ccls/src/indexer.cc
2017-12-23 08:33:26 -08:00

1872 lines
64 KiB
C++

#include "indexer.h"
#include "clang_cursor.h"
#include "clang_utils.h"
#include "platform.h"
#include "serializer.h"
#include "timer.h"
#include <loguru.hpp>
#include <algorithm>
#include <chrono>
#include <climits>
// TODO: See if we can use clang_indexLoc_getFileLocation to get a type ref on
// |Foobar| in DISALLOW_COPY(Foobar)
namespace {
constexpr bool kIndexStdDeclarations = true;
// For typedef/using spanning less than or equal to (this number) of lines,
// display their declarations on hover.
constexpr int kMaxLinesDisplayTypeAliasDeclarations = 3;
void AddFuncRef(std::vector<IndexFuncRef>* result, IndexFuncRef ref) {
if (!result->empty() && (*result)[result->size() - 1] == ref)
return;
result->push_back(ref);
}
Range Resolve(const CXSourceRange& range, CXFile* cx_file = nullptr) {
CXSourceLocation start = clang_getRangeStart(range);
CXSourceLocation end = clang_getRangeEnd(range);
unsigned int start_line, start_column;
clang_getSpellingLocation(start, cx_file, &start_line, &start_column,
nullptr);
unsigned int end_line, end_column;
clang_getSpellingLocation(end, nullptr, &end_line, &end_column, nullptr);
return Range(Position((int16_t)start_line, (int16_t)start_column) /*start*/,
Position((int16_t)end_line, (int16_t)end_column) /*end*/);
}
Range ResolveSpelling(const CXCursor& cx_cursor, CXFile* cx_file = nullptr) {
CXSourceRange cx_range = clang_Cursor_getSpellingNameRange(cx_cursor, 0, 0);
return Resolve(cx_range, cx_file);
}
Range ResolveExtent(const CXCursor& cx_cursor, CXFile* cx_file = nullptr) {
CXSourceRange cx_range = clang_getCursorExtent(cx_cursor);
return Resolve(cx_range, cx_file);
}
bool IsScopeSemanticContainer(CXCursorKind kind) {
switch (kind) {
case CXCursor_Namespace:
case CXCursor_TranslationUnit:
case CXCursor_StructDecl:
case CXCursor_UnionDecl:
case CXCursor_ClassDecl:
case CXCursor_EnumDecl:
// TODO Add more Objective-C containers
case CXCursor_ObjCInterfaceDecl:
case CXCursor_ObjCImplementationDecl:
return false;
default:
return true;
}
}
struct NamespaceHelper {
std::unordered_map<ClangCursor, std::string>
container_cursor_to_qualified_name;
void RegisterQualifiedName(std::string usr,
const CXIdxContainerInfo* container,
std::string qualified_name) {}
std::string QualifiedName(const CXIdxContainerInfo* container,
std::string unqualified_name) {
if (!container)
return unqualified_name;
// Anonymous namespaces are not processed by indexDeclaration. We trace
// nested namespaces bottom-up through clang_getCursorSemanticParent until
// one that we know its qualified name. Then do another trace top-down and
// put their names into a map of USR -> qualified_name.
ClangCursor cursor = container->cursor;
std::vector<ClangCursor> namespaces;
std::string qualifier;
while (cursor.get_kind() != CXCursor_TranslationUnit &&
!IsScopeSemanticContainer(cursor.get_kind())) {
auto it = container_cursor_to_qualified_name.find(cursor);
if (it != container_cursor_to_qualified_name.end()) {
qualifier = it->second;
break;
}
namespaces.push_back(cursor);
cursor = clang_getCursorSemanticParent(cursor.cx_cursor);
}
for (size_t i = namespaces.size(); i > 0;) {
i--;
std::string name = namespaces[i].get_spelling();
// Empty name indicates unnamed namespace, anonymous struct, anonymous
// union, ...
qualifier += name.empty() ? "(anon)" : name;
qualifier += "::";
container_cursor_to_qualified_name[namespaces[i]] = qualifier;
}
return qualifier + unqualified_name;
}
};
// Caches all instances of constructors, regardless if they are indexed or not.
// The constructor may have a make_unique call associated with it that we need
// to export. If we do not capture the parameter type description for the
// constructor we will not be able to attribute the constructor call correctly.
struct ConstructorCache {
using Usr = std::string;
struct Constructor {
Usr usr;
std::vector<std::string> param_type_desc;
};
std::unordered_map<Usr, std::vector<Constructor>> constructors_;
// This should be called whenever there is a constructor declaration.
void NotifyConstructor(ClangCursor ctor_cursor) {
auto build_type_desc = [](ClangCursor cursor) {
std::vector<std::string> type_desc;
for (ClangCursor arg : cursor.get_arguments()) {
if (arg.get_kind() == CXCursor_ParmDecl)
type_desc.push_back(arg.get_type_description());
}
return type_desc;
};
Constructor ctor{ctor_cursor.get_usr(), build_type_desc(ctor_cursor)};
// Insert into |constructors_|.
std::string type_usr = ctor_cursor.get_semantic_parent().get_usr();
auto existing_ctors = constructors_.find(type_usr);
if (existing_ctors != constructors_.end()) {
existing_ctors->second.push_back(ctor);
} else {
constructors_[type_usr] = {ctor};
}
}
// Tries to lookup a constructor in |type_usr| that takes arguments most
// closely aligned to |param_type_desc|.
optional<std::string> TryFindConstructorUsr(
const std::string& type_usr,
const std::vector<std::string>& param_type_desc) {
auto count_matching_prefix_length = [](const char* a, const char* b) {
int matched = 0;
while (*a && *b) {
if (*a != *b)
break;
++a;
++b;
++matched;
}
// Additional score if the strings were the same length, which makes
// "a"/"a" match higher than "a"/"a&"
if (*a == *b)
matched += 1;
return matched;
};
// Try to find constructors for the type. If there are no constructors
// available, return an empty result.
auto ctors_it = constructors_.find(type_usr);
if (ctors_it == constructors_.end())
return nullopt;
const std::vector<Constructor>& ctors = ctors_it->second;
if (ctors.empty())
return nullopt;
std::string best_usr;
int best_score = INT_MIN;
// Scan constructors for the best possible match.
for (const Constructor& ctor : ctors) {
// If |param_type_desc| is empty and the constructor is as well, we don't
// need to bother searching, as this is the match.
if (param_type_desc.empty() && ctor.param_type_desc.empty()) {
best_usr = ctor.usr;
break;
}
// Weight matching parameter length heavily, as it is more accurate than
// the fuzzy type matching approach.
int score = 0;
if (param_type_desc.size() == ctor.param_type_desc.size())
score += param_type_desc.size() * 1000;
// Do prefix-based match on parameter type description. This works well in
// practice because clang appends qualifiers to the end of the type, ie,
// |foo *&&|
for (int i = 0;
i < std::min(param_type_desc.size(), ctor.param_type_desc.size());
++i) {
score += count_matching_prefix_length(param_type_desc[i].c_str(),
ctor.param_type_desc[i].c_str());
}
if (score > best_score) {
best_usr = ctor.usr;
best_score = score;
}
}
assert(!best_usr.empty());
return best_usr;
}
};
struct IndexParam {
std::unordered_set<CXFile> seen_cx_files;
std::vector<std::string> seen_files;
std::unordered_map<std::string, FileContentsWithOffsets> file_contents;
std::unordered_map<std::string, int64_t> file_modification_times;
// Only use this when strictly needed (ie, primary translation unit is
// needed). Most logic should get the IndexFile instance via
// |file_consumer|.
//
// This can be null if we're not generating an index for the primary
// translation unit.
