This commit is contained in:
Zengtudor 2024-10-23 21:42:28 +08:00
parent 09aeffd2e0
commit 17a4f69f93

View File

@ -1,19 +1,25 @@
# 线性结构
## 双端栈
双端栈(**Deque Stack** 或 **Double-ended Stack**)是一种允许在两端进行操作的栈数据结构。通常的栈只能在一端进行操作(称为**栈顶**),即**后进先出**LIFO, Last In First Out但双端栈允许在栈的**两端**都可以执行进栈和出栈操作。
>注意双端栈和双端队列在C++中都可以用std::deque来实现只有使用上的区别
> 注意双端栈和双端队列在C++中都可以用std::deque来实现只有使用上的区别
### 双端栈的特点
1. **两端操作**:双端栈可以在栈的**两端**进行进栈push和出栈pop即可以从栈的前端或后端插入和删除元素。
2. **灵活性**:与单端栈相比,双端栈提供了更大的灵活性,因为可以根据需要选择从哪一端操作数据。
### 操作
假设双端栈具有两个端点:
- **左端front**
- **右端back**
主要操作包括:
- **`push_front()`**:在左端插入元素。
- **`push_back()`**:在右端插入元素。
- **`pop_front()`**:从左端弹出元素。
@ -22,10 +28,13 @@
- **`back()`**:访问右端的元素。
### 实现
双端栈通常是通过**双端队列dequedouble-ended queue**实现的。C++ 中的标准库容器 `std::deque` 就是一个可以在两端高效进行插入和删除操作的数据结构,非常适合用来实现双端栈。
### 应用
双端栈适合用于一些需要在两端频繁操作的场景,比如:
- **滑动窗口问题**:在滑动窗口中,你可能需要同时在窗口的两端添加或移除元素。
- **双向搜索算法**:在某些搜索算法中,可以从两端同时进行搜索。
@ -34,6 +43,7 @@
双端队列Deque**Double-Ended Queue**)是一种特殊的队列数据结构,它允许在**两端进行插入和删除**操作。与普通队列(只能从一端入队、另一端出队)不同,双端队列可以从**队首和队尾**进行入队和出队操作,因此具有更大的灵活性。
### 双端队列的主要操作:
1. **从队首插入元素push_front**:在队列的前端插入一个元素。
2. **从队尾插入元素push_back**:在队列的末尾插入一个元素。
3. **从队首删除元素pop_front**:移除队列前端的元素。
@ -42,18 +52,22 @@
6. **访问队尾元素back**:查看队列末端的元素。
### 双端队列的分类:
- **输入受限双端队列**:只允许从队首删除元素,但只能从一端插入。
- **输出受限双端队列**:只允许从队尾插入元素,但可以从两端删除元素。
### 双端队列的常见应用:
- **滑动窗口问题**:通过双端队列可以高效地维护一组窗口内的最大或最小值,常用于动态数据流的问题。
- **任务调度**:在一些调度问题中,可以根据任务的优先级从两端进行任务插入和删除。
### 实现方式:
双端队列可以使用**双向链表**或**动态数组**实现。使用双向链表可以在常数时间内从两端插入和删除元素,而使用动态数组在平均情况下可以实现较高的访问效率,但插入和删除操作的效率可能会有所下降,尤其是在需要调整数组大小的时候。
### C++中的双端队列:
C++ 标准库中提供了`deque`容器,它支持双端队列的所有基本操作。例如:
C++ 标准库中提供了 `deque`容器,它支持双端队列的所有基本操作。例如:
```cpp
#include <deque>
@ -61,16 +75,16 @@ C++ 标准库中提供了`deque`容器,它支持双端队列的所有基本操
int main() {
std::deque<int> dq;
dq.push_back(1); // 在队尾插入1
dq.push_front(2); // 在队首插入2
std::cout << dq.front() << std::endl; // 输出队首元素2
std::cout << dq.back() << std::endl; // 输出队尾元素1
dq.pop_back(); // 移除队尾元素
dq.pop_front(); // 移除队首元素
return 0;
}
```
