::string buffer = ToString(expected);
expected_output = split_string(buffer, "\n");
}
int len = std::min(actual_output.size(), expected_output.size());
for (int i = 0; i < len; ++i) {
if (actual_output[i] != expected_output[i]) {
std::cout << "Line " << i << " differs:" << std::endl;
std::cout << " expected: " << expected_output[i] << std::endl;
std::cout << " actual: " << actual_output[i] << std::endl;
}
}
if (actual_output.size() > len) {
std::cout << "Additional output in actual:" << std::endl;
for (int i = len; i < actual_output.size(); ++i)
std::cout << " " << actual_output[i] << std::endl;
}
if (expected_output.size() > len) {
std::cout << "Additional output in expected:" << std::endl;
for (int i = len; i < expected_output.size(); ++i)
std::cout << " " << expected_output[i] << std::endl;
}
}
int main(int argc, char** argv) {
/*
ParsingDatabase db = Parse("tests/vars/function_local.cc");
std::cout << std::endl << "== Database ==" << std::endl;
std::cout << db.ToString();
std::cin.get();
return 0;
*/
for (std::string path : GetFilesInFolder("tests")) {
//if (path != "tests/declaration_vs_definition/class_member_static.cc") continue;
//if (path != "tests/usage/type_usage_typedef_and_using_template.cc") continue;
//if (path != "tests/constructors/constructor.cc") continue;
//if (path == "tests/constructors/destructor.cc") continue;
//if (path == "tests/usage/func_usage_call_method.cc") continue;
//if (path != "tests/usage/type_usage_as_template_parameter.cc") continue;
//if (path != "tests/usage/type_usage_as_template_parameter_complex.cc") continue;
//if (path != "tests/usage/type_usage_as_template_parameter_simple.cc") continue;
//if (path != "tests/usage/type_usage_typedef_and_using.cc") continue;
//if (path != "tests/usage/type_usage_declare_local.cc") continue;
//if (path == "tests/usage/type_usage_typedef_and_using_template.cc") continue;
//if (path != "tests/usage/func_usage_addr_method.cc") continue;
//if (path != "tests/usage/type_usage_typedef_and_using.cc") continue;
//if (path != "tests/usage/usage_inside_of_call.cc") continue;
//if (path != "tests/foobar.cc") continue;
//if (path != "tests/inheritance/class_inherit_templated_parent.cc") continue;
// Parse expected output from the test, parse it into JSON document.
std::string expected_output;
ParseTestExpectation(path, &expected_output);
rapidjson::Document expected;
expected.Parse(expected_output.c_str());
// Run test.
std::cout << "[START] " << path << std::endl;
ParsingDatabase db = Parse(path);
std::string actual_output = db.ToString();
rapidjson::Document actual;
actual.Parse(actual_output.c_str());
if (actual == expected) {
std::cout << "[PASSED] " << path << std::endl;
}
else {
std::cout << "[FAILED] " << path << std::endl;
std::cout << "Expected output for " << path << ":" << std::endl;
std::cout << expected_output;
std::cout << "Actual output for " << path << ":" << std::endl;
std::cout << actual_output;
std::cout << std::endl;
std::cout << std::endl;
DiffDocuments(expected, actual);
break;
}
}
std::cin.get();
return 0;
}
// TODO: ctor/dtor, copy ctor