IndexFile* primary_file = nullptr;
ClangTranslationUnit* tu = nullptr;
FileConsumer* file_consumer = nullptr;
NamespaceHelper ns;
ConstructorCache ctors;
IndexParam(ClangTranslationUnit* tu, FileConsumer* file_consumer)
: tu(tu), file_consumer(file_consumer) {}
};
IndexFile* ConsumeFile(IndexParam* param, CXFile file) {
bool is_first_ownership = false;
IndexFile* db =
param->file_consumer->TryConsumeFile(file, &is_first_ownership);
// If this is the first time we have seen the file (ignoring if we are
// generating an index for it):
if (param->seen_cx_files.insert(file).second) {
std::string file_name = FileName(file);
// Sometimes the fill name will be empty. Not sure why. Not much we can do
// with it.
if (!file_name.empty()) {
// Add to all files we have seen so we can generate proper dependency
// graph.
param->seen_files.push_back(file_name);
// Set modification time.
optional<int64_t> modification_time = GetLastModificationTime(file_name);
LOG_IF_S(ERROR, !modification_time)
<< "Failed fetching modification time for " << file_name;
if (modification_time)
param->file_modification_times[file_name] = *modification_time;
// Capture file contents in |param->file_contents| if it was not specified
// at the start of indexing.
if (db && !param->file_contents.count(file_name)) {
optional<std::string> content = ReadContent(file_name);
if (content)
param->file_contents.emplace(file_name, *content);
else
LOG_S(ERROR) << "[indexer] Failed to read file content for "
<< file_name;
}
}
}
if (is_first_ownership) {
// Report skipped source range list.
CXSourceRangeList* skipped = clang_getSkippedRanges(param->tu->cx_tu, file);
for (unsigned i = 0; i < skipped->count; ++i) {
Range range = Resolve(skipped->ranges[i]);
// clang_getSkippedRanges reports start one token after the '#', move it
// back so it starts at the '#'
range.start.column -= 1;
db->skipped_by_preprocessor.push_back(range);
}
clang_disposeSourceRangeList(skipped);
}
return db;
}
// Returns true if the given entity kind can be called implicitly, ie, without
// actually being written in the source code.
bool CanBeCalledImplicitly(CXIdxEntityKind kind) {
switch (kind) {
case CXIdxEntity_CXXConstructor:
case CXIdxEntity_CXXConversionFunction:
case CXIdxEntity_CXXDestructor:
return true;
default:
return false;
}
}
// Returns true if the cursor spelling contains the given string. This is
// useful to check for implicit function calls.
bool CursorSpellingContainsString(CXCursor cursor,
CXTranslationUnit cx_tu,
std::string scanning_for) {
CXSourceRange range = clang_Cursor_getSpellingNameRange(cursor, 0, 0);
CXToken* tokens;
unsigned num_tokens;
clang_tokenize(cx_tu, range, &tokens, &num_tokens);
bool result = false;
for (unsigned i = 0; i < num_tokens; ++i) {
CXString name = clang_getTokenSpelling(cx_tu, tokens[i]);
if (strcmp(clang_getCString(name), scanning_for.c_str()) == 0) {
result = true;
break;
}
clang_disposeString(name);
}
clang_disposeTokens(cx_tu, tokens, num_tokens);
return result;
}
// Returns the document content for the given range. May not work perfectly
// when there are tabs instead of spaces.
std::string GetDocumentContentInRange(CXTranslationUnit cx_tu,
CXSourceRange range) {
std::string result;
CXToken* tokens;
unsigned num_tokens;
clang_tokenize(cx_tu, range, &tokens, &num_tokens);
optional<Range> previous_token_range;
for (unsigned i = 0; i < num_tokens; ++i) {
// Add whitespace between the previous token and this one.
Range token_range = Resolve(clang_getTokenExtent(cx_tu, tokens[i]));
if (previous_token_range) {
// Insert newlines.
int16_t line_delta =
token_range.start.line - previous_token_range->end.line;
assert(line_delta >= 0);
if (line_delta > 0) {
result.append((size_t)line_delta, '\n');
// Reset column so we insert starting padding.
previous_token_range->end.column = 0;
}
// Insert spaces.
int16_t column_delta =
token_range.start.column - previous_token_range->end.column;
assert(column_delta >= 0);
result.append((size_t)column_delta, ' ');
}
previous_token_range = token_range;
// Add token content.
CXString spelling = clang_getTokenSpelling(cx_tu, tokens[i]);
result += clang_getCString(spelling);
clang_disposeString(spelling);
}
clang_disposeTokens(cx_tu, tokens, num_tokens);
return result;
}
} // namespace
// static
int IndexFile::kCurrentVersion = 6;
IndexFile::IndexFile(const std::string& path) : id_cache(path), path(path) {
// TODO: Reconsider if we should still be reusing the same id_cache.
// Preallocate any existing resolved ids.
for (const auto& entry : id_cache.usr_to_type_id)
types.push_back(IndexType(entry.second, entry.first));
for (const auto& entry : id_cache.usr_to_func_id)
funcs.push_back(IndexFunc(entry.second, entry.first));
for (const auto& entry : id_cache.usr_to_var_id)
vars.push_back(IndexVar(entry.second, entry.first));
}
// TODO: Optimize for const char*?
IndexTypeId IndexFile::ToTypeId(const std::string& usr) {
auto it = id_cache.usr_to_type_id.find(usr);
if (it != id_cache.usr_to_type_id.end())
return it->second;
IndexTypeId id(types.size());
types.push_back(IndexType(id, usr));
id_cache.usr_to_type_id[usr] = id;
id_cache.type_id_to_usr[id] = usr;
return id;
}
IndexFuncId IndexFile::ToFuncId(const std::string& usr) {
auto it = id_cache.usr_to_func_id.find(usr);
if (it != id_cache.usr_to_func_id.end())
return it->second;
IndexFuncId id(funcs.size());
funcs.push_back(IndexFunc(id, usr));
id_cache.usr_to_func_id[usr] = id;
id_cache.func_id_to_usr[id] = usr;
return id;
}
IndexVarId IndexFile::ToVarId(const std::string& usr) {
auto it = id_cache.usr_to_var_id.find(usr);
if (it != id_cache.usr_to_var_id.end())
return it->second;
IndexVarId id(vars.size());
vars.push_back(IndexVar(id, usr));
id_cache.usr_to_var_id[usr] = id;
id_cache.var_id_to_usr[id] = usr;
return id;
}
IndexTypeId IndexFile::ToTypeId(const CXCursor& cursor) {
return ToTypeId(ClangCursor(cursor).get_usr());
}
IndexFuncId IndexFile::ToFuncId(const CXCursor& cursor) {
return ToFuncId(ClangCursor(cursor).get_usr());
}
IndexVarId IndexFile::ToVarId(const CXCursor& cursor) {
return ToVarId(ClangCursor(cursor).get_usr());
}
IndexType* IndexFile::Resolve(IndexTypeId id) {
return &types[id.id];
}
IndexFunc* IndexFile::Resolve(IndexFuncId id) {
return &funcs[id.id];
}
IndexVar* IndexFile::Resolve(IndexVarId id) {
return &vars[id.id];
}
std::string IndexFile::ToString() {
return Serialize(*this);
}
IndexType::IndexType(IndexTypeId id, const std::string& usr)
: usr(usr), id(id) {
assert(usr.size() > 0);
}
void RemoveItem(std::vector<Range>& ranges, Range to_remove) {
auto it = std::find(ranges.begin(), ranges.end(), to_remove);
if (it != ranges.end())
ranges.erase(it);
}
template <typename T>
void UniqueAdd(std::vector<T>& values, T value) {
if (std::find(values.begin(), values.end(), value) == values.end())
values.push_back(value);
}
IdCache::IdCache(const std::string& primary_file)
: primary_file(primary_file) {}
template <typename T>
bool Contains(const std::vector<T>& vec, const T& element) {
for (const T& entry : vec) {
if (entry == element)
return true;
}
return false;
}
void OnIndexDiagnostic(CXClientData client_data,
CXDiagnosticSet diagnostics,
void* reserved) {
IndexParam* param = static_cast<IndexParam*>(client_data);
for (unsigned i = 0; i < clang_getNumDiagnosticsInSet(diagnostics); ++i) {
CXDiagnostic diagnostic = clang_getDiagnosticInSet(diagnostics, i);
// Skip diagnostics in system headers.
CXSourceLocation diag_loc = clang_getDiagnosticLocation(diagnostic);
if (clang_Location_isInSystemHeader(diag_loc))
continue;
// Get db so we can attribute diagnostic to the right indexed file.
CXFile file;
unsigned int line, column;
clang_getSpellingLocation(diag_loc, &file, &line, &column, nullptr);
IndexFile* db = ConsumeFile(param, file);
if (!db)
continue;
// Build diagnostic.
optional<lsDiagnostic> ls_diagnostic =
BuildAndDisposeDiagnostic(diagnostic, db->path);
if (ls_diagnostic)
db->diagnostics_.push_back(*ls_diagnostic);
}
}
CXIdxClientFile OnIndexIncludedFile(CXClientData client_data,
const CXIdxIncludedFileInfo* file) {
IndexParam* param = static_cast<IndexParam*>(client_data);
// file->hashLoc only has the position of the hash. We don't have the full
// range for the include.
CXSourceLocation hash_loc = clang_indexLoc_getCXSourceLocation(file->hashLoc);
CXFile cx_file;
unsigned int line;
clang_getSpellingLocation(hash_loc, &cx_file, &line, nullptr, nullptr);
IndexFile* db = ConsumeFile(param, cx_file);
if (!db)
return nullptr;
IndexInclude include;
include.line = line;
include.resolved_path = FileName(file->file);
if (!include.resolved_path.empty())
db->includes.push_back(include);
return nullptr;
}
ClangCursor::VisitResult DumpVisitor(ClangCursor cursor,
ClangCursor parent,
int* level) {
for (int i = 0; i < *level; ++i)
std::cerr << " ";
std::cerr << ToString(cursor.get_kind()) << " " << cursor.get_spelling()
<< std::endl;
*level += 1;
cursor.VisitChildren(&DumpVisitor, level);
*level -= 1;
return ClangCursor::VisitResult::Continue;
}
void Dump(ClangCursor cursor) {
int level = 0;
cursor.VisitChildren(&DumpVisitor, &level);
}
struct FindChildOfKindParam {
CXCursorKind target_kind;
optional<ClangCursor> result;
FindChildOfKindParam(CXCursorKind target_kind) : target_kind(target_kind) {}
};
ClangCursor::VisitResult FindChildOfKindVisitor(ClangCursor cursor,
ClangCursor parent,
FindChildOfKindParam* param) {
if (cursor.get_kind() == param->target_kind) {
param->result = cursor;
return ClangCursor::VisitResult::Break;
}
return ClangCursor::VisitResult::Recurse;
}
optional<ClangCursor> FindChildOfKind(ClangCursor cursor, CXCursorKind kind) {
FindChildOfKindParam param(kind);
cursor.VisitChildren(&FindChildOfKindVisitor, &param);
return param.result;
}
ClangCursor::VisitResult FindTypeVisitor(ClangCursor cursor,
ClangCursor parent,
optional<ClangCursor>* result) {
switch (cursor.get_kind()) {
case CXCursor_TypeRef:
case CXCursor_TemplateRef:
*result = cursor;
return ClangCursor::VisitResult::Break;
default:
break;
}
return ClangCursor::VisitResult::Recurse;
}
optional<ClangCursor> FindType(ClangCursor cursor) {
optional<ClangCursor> result;
cursor.VisitChildren(&FindTypeVisitor, &result);
return result;
}
bool IsGlobalContainer(const CXIdxContainerInfo* container) {
if (!container)
return false;
switch (container->cursor.kind) {
case CXCursor_Namespace:
case CXCursor_TranslationUnit:
return true;
default:
return false;
}
}
bool IsTypeDefinition(const CXIdxContainerInfo* container) {
if (!container)
return false;
switch (container->cursor.kind) {
case CXCursor_EnumDecl:
case CXCursor_UnionDecl:
case CXCursor_StructDecl:
case CXCursor_ClassDecl:
return true;
default:
return false;
}
}
struct VisitDeclForTypeUsageParam {
IndexFile* db;
int has_processed_any = false;
optional<ClangCursor> previous_cursor;
optional<IndexTypeId> initial_type;
VisitDeclForTypeUsageParam(IndexFile* db) : db(db) {}
};
void VisitDeclForTypeUsageVisitorHandler(ClangCursor cursor,
VisitDeclForTypeUsageParam* param) {
param->has_processed_any = true;
IndexFile* db = param->db;
std::string referenced_usr =
cursor.get_referenced()
.template_specialization_to_template_definition()
.get_usr();
// TODO: things in STL cause this to be empty. Figure out why and document it.
if (referenced_usr == "")
return;
IndexTypeId ref_type_id = db->ToTypeId(referenced_usr);
if (!param->initial_type)
param->initial_type = ref_type_id;
IndexType* ref_type_def = db->Resolve(ref_type_id);
// TODO: Should we even be visiting this if the file is not from the main
// def? Try adding assert on |loc| later.
Range loc = ResolveSpelling(cursor.cx_cursor);
UniqueAdd(ref_type_def->uses, loc);
}
ClangCursor::VisitResult VisitDeclForTypeUsageVisitor(
ClangCursor cursor,
ClangCursor parent,
VisitDeclForTypeUsageParam* param) {
switch (cursor.get_kind()) {
case CXCursor_TemplateRef:
case CXCursor_TypeRef:
if (param->previous_cursor) {
VisitDeclForTypeUsageVisitorHandler(param->previous_cursor.value(),
param);
}
param->previous_cursor = cursor;
return ClangCursor::VisitResult::Continue;
// We do not want to recurse for everything, since if we do that we will end
// up visiting method definition bodies/etc. Instead, we only recurse for
// things that can logically appear as part of an inline variable
// initializer,
// ie,
//
// class Foo {
// int x = (Foo)3;
// }
case CXCursor_CallExpr:
case CXCursor_CStyleCastExpr:
case CXCursor_CXXStaticCastExpr:
case CXCursor_CXXReinterpretCastExpr:
return ClangCursor::VisitResult::Recurse;
default:
return ClangCursor::VisitResult::Continue;
}
return ClangCursor::VisitResult::Continue;
}
// Finds the cursor associated with the declaration type of |cursor|. This
// strips
// qualifies from |cursor| (ie, Foo* => Foo) and removes template arguments
// (ie, Foo<A,B> => Foo<*,*>).
optional<IndexTypeId> ResolveToDeclarationType(IndexFile* db,
ClangCursor cursor) {
ClangCursor declaration = cursor.get_declaration();
declaration = declaration.template_specialization_to_template_definition();
std::string usr = declaration.get_usr();
if (usr != "")
return db->ToTypeId(usr);
return nullopt;
}
// Add usages to any seen TypeRef or TemplateRef under the given |decl_cursor|.
// This returns the first seen TypeRef or TemplateRef value, which can be
// useful if trying to figure out ie, what a using statement refers to. If
// trying to generally resolve a cursor to a type, use
// ResolveToDeclarationType, which works in more scenarios.
optional<IndexTypeId> AddDeclTypeUsages(
IndexFile* db,
ClangCursor decl_cursor,
const CXIdxContainerInfo* semantic_container,
const CXIdxContainerInfo* lexical_container) {
//
// The general AST format for definitions follows this pattern:
//
// template<typename A, typename B>
// struct Container;
//
// struct S1;
// struct S2;
//
// Container<Container<S1, S2>, S2> foo;
//
// =>
//
// VarDecl
// TemplateRef Container
// TemplateRef Container
// TypeRef struct S1
// TypeRef struct S2
// TypeRef struct S2
//
//
// Here is another example:
//
// enum A {};
// enum B {};
//
// template<typename T>
// struct Foo {
// struct Inner {};
// };
//
// Foo<A>::Inner a;
// Foo<B> b;
//
// =>
//
// EnumDecl A
// EnumDecl B
// ClassTemplate Foo
// TemplateTypeParameter T
// StructDecl Inner
// VarDecl a
// TemplateRef Foo
// TypeRef enum A
// TypeRef struct Foo<enum A>::Inner
// CallExpr Inner
// VarDecl b
// TemplateRef Foo
// TypeRef enum B
// CallExpr Foo
//
//
// Determining the actual type of the variable/declaration from just the
// children is tricky. Doing so would require looking up the template
// definition associated with a TemplateRef, figuring out how many children
// it has, and then skipping that many TypeRef values. This also has to work
// with the example below (skipping the last TypeRef). As a result, we
// determine variable types using |ResolveToDeclarationType|.
//
//
// We skip the last type reference for methods/variables which are defined
// out-of-line w.r.t. the parent type.
//
// S1* Foo::foo() {}
//
// The above example looks like this in the AST:
//
// CXXMethod foo
// TypeRef struct S1
// TypeRef class Foo
// CompoundStmt
// ...
//
// The second TypeRef is an uninteresting usage.
bool process_last_type_ref = true;
if (IsTypeDefinition(semantic_container) &&
!IsTypeDefinition(lexical_container)) {
//
// In some code, such as the following example, we receive a cursor which is
// not
// a definition and is not associated with a definition due to an error
// condition.
// In this case, it is the Foo::Foo constructor.
//
// struct Foo {};
//
// template<class T>
// Foo::Foo() {}
//
if (!decl_cursor.is_definition()) {
ClangCursor def = decl_cursor.get_definition();
if (def.get_kind() != CXCursor_FirstInvalid)
decl_cursor = def;
}
process_last_type_ref = false;
}
VisitDeclForTypeUsageParam param(db);
decl_cursor.VisitChildren(&VisitDeclForTypeUsageVisitor, &param);
// VisitDeclForTypeUsageVisitor guarantees that if there are multiple TypeRef
// children, the first one will always be visited.
if (param.previous_cursor && process_last_type_ref) {
VisitDeclForTypeUsageVisitorHandler(param.previous_cursor.value(), &param);
} else {
// If we are not processing the last type ref, it *must* be a TypeRef or
// TemplateRef.
//
// We will not visit every child if the is_interseting is false, so
// previous_cursor
// may not point to the last TemplateRef.
assert(param.previous_cursor.has_value() == false ||
(param.previous_cursor.value().get_kind() == CXCursor_TypeRef ||
param.previous_cursor.value().get_kind() == CXCursor_TemplateRef));
}
return param.initial_type;
}
// Various versions of LLVM (ie, 4.0) will not visit inline variable references
// for template arguments.
ClangCursor::VisitResult AddDeclInitializerUsagesVisitor(ClangCursor cursor,
ClangCursor parent,
IndexFile* db) {
/*
We need to index the |DeclRefExpr| below (ie, |var| inside of
Foo<int>::var).
template<typename T>
struct Foo {
static constexpr int var = 3;
};
int a = Foo<int>::var;
=>
VarDecl a
UnexposedExpr var
DeclRefExpr var
TemplateRef Foo
*/
switch (cursor.get_kind()) {
case CXCursor_DeclRefExpr: {
if (cursor.get_referenced().get_kind() != CXCursor_VarDecl)
break;
// TODO: when we resolve the template type to the definition, we get a
// different USR.
// ClangCursor ref =
// cursor.get_referenced().template_specialization_to_template_definition().get_type().strip_qualifiers().get_usr();
// std::string ref_usr =
// cursor.get_referenced().template_specialization_to_template_definition().get_type().strip_qualifiers().get_usr();
std::string ref_usr =
cursor.get_referenced()
.template_specialization_to_template_definition()
.get_usr();
// std::string ref_usr = ref.get_usr();
if (ref_usr == "")
break;
Range loc = ResolveSpelling(cursor.cx_cursor);
IndexVarId ref_id = db->ToVarId(ref_usr);
IndexVar* ref_def = db->Resolve(ref_id);
UniqueAdd(ref_def->uses, loc);
break;
}
default:
break;
}
return ClangCursor::VisitResult::Recurse;
}
void AddDeclInitializerUsages(IndexFile* db, ClangCursor decl_cursor) {
decl_cursor.VisitChildren(&AddDeclInitializerUsagesVisitor, db);
}
bool AreEqualLocations(CXIdxLoc loc, CXCursor cursor) {
// clang_getCursorExtent
// clang_Cursor_getSpellingNameRange
return clang_equalLocations(
clang_indexLoc_getCXSourceLocation(loc),
// clang_getRangeStart(clang_getCursorExtent(cursor)));
clang_getRangeStart(clang_Cursor_getSpellingNameRange(cursor, 0, 0)));
}
ClangCursor::VisitResult VisitMacroDefinitionAndExpansions(ClangCursor cursor,
ClangCursor parent,
IndexParam* param) {
switch (cursor.get_kind()) {
case CXCursor_MacroDefinition:
case CXCursor_MacroExpansion: {
// Resolve location, find IndexFile instance.
CXSourceRange cx_source_range =
clang_Cursor_getSpellingNameRange(cursor.cx_cursor, 0, 0);
CXSourceLocation start = clang_getRangeStart(cx_source_range);
if (clang_Location_isInSystemHeader(start))
break;
CXFile file;
Range decl_loc_spelling = Resolve(cx_source_range, &file);
IndexFile* db = ConsumeFile(param, file);
if (!db)
break;
// TODO: Considering checking clang_Cursor_isMacroFunctionLike, but the
// only real difference will be that we show 'callers' instead of 'refs'
// (especially since macros cannot have overrides)
std::string decl_usr;
if (cursor.get_kind() == CXCursor_MacroDefinition)
decl_usr = cursor.get_usr();
else
decl_usr = cursor.get_referenced().get_usr();
IndexVarId var_id = db->ToVarId(decl_usr);
IndexVar* var_def = db->Resolve(var_id);
UniqueAdd(var_def->uses, decl_loc_spelling);
if (cursor.get_kind() == CXCursor_MacroDefinition) {
CXSourceRange cx_extent = clang_getCursorExtent(cursor.cx_cursor);
var_def->def.short_name = cursor.get_display_name();
var_def->def.detailed_name = cursor.get_display_name();
var_def->def.hover =
"#define " + GetDocumentContentInRange(param->tu->cx_tu, cx_extent);
var_def->def.is_local = false;
var_def->def.is_macro = true;
var_def->def.definition_spelling = decl_loc_spelling;
var_def->def.definition_extent = Resolve(cx_extent, nullptr);
}
break;
}
default:
break;
}
return ClangCursor::VisitResult::Continue;
}
void OnIndexDeclaration(CXClientData client_data, const CXIdxDeclInfo* decl) {
if (!kIndexStdDeclarations &&
clang_Location_isInSystemHeader(
clang_indexLoc_getCXSourceLocation(decl->loc)))
return;
IndexParam* param = static_cast<IndexParam*>(client_data);
// Track all constructor declarations, as we may need to use it to manually
// associate std::make_unique and the like as constructor invocations.
if (decl->entityInfo->kind == CXIdxEntity_CXXConstructor) {
param->ctors.NotifyConstructor(decl->cursor);
}
CXFile file;
clang_getSpellingLocation(clang_indexLoc_getCXSourceLocation(decl->loc),
&file, nullptr, nullptr, nullptr);
IndexFile* db = ConsumeFile(param, file);
if (!db)
return;
// The language of this declaration
LanguageId decl_lang = [decl]() {
switch (clang_getCursorLanguage(decl->cursor)) {
case CXLanguage_C:
return LanguageId::C;
case CXLanguage_CPlusPlus:
return LanguageId::Cpp;
case CXLanguage_ObjC:
return LanguageId::ObjC;
default:
return LanguageId::Unknown;
};
}();
// Only update the file language if the new language is "greater" than the old
if (decl_lang > db->language) {
db->language = decl_lang;
}
NamespaceHelper* ns = &param->ns;
switch (decl->entityInfo->kind) {
case CXIdxEntity_CXXNamespace: {
ns->RegisterQualifiedName(decl->entityInfo->USR, decl->semanticContainer,
decl->entityInfo->name);
break;
}
case CXIdxEntity_ObjCProperty:
case CXIdxEntity_ObjCIvar:
case CXIdxEntity_EnumConstant:
case CXIdxEntity_Field:
case CXIdxEntity_Variable:
case CXIdxEntity_CXXStaticVariable: {
Range decl_loc_spelling = ResolveSpelling(decl->cursor);
ClangCursor decl_cursor = decl->cursor;
// Do not index implicit template instantiations.
if (decl_cursor !=
decl_cursor.template_specialization_to_template_definition())
break;
std::string decl_usr = decl_cursor.get_usr();
IndexVarId var_id = db->ToVarId(decl->entityInfo->USR);
IndexVar* var = db->Resolve(var_id);
// TODO: Eventually run with this if. Right now I want to iron out bugs
// this may shadow.
// TODO: Verify this gets called multiple times
// if (!decl->isRedeclaration) {
var->def.short_name = decl->entityInfo->name;
std::string type_name =
ToString(clang_getTypeSpelling(clang_getCursorType(decl->cursor)));
// clang may report "(lambda at foo.cc)" which end up being a very long
// string. Shorten it to just "lambda".
if (type_name.find("(lambda at") != std::string::npos)
type_name = "lambda";
{
std::string qualified_name =
ns->QualifiedName(decl->semanticContainer, var->def.short_name);
if (decl->entityInfo->kind == CXIdxEntity_EnumConstant)
var->def.detailed_name = std::move(qualified_name);
else
var->def.detailed_name = type_name + " " + std::move(qualified_name);
}
bool is_system = clang_Location_isInSystemHeader(
clang_indexLoc_getCXSourceLocation(decl->loc));
var->def.is_global =
!is_system && IsGlobalContainer(decl->semanticContainer);
var->def.is_member =
!is_system && IsTypeDefinition(decl->semanticContainer);
var->def.is_local =
!is_system && !var->def.is_global && !var->def.is_member;
//}
if (decl->isDefinition) {
var->def.definition_spelling = ResolveSpelling(decl->cursor);
var->def.definition_extent = ResolveExtent(decl->cursor);
;
} else {
var->def.declaration = ResolveSpelling(decl->cursor);
}
UniqueAdd(var->uses, decl_loc_spelling);
AddDeclInitializerUsages(db, decl_cursor);
var = db->Resolve(var_id);
// Declaring variable type information. Note that we do not insert an
// interesting reference for parameter declarations - that is handled when
// the function declaration is encountered since we won't receive ParmDecl
// declarations for unnamed parameters.
// TODO: See if we can remove this function call.
AddDeclTypeUsages(db, decl_cursor, decl->semanticContainer,
decl->lexicalContainer);
// We don't need to assign declaring type multiple times if this variable
// has already been seen.
if (!decl->isRedeclaration) {
optional<IndexTypeId> var_type =
ResolveToDeclarationType(db, decl_cursor);
if (var_type.has_value()) {
// Don't treat enum definition variables as instantiations.
bool is_enum_member =
decl->semanticContainer &&
decl->semanticContainer->cursor.kind == CXCursor_EnumDecl;
if (!is_enum_member)
db->Resolve(var_type.value())->instances.push_back(var_id);
var->def.variable_type = var_type.value();
}
}
// TODO: Refactor handlers so more things are under 'if
// (!decl->isRedeclaration)'
if (decl->isDefinition && IsTypeDefinition(decl->semanticContainer)) {
IndexTypeId declaring_type_id =
db->ToTypeId(decl->semanticContainer->cursor);
IndexType* declaring_type_def = db->Resolve(declaring_type_id);
var->def.declaring_type = declaring_type_id;
declaring_type_def->def.vars.push_back(var_id);
}
break;
}
case CXIdxEntity_ObjCInstanceMethod:
case CXIdxEntity_ObjCClassMethod:
case CXIdxEntity_Function:
case CXIdxEntity_CXXConstructor:
case CXIdxEntity_CXXDestructor:
case CXIdxEntity_CXXInstanceMethod:
case CXIdxEntity_CXXStaticMethod:
case CXIdxEntity_CXXConversionFunction: {
Range decl_spelling = ResolveSpelling(decl->cursor);
Range decl_extent = ResolveExtent(decl->cursor);
ClangCursor decl_cursor = decl->cursor;
ClangCursor decl_cursor_resolved =
decl_cursor.template_specialization_to_template_definition();
bool is_template_specialization = decl_cursor != decl_cursor_resolved;
IndexFuncId func_id = db->ToFuncId(decl_cursor_resolved.cx_cursor);
IndexFunc* func = db->Resolve(func_id);
// We don't actually need to know the return type, but we need to mark it
// as an interesting usage.
AddDeclTypeUsages(db, decl_cursor, decl->semanticContainer,
decl->lexicalContainer);
// Add definition or declaration. This is a bit tricky because we treat
// template specializations as declarations, even though they are
// technically definitions.
// TODO: Support multiple function definitions, which is common for
// template specializations.
if (decl->isDefinition && !is_template_specialization) {
// assert(!func->def.definition_spelling);
// assert(!func->def.definition_extent);
func->def.definition_spelling = decl_spelling;
func->def.definition_extent = decl_extent;
} else {
IndexFunc::Declaration declaration;
declaration.spelling = decl_spelling;
declaration.extent = decl_extent;
declaration.content = GetDocumentContentInRange(
param->tu->cx_tu, clang_getCursorExtent(decl->cursor));
// Add parameters.
for (ClangCursor arg : decl_cursor.get_arguments()) {
switch (arg.get_kind()) {
case CXCursor_ParmDecl: {
Range param_spelling = ResolveSpelling(arg.cx_cursor);
// If the name is empty (which is common for parameters), clang
// will report a range with length 1, which is not correct.
if (param_spelling.start.column ==
(param_spelling.end.column - 1) &&
arg.get_display_name().empty()) {
param_spelling.end.column -= 1;
}
declaration.param_spellings.push_back(param_spelling);
break;
}
default:
break;
}
}
func->declarations.push_back(declaration);
}
// Emit definition data for the function. We do this even if it isn't a
// definition because there can be, for example, interfaces, or a class
// declaration that doesn't have a definition yet. If we never end up
// indexing the definition, then there will not be any (ie) outline
// information.
if (!is_template_specialization) {
func->def.short_name = decl->entityInfo->name;
// Set the |is_operator| flag to true if the function name starts with
// "operator"
func->def.is_operator =
func->def.short_name.compare(0, 8, "operator") == 0;
// Build detailed name. The type desc looks like void (void *). We
// insert the qualified name before the first '('.
std::string qualified_name =
ns->QualifiedName(decl->semanticContainer, func->def.short_name);
std::string type_desc = decl_cursor.get_type_description();
{
size_t offset = 0;
if (type_desc.back() == ')') {
size_t balance = 0;
for (offset = type_desc.size(); offset;) {
offset--;
if (type_desc[offset] == ')')
balance++;
else if (type_desc[offset] == '(' && --balance == 0)
break;
}
}
if (offset > 0) {
type_desc.insert(offset, qualified_name);
func->def.detailed_name = type_desc;
} else {
// type_desc is probably the name of a typedef.
func->def.detailed_name = type_desc + " " + qualified_name;
}
}
// Add function usage information. We only want to do it once per
// definition/declaration. Do it on definition since there should only
// ever be one of those in the entire program.
if (IsTypeDefinition(decl->semanticContainer)) {
IndexTypeId declaring_type_id =
db->ToTypeId(decl->semanticContainer->cursor);
IndexType* declaring_type_def = db->Resolve(declaring_type_id);
func->def.declaring_type = declaring_type_id;
// Mark a type reference at the ctor/dtor location.
if (decl->entityInfo->kind == CXIdxEntity_CXXConstructor)
UniqueAdd(declaring_type_def->uses, decl_spelling);
if (decl->entityInfo->kind == CXIdxEntity_CXXDestructor) {
Range dtor_type_range = decl_spelling;
dtor_type_range.start.column += 1; // Don't count the leading ~
UniqueAdd(declaring_type_def->uses, dtor_type_range);
}
// Add function to declaring type.
UniqueAdd(declaring_type_def->def.funcs, func_id);
}
// Process inheritance.
if (clang_CXXMethod_isVirtual(decl->cursor)) {
CXCursor* overridden;
unsigned int num_overridden;
clang_getOverriddenCursors(decl->cursor, &overridden,
&num_overridden);
for (unsigned i = 0; i < num_overridden; ++i) {
ClangCursor parent =
ClangCursor(overridden[i])
.template_specialization_to_template_definition();
IndexFuncId parent_id = db->ToFuncId(parent.get_usr());
IndexFunc* parent_def = db->Resolve(parent_id);
func = db->Resolve(func_id); // ToFuncId invalidated func_def
func->def.base.push_back(parent_id);
parent_def->derived.push_back(func_id);
}
clang_disposeOverriddenCursors(overridden);
}
}
break;
}
case CXIdxEntity_Typedef:
case CXIdxEntity_CXXTypeAlias: {
Range decl_loc_spelling = ResolveSpelling(decl->cursor);
// Note we want to fetch the first TypeRef. Running
// ResolveCursorType(decl->cursor) would return
// the type of the typedef/using, not the type of the referenced type.
optional<IndexTypeId> alias_of = AddDeclTypeUsages(
db, decl->cursor, decl->semanticContainer, decl->lexicalContainer);
IndexTypeId type_id = db->ToTypeId(decl->entityInfo->USR);
IndexType* type = db->Resolve(type_id);
if (alias_of)
type->def.alias_of = alias_of.value();
Range spell = ResolveSpelling(decl->cursor);
Range extent = ResolveExtent(decl->cursor);
type->def.definition_spelling = spell;
type->def.definition_extent = extent;
type->def.short_name = decl->entityInfo->name;
type->def.detailed_name =
ns->QualifiedName(decl->semanticContainer, type->def.short_name);
// For Typedef/CXXTypeAlias spanning a few lines, display the declaration
// line, with spelling name replaced with qualified name.
// TODO Think how to display multi-line declaration like `typedef struct {
// ... } foo;` https://github.com/jacobdufault/cquery/issues/29
if (extent.end.line - extent.start.line <
kMaxLinesDisplayTypeAliasDeclarations) {
FileContentsWithOffsets& fc = param->file_contents[db->path];
optional<int> extent_start = fc.ToOffset(extent.start),
spell_start = fc.ToOffset(spell.start),
spell_end = fc.ToOffset(spell.end),
extent_end = fc.ToOffset(extent.end);
if (extent_start && spell_start && spell_end && extent_end) {
type->def.hover =
fc.contents.substr(*extent_start, *spell_start - *extent_start) +
type->def.detailed_name +
fc.contents.substr(*spell_end, *extent_end - *spell_end);
}
}
UniqueAdd(type->uses, decl_loc_spelling);
break;
}
case CXIdxEntity_ObjCProtocol:
case CXIdxEntity_ObjCCategory:
case CXIdxEntity_ObjCClass:
case CXIdxEntity_Enum:
case CXIdxEntity_Union:
case CXIdxEntity_Struct:
case CXIdxEntity_CXXClass: {
Range decl_loc_spelling = ResolveSpelling(decl->cursor);
IndexTypeId type_id = db->ToTypeId(decl->entityInfo->USR);
IndexType* type = db->Resolve(type_id);
// TODO: Eventually run with this if. Right now I want to iron out bugs
// this may shadow.
// TODO: For type section, verify if this ever runs for non definitions?
// if (!decl->isRedeclaration) {
// name can be null in an anonymous struct (see
// tests/types/anonymous_struct.cc).
if (decl->entityInfo->name) {
ns->RegisterQualifiedName(decl->entityInfo->USR,
decl->semanticContainer,
decl->entityInfo->name);
type->def.short_name = decl->entityInfo->name;
} else {
type->def.short_name = "<anonymous>";
}
type->def.detailed_name =
ns->QualifiedName(decl->semanticContainer, type->def.short_name);
// }
if (decl->isDefinition) {
type->def.definition_spelling = ResolveSpelling(decl->cursor);
type->def.definition_extent = ResolveExtent(decl->cursor);
}
UniqueAdd(type->uses, decl_loc_spelling);
// type_def->alias_of
// type_def->funcs
// type_def->types
// type_def->uses
// type_def->vars
// Add type-level inheritance information.
CXIdxCXXClassDeclInfo const* class_info =
clang_index_getCXXClassDeclInfo(decl);
if (class_info) {
for (unsigned int i = 0; i < class_info->numBases; ++i) {
const CXIdxBaseClassInfo* base_class = class_info->bases[i];
AddDeclTypeUsages(db, base_class->cursor, decl->semanticContainer,
decl->lexicalContainer);
optional<IndexTypeId> parent_type_id =
ResolveToDeclarationType(db, base_class->cursor);
// type_def ptr could be invalidated by ResolveToDeclarationType.
type = db->Resolve(type_id);
if (parent_type_id) {
IndexType* parent_type_def = db->Resolve(parent_type_id.value());
parent_type_def->derived.push_back(type_id);
type->def.parents.push_back(parent_type_id.value());
}
}
}
break;
}
default:
std::cerr << "!! Unhandled indexDeclaration: "
<< ClangCursor(decl->cursor).ToString() << " at "
<< ResolveSpelling(decl->cursor).start.ToString() << std::endl;
std::cerr << " entityInfo->kind = " << decl->entityInfo->kind
<< std::endl;
std::cerr << " entityInfo->USR = " << decl->entityInfo->USR
<< std::endl;
if (decl->declAsContainer)
std::cerr << " declAsContainer = "
<< ClangCursor(decl->declAsContainer->cursor).ToString()
<< std::endl;
if (decl->semanticContainer)
std::cerr << " semanticContainer = "
<< ClangCursor(decl->semanticContainer->cursor).ToString()
<< std::endl;
if (decl->lexicalContainer)
std::cerr << " lexicalContainer = "
<< ClangCursor(decl->lexicalContainer->cursor).get_usr()
<< std::endl;
break;
}
}
bool IsFunctionCallContext(CXCursorKind kind) {
switch (kind) {
case CXCursor_FunctionDecl:
case CXCursor_CXXMethod:
case CXCursor_Constructor:
case CXCursor_Destructor:
case CXCursor_ConversionFunction:
case CXCursor_FunctionTemplate:
case CXCursor_OverloadedDeclRef:
// TODO: we need to test lambdas
case CXCursor_LambdaExpr:
return true;
default:
break;
}
return false;
}
void OnIndexReference(CXClientData client_data, const CXIdxEntityRefInfo* ref) {
// TODO: Use clang_getFileUniqueID
CXFile file;
clang_getSpellingLocation(clang_indexLoc_getCXSourceLocation(ref->loc), &file,
nullptr, nullptr, nullptr);
IndexParam* param = static_cast<IndexParam*>(client_data);
IndexFile* db = ConsumeFile(param, file);
if (!db)
return;
ClangCursor cursor(ref->cursor);
switch (ref->referencedEntity->kind) {
case CXIdxEntity_CXXNamespaceAlias:
case CXIdxEntity_CXXNamespace: {
// We don't index namespace usages.
break;
}
case CXIdxEntity_ObjCProperty:
case CXIdxEntity_ObjCIvar:
case CXIdxEntity_EnumConstant:
case CXIdxEntity_CXXStaticVariable:
case CXIdxEntity_Variable:
case CXIdxEntity_Field: {
Range loc_spelling = ResolveSpelling(ref->cursor);
ClangCursor referenced = ref->referencedEntity->cursor;
referenced = referenced.template_specialization_to_template_definition();
IndexVarId var_id = db->ToVarId(referenced.get_usr());
IndexVar* var = db->Resolve(var_id);
// Lambda paramaters are not processed by OnIndexDeclaration and
// may not have a short_name yet. Note that we only process the lambda
// parameter as a definition if it is in the same file as the reference,
// as lambdas cannot be split across files.
if (var->def.short_name.empty()) {
CXFile referenced_file;
Range spelling =
ResolveSpelling(referenced.cx_cursor, &referenced_file);
if (file == referenced_file) {
var->def.definition_spelling = spelling;
var->def.definition_extent = ResolveExtent(referenced.cx_cursor);
// TODO Some of the logic here duplicates CXIdxEntity_Variable branch
// of OnIndexDeclaration. But there `decl` is of type CXIdxDeclInfo
// and has more information, thus not easy to reuse the code.
var->def.short_name = referenced.get_spelling();
std::string type_name = ToString(
clang_getTypeSpelling(clang_getCursorType(referenced.cx_cursor)));
var->def.detailed_name = type_name + " " + var->def.short_name;
var->def.is_local = false;
var->def.is_member = true;
UniqueAdd(var->uses, ResolveSpelling(referenced.cx_cursor));
AddDeclInitializerUsages(db, referenced.cx_cursor);
// TODO Use proper semantic_container and lexical_container.
AddDeclTypeUsages(db, referenced.cx_cursor, nullptr, nullptr);
// TODO Other logic in OnIndexDeclaration may need to be adapted.
}
}
UniqueAdd(var->uses, loc_spelling);
break;
}
case CXIdxEntity_CXXConversionFunction:
case CXIdxEntity_CXXStaticMethod:
case CXIdxEntity_CXXInstanceMethod:
case CXIdxEntity_ObjCInstanceMethod:
case CXIdxEntity_ObjCClassMethod:
case CXIdxEntity_Function:
case CXIdxEntity_CXXConstructor:
case CXIdxEntity_CXXDestructor: {
// TODO: Redirect container to constructor for the following example, ie,
// we should be inserting an outgoing function call from the Foo
// ctor.
//
// int Gen() { return 5; }
// class Foo {
// int x = Gen();
// }
// TODO: search full history?
Range loc_spelling = ResolveSpelling(ref->cursor);
IndexFuncId called_id = db->ToFuncId(ref->referencedEntity->USR);
IndexFunc* called = db->Resolve(called_id);
// libclang doesn't provide a nice api to check if the given function
// call is implicit. ref->kind should probably work (it's either direct
// or implicit), but libclang only supports implicit for objective-c.
bool is_implicit =
CanBeCalledImplicitly(ref->referencedEntity->kind) &&
// Treats empty short_name as an implicit call like implicit move
// constructor in `vector<int> a = f();`
(called->def.short_name.empty() ||
// For explicit destructor call, ref->cursor may be "~" while
// called->def.short_name is "~A"
// "~A" is not a substring of ref->cursor, but we should take this
// case as not `is_implicit`.
(called->def.short_name[0] != '~' &&
!CursorSpellingContainsString(ref->cursor, param->tu->cx_tu,
called->def.short_name)));
if (IsFunctionCallContext(ref->container->cursor.kind)) {
IndexFuncId caller_id = db->ToFuncId(ref->container->cursor);
IndexFunc* caller = db->Resolve(caller_id);
// Calling db->ToFuncId invalidates the FuncDef* ptrs.
called = db->Resolve(called_id);
AddFuncRef(&caller->def.callees,
IndexFuncRef(called_id, loc_spelling, is_implicit));
AddFuncRef(&called->callers,
IndexFuncRef(caller_id, loc_spelling, is_implicit));
} else {
AddFuncRef(&called->callers, IndexFuncRef(loc_spelling, is_implicit));
}
// Checks if |str| starts with |start|. Ignores case.
auto str_begin = [](const char* start, const char* str) {
while (*start && *str) {
char a = tolower(*start);
char b = tolower(*str);
if (a != b)
return false;
++start;
++str;
}
return !*start;
};
bool is_template = ref->referencedEntity->templateKind !=
CXIdxEntityCXXTemplateKind::CXIdxEntity_NonTemplate;
if (is_template && str_begin("make", ref->referencedEntity->name)) {
// Try to find the return type of called function. That type will have
// the constructor function we add a usage to.
optional<ClangCursor> opt_found_type = FindType(ref->cursor);
if (opt_found_type) {
std::string ctor_type_usr =
opt_found_type->get_referenced().get_usr();
ClangCursor call_cursor = ref->cursor;
// Build a type description from the parameters of the call, so we
// can try to find a constructor with the same type description.
std::vector<std::string> call_type_desc;
for (ClangType type : call_cursor.get_type().get_arguments()) {
std::string type_desc = type.get_spelling();
if (!type_desc.empty())
call_type_desc.push_back(type_desc);
}
// Try to find the constructor and add a reference.
optional<std::string> ctor_usr =
param->ctors.TryFindConstructorUsr(ctor_type_usr, call_type_desc);
if (ctor_usr) {
IndexFunc* ctor = db->Resolve(db->ToFuncId(*ctor_usr));
AddFuncRef(&ctor->callers,
IndexFuncRef(loc_spelling, true /*is_implicit*/));
}
}
}
break;
}
case CXIdxEntity_ObjCCategory:
case CXIdxEntity_ObjCProtocol:
case CXIdxEntity_ObjCClass:
case CXIdxEntity_Typedef:
case CXIdxEntity_CXXTypeAlias:
case CXIdxEntity_Enum:
case CXIdxEntity_Union:
case CXIdxEntity_Struct:
case CXIdxEntity_CXXClass: {
ClangCursor referenced_cursor = ref->referencedEntity->cursor;
referenced_cursor =
referenced_cursor.template_specialization_to_template_definition();
IndexTypeId referenced_id = db->ToTypeId(referenced_cursor.get_usr());
IndexType* referenced = db->Resolve(referenced_id);
//
// The following will generate two TypeRefs to Foo, both located at the
// same spot (line 3, column 3). One of the parents will be set to
// CXIdxEntity_Variable, the other will be CXIdxEntity_Function. There
// does not appear to be a good way to disambiguate these references, as
// using parent type alone breaks other indexing tasks.
//
// To work around this, we check to see if the usage location has been
// inserted into all_uses previously.
//
// struct Foo {};
// void Make() {
// Foo f;
// }
//
UniqueAdd(referenced->uses, ResolveSpelling(ref->cursor));
break;
}
default:
std::cerr << "!! Unhandled indexEntityReference: " << cursor.ToString()
<< " at " << ResolveSpelling(ref->cursor).start.ToString()
<< std::endl;
std::cerr << " ref->referencedEntity->kind = "
<< ref->referencedEntity->kind << std::endl;
if (ref->parentEntity)
std::cerr << " ref->parentEntity->kind = "
<< ref->parentEntity->kind << std::endl;
std::cerr << " ref->loc = "
<< ResolveSpelling(ref->cursor).start.ToString() << std::endl;
std::cerr << " ref->kind = " << ref->kind << std::endl;
if (ref->parentEntity)
std::cerr << " parentEntity = "
<< ClangCursor(ref->parentEntity->cursor).ToString()
<< std::endl;
if (ref->referencedEntity)
std::cerr << " referencedEntity = "
<< ClangCursor(ref->referencedEntity->cursor).ToString()
<< std::endl;
if (ref->container)
std::cerr << " container = "
<< ClangCursor(ref->container->cursor).ToString()
<< std::endl;
break;
}
}
FileContents::FileContents(const std::string& path, const std::string& content)
: path(path), content(content) {}
FileContentsWithOffsets::FileContentsWithOffsets() : line_offsets_{0} {}
FileContentsWithOffsets::FileContentsWithOffsets(std::string s) {
contents = s;
line_offsets_.push_back(0);
for (size_t i = 0; i < s.size(); i++)
if (s[i] == '\n')
line_offsets_.push_back(i + 1);
}
optional<int> FileContentsWithOffsets::ToOffset(Position p) const {
if (0 < p.line && size_t(p.line) <= line_offsets_.size()) {
int ret = line_offsets_[p.line - 1] + p.column - 1;
if (size_t(ret) <= contents.size())
return {ret};
}
return nullopt;
}
optional<std::string> FileContentsWithOffsets::ContentsInRange(
Range range) const {
optional<int> start_offset = ToOffset(range.start),
end_offset = ToOffset(range.end);
if (start_offset && end_offset && *start_offset < *end_offset)
return {contents.substr(*start_offset, *end_offset - *start_offset)};
return nullopt;
}
std::vector<std::unique_ptr<IndexFile>> Parse(
Config* config,
FileConsumer::SharedState* file_consumer_shared,
std::string file,
const std::vector<std::string>& args,
const std::vector<FileContents>& file_contents,
PerformanceImportFile* perf,
ClangIndex* index,
bool dump_ast) {
if (!config->enableIndexing)
return {};
file = NormalizePath(file);
Timer timer;
std::vector<CXUnsavedFile> unsaved_files;
for (const FileContents& contents : file_contents) {
CXUnsavedFile unsaved;
unsaved.Filename = contents.path.c_str();
unsaved.Contents = contents.content.c_str();
unsaved.Length = (unsigned long)contents.content.size();
unsaved_files.push_back(unsaved);
}
std::unique_ptr<ClangTranslationUnit> tu = ClangTranslationUnit::Create(
index, file, args, unsaved_files,
CXTranslationUnit_KeepGoing |
CXTranslationUnit_DetailedPreprocessingRecord);
if (!tu)
return {};
perf->index_parse = timer.ElapsedMicrosecondsAndReset();
if (dump_ast)
Dump(clang_getTranslationUnitCursor(tu->cx_tu));
return ParseWithTu(file_consumer_shared, perf, tu.get(), index, file, args,
unsaved_files);
}
std::vector<std::unique_ptr<IndexFile>> ParseWithTu(
FileConsumer::SharedState* file_consumer_shared,
PerformanceImportFile* perf,
ClangTranslationUnit* tu,
ClangIndex* index,
const std::string& file,
const std::vector<std::string>& args,
const std::vector<CXUnsavedFile>& file_contents) {
Timer timer;
IndexerCallbacks callback = {0};
// Available callbacks:
// - abortQuery
// - enteredMainFile
// - ppIncludedFile
// - importedASTFile
// - startedTranslationUnit
callback.diagnostic = &OnIndexDiagnostic;
callback.ppIncludedFile = &OnIndexIncludedFile;
callback.indexDeclaration = &OnIndexDeclaration;
callback.indexEntityReference = &OnIndexReference;
FileConsumer file_consumer(file_consumer_shared, file);
IndexParam param(tu, &file_consumer);
for (const CXUnsavedFile& contents : file_contents) {
param.file_contents.emplace(
contents.Filename, std::string(contents.Contents, contents.Length));
}
CXFile cx_file = clang_getFile(tu->cx_tu, file.c_str());
param.primary_file = ConsumeFile(&param, cx_file);
CXIndexAction index_action = clang_IndexAction_create(index->cx_index);
// NOTE: libclang re-enables crash recovery whenever a new index is created.
// To have clang crash toggle crash recovery right before calling
// clang_indexTranslationUnit.
// clang_toggleCrashRecovery(0);
// |index_result| is a CXErrorCode instance.
int index_result = clang_indexTranslationUnit(
index_action, &param, &callback, sizeof(IndexerCallbacks),
CXIndexOpt_IndexFunctionLocalSymbols |
CXIndexOpt_SkipParsedBodiesInSession |
CXIndexOpt_IndexImplicitTemplateInstantiations,
tu->cx_tu);
if (index_result != CXError_Success) {
LOG_S(WARNING) << "Indexing " << file
<< " failed with errno=" << index_result;
return {};
}
clang_IndexAction_dispose(index_action);
ClangCursor(clang_getTranslationUnitCursor(tu->cx_tu))
.VisitChildren(&VisitMacroDefinitionAndExpansions, &param);
perf->index_build = timer.ElapsedMicrosecondsAndReset();
auto result = param.file_consumer->TakeLocalState();
for (std::unique_ptr<IndexFile>& entry : result) {
entry->import_file = file;
entry->args = args;
// Update file contents and modification time.
entry->file_contents_ = param.file_contents[entry->path].contents;
entry->last_modification_time = param.file_modification_times[entry->path];
// Update dependencies for the file. Do not include the file in its own
// dependency set.
entry->dependencies = param.seen_files;
entry->dependencies.erase(
std::remove(entry->dependencies.begin(), entry->dependencies.end(),
entry->path),
entry->dependencies.end());
// Make sure we are using correct file contents.
for (const CXUnsavedFile& contents : file_contents) {
if (entry->path == contents.Filename)
entry->file_contents_ = std::string(contents.Contents, contents.Length);
}
}
return result;
}
void IndexInit() {
clang_enableStackTraces();
clang_toggleCrashRecovery(1);
}
void ClangSanityCheck() {
std::vector<const char*> args = {"clang", "tests/vars/class_member.cc"};
unsigned opts = 0;
CXIndex index = clang_createIndex(0, 1);
CXTranslationUnit tu;
clang_parseTranslationUnit2FullArgv(index, nullptr, args.data(), args.size(),
nullptr, 0, opts, &tu);
assert(tu);
IndexerCallbacks callback = {0};
callback.abortQuery = [](CXClientData client_data, void* reserved) {
return 0;
};
callback.diagnostic = [](CXClientData client_data,
CXDiagnosticSet diagnostics, void* reserved) {};
callback.enteredMainFile = [](CXClientData client_data, CXFile mainFile,
void* reserved) -> CXIdxClientFile {
return nullptr;
};
callback.ppIncludedFile = [](
CXClientData client_data,
const CXIdxIncludedFileInfo* file) -> CXIdxClientFile { return nullptr; };
callback.importedASTFile = [](
CXClientData client_data,
const CXIdxImportedASTFileInfo*) -> CXIdxClientASTFile {
return nullptr;
};
callback.startedTranslationUnit = [](CXClientData client_data,
void* reserved) -> CXIdxClientContainer {
return nullptr;
};
callback.indexDeclaration = [](CXClientData client_data,
const CXIdxDeclInfo* decl) {};
callback.indexEntityReference = [](CXClientData client_data,
const CXIdxEntityRefInfo* ref) {};
const unsigned kIndexOpts = 0;
CXIndexAction index_action = clang_IndexAction_create(index);
int index_param = 0;
clang_toggleCrashRecovery(0);
clang_indexTranslationUnit(index_action, &index_param, &callback,
sizeof(IndexerCallbacks), kIndexOpts, tu);
clang_IndexAction_dispose(index_action);
clang_disposeTranslationUnit(tu);
clang_disposeIndex(index);
}
std::string GetClangVersion() {
return ToString(clang_getClangVersion());
}