@ -223,6 +237,7 @@ public:
```
### 代码解释
- **push_front****push_back** 分别用于在队首和队尾插入新元素。
- **pop_front****pop_back** 分别用于从队首和队尾删除元素。
- **getFront****getBack** 用于访问队首和队尾元素。
@ -262,6 +277,7 @@ int main() {
Front: 10
Back: 10
```
在 C++ 标准库中,`deque`(双端队列)既支持**双端插入和删除**,又可以进行**随机访问**这与其底层实现方式有关。C++ 的 `deque` 并不是直接用链表实现的,而是通过一种特殊的**分段连续存储**segmented array来实现这使得它可以兼具高效的双端插入删除和随机访问功能。
### `deque` 的底层实现原理
@ -269,39 +285,47 @@ Back: 10
`deque` 的底层通常是一个类似**动态数组的块表结构**,由一组**连续的小块**chunk 或者 block组成。每一个小块大小固定而这些小块之间不需要在内存中是连续的。为了管理这些小块`deque` 会使用一个指针数组(类似索引表),每个指针指向一个块。这种设计使得 `deque` 既能像链表一样支持高效的双端操作,也能像数组一样支持随机访问。
#### 具体结构:
1. **块表map**`deque` 使用一个指针数组来管理多个小块chunk/block。每个指针指向一个内存块每个内存块保存一定数量的元素。
2. **小块block**:每个小块内存大小固定,`deque` 元素分布在不同的小块中,但不同的小块在物理内存中不一定连续。
3. **分段存储**:当你从队首或队尾插入元素时,`deque` 会动态调整块表和小块的数量,不需要像数组那样整体移动数据。
#### 关键点:
- **插入和删除**:从队首和队尾插入删除元素时,`deque` 只需在块表的头部或尾部插入新块或者移除块表的头尾块。因此插入删除的开销是常数时间O(1)),和链表类似。
- **随机访问**:尽管不同小块的内存位置不连续,但由于使用了块表和固定大小的小块,随机访问时,`deque` 通过两步操作来计算元素位置:
- **首先确定元素在块表中的位置**:通过除法 `index / block_size`,确定该元素属于哪个块。
- **再定位块内偏移**:通过取模 `index % block_size`,确定该元素在该块内的偏移量。
这两步操作的时间复杂度都是 O(1),因此 `deque` 可以像数组一样提供 O(1) 的随机访问。
### `deque``vector` 的对比
- **`vector`**`vector` 是一个连续的动态数组所有元素存储在一块连续的内存区域中。它提供了高效的随机访问O(1)),但是插入和删除操作(尤其是队首操作)在最坏情况下需要移动大量元素,开销较大。
- **`deque`**`deque` 是一种分段的存储方式不需要保证整个数据在内存中的连续性。这使得它可以同时支持高效的双端插入删除O(1)),并且还能在 O(1) 时间内随机访问元素。
### 结论
C++ 中的 `deque` 之所以可以支持随机访问,是因为它的底层采用了**分段数组**的存储方式,而不是链表。虽然 `deque` 的内存布局是分散的,但通过使用块表和小块,`deque` 可以在常数时间内定位任意元素的位置,从而实现与数组类似的随机访问性能。
因此,`deque` 是一种非常灵活的数据结构,既可以支持高效的随机访问,又能高效地从两端插入和删除元素。
## 单调队列
单调队列Monotonic Queue是一种特别的数据结构常用于解决一些具有滑动窗口性质的问题。在处理滑动窗口最大值、最小值或者其他具有区间性质的优化问题时单调队列能够有效地减少时间复杂度使一些暴力解法从 \(O(n^2)\) 优化为 \(O(n)\) 或 \(O(n \log n)\)。
### 单调队列的作用
单调队列的主要作用是:
1. **在滑动窗口中维护最大值或最小值**:单调队列可以在常数时间内得到滑动窗口的最值。通过维护一个递增或递减的队列,在每次窗口滑动时,可以快速移除不符合要求的元素,并保持队列的单调性。
2. **优化动态区间问题**:当我们需要动态地在某个区间内找最大/最小值时,单调队列可以在 \(O(n)\) 的时间复杂度内处理问题,而不需要每次重新遍历区间。
### 基本原理
单调队列之所以高效,关键在于保持队列中的元素是有序的。根据需求,可以维护递增或递减队列:
- **递增队列**:队列中的元素从头到尾是递增的,这样可以在队列头部得到最小值。
- **递减队列**:队列中的元素从头到尾是递减的,这样可以在队列头部得到最大值。
@ -312,6 +336,7 @@ C++ 中的 `deque` 之所以可以支持随机访问,是因为它的底层采
接下来,我们以经典的“滑动窗口最大值”问题为例,给出单调队列的 C++ 实现。
#### 题目描述
给定一个大小为 \(n\) 的数组,和一个大小为 \(k\) 的滑动窗口。窗口从数组的左端移动到右端,每次只向右移动一位,求每个窗口中的最大值。
#### C++ 实现代码
@ -364,21 +389,418 @@ int main() {
```
#### 代码解释
1. **deque**:我们使用双端队列 `dq` 来存储数组元素的下标,确保队列中的元素始终是从大到小排列的。这样队列头部的元素永远是当前窗口的最大值。
2. **删除无效元素**:如果队列中的元素已经不在当前滑动窗口的范围内(即下标小于 \(i - k + 1\)),我们将其从队列头部移除。
3. **保持队列单调性**:在将当前元素插入队列之前,移除所有队列中比当前元素小的元素,因为它们不可能再成为未来窗口的最大值。
4. **记录结果**:一旦窗口大小达到 \(k\),我们将队列头部的元素(即最大值)加入结果数组。
### 时间复杂度
该算法的时间复杂度为 \(O(n)\),因为每个元素最多被插入和移除队列一次。
## 优先队列
优先队列Priority Queue是一种特殊的队列数据结构其中每个元素都有一个优先级。在优先队列中**出队操作会优先处理优先级最高的元素**而不是像普通队列那样遵循“先进先出”FIFO的原则。
### 特性
1. **插入元素**Enqueue可以将元素加入队列通常是 O(log n) 时间复杂度。
2. **取出最大/最小元素**Dequeue每次从队列中取出优先级最高的元素通常是 O(log n) 时间复杂度。
3. **查看最大/最小元素**:可以在 O(1) 时间内查看当前优先级最高的元素。
优先队列常用于需要频繁处理最高优先级任务的场景,比如操作系统的进程调度、图算法中的最短路径问题(如 Dijkstra 算法)。
---
### C++ 中的实现
C++ 标准库提供了一个名为 `std::priority_queue` 的容器,可以直接用来实现优先队列。这个容器底层实现通常是**堆**(默认是最大堆),即每次访问的是最大元素。
#### 1. **默认最大堆实现**
```cpp
#include <iostream>
#include <queue>
#include <vector>
int main() {
// 创建一个最大堆的优先队列
std::priority_queue<int> pq;
// 插入元素
pq.push(10);
pq.push(20);
pq.push(15);
// 输出并移除优先级最高的元素
std::cout << "优先级最高的元素: " << pq.top() << std::endl; // 输出 20
pq.pop();
std::cout << "第二高优先级的元素: " << pq.top() << std::endl; // 输出 15
return 0;
}
```
#### 2. **最小堆的实现**
默认情况下,`std::priority_queue` 是最大堆,要实现最小堆,可以通过**自定义比较函数**来实现。可以利用 `std::greater` 或使用 lambda 表达式。
```cpp
#include <iostream>
#include <queue>
#include <vector>
int main() {
// 创建一个最小堆的优先队列
std::priority_queue<int, std::vector<int>, std::greater<int>> pq;
// 插入元素
pq.push(10);
pq.push(20);
pq.push(15);
// 输出并移除优先级最高的元素(最小堆,输出最小值)
std::cout << "优先级最高的元素: " << pq.top() << std::endl; // 输出 10
pq.pop();
std::cout << "第二高优先级的元素: " << pq.top() << std::endl; // 输出 15
return 0;
}
```
#### 3. **自定义优先级的对象**
如果队列中存放的是自定义对象,则需要为该对象实现比较函数。例如,假设有一个任务结构体,优先级根据任务的优先级数值决定:
```cpp
#include <iostream>
#include <queue>
#include <vector>
struct Task {
int id;
int priority;
// 自定义比较运算符,使得 priority 小的优先处理
bool operator<(const Task& other) const {
return priority < other.priority;
}
};
int main() {
std::priority_queue<Task> pq;
// 插入任务
pq.push({1, 5});
pq.push({2, 3});
pq.push({3, 10});
// 输出并移除优先级最高的任务
std::cout << "优先级最高的任务 ID: " << pq.top().id << std::endl; // 输出 3 (priority 10)
return 0;
}
```
这里定义了 `operator<` 来决定优先级高低。默认情况下,`std::priority_queue` 会将优先级最高的任务(`priority` 最大)排在队首。
### 底层实现
`std::priority_queue` 底层使用的是**堆**heap常见实现是**二叉堆**。堆是一种二叉树的完全树结构,其中最大堆的父节点总是大于等于其子节点,最小堆的父节点总是小于等于其子节点。堆的性质使得插入和删除操作可以在 O(log n) 时间复杂度内完成。
---
### 自己实现一个优先队列
这里有一个讲的不错的[b站视频](https://www.bilibili.com/video/BV1AF411G7cA/)
<iframe src="//player.bilibili.com/player.html?isOutside=true&aid=297973330&bvid=BV1AF411G7cA&cid=570109806&p=1" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true"></iframe>
如果不使用标准库,可以手动实现优先队列,最常见的方法是基于堆。以下是一个简单的基于数组的二叉堆实现的优先队列(最大堆):
```cpp
#include <iostream>
#include <vector>
#include <stdexcept>
class MaxHeap {
private:
std::vector<int> heap; // 使用 vector 动态数组存储堆元素
// 上浮操作,用于在插入新元素后调整堆的结构
void siftUp(int idx) {
// 当元素不是根节点时,继续调整
while (idx > 0) {
int parent = (idx - 1) / 2; // 计算父节点的索引
// 如果父节点的值已经大于等于当前元素,堆结构正确,结束调整
if (heap[parent] >= heap[idx]) break;
// 否则,交换父节点和当前节点的值
std::swap(heap[parent], heap[idx]);
// 更新当前节点的索引为父节点的索引,继续调整
idx = parent;
}
}
// 下沉操作,用于在删除堆顶元素后调整堆的结构
void siftDown(int idx) {
int n = heap.size(); // 获取堆的大小
// 当当前节点有左子节点时,继续调整(因为左子节点一定存在)
while (2 * idx + 1 < n) {
int left = 2 * idx + 1; // 左子节点的索引
int right = 2 * idx + 2; // 右子节点的索引
int largest = idx; // 假设当前节点是最大的
// 如果左子节点存在并且比当前节点大,更新 largest 为左子节点
if (left < n && heap[left] > heap[largest]) largest = left;
// 如果右子节点存在并且比当前最大节点大,更新 largest 为右子节点
if (right < n && heap[right] > heap[largest]) largest = right;
// 如果 largest 没有改变,说明堆已经调整完毕,退出循环
if (largest == idx) break;
// 否则,交换当前节点和最大子节点的值
std::swap(heap[idx], heap[largest]);
// 更新当前节点的索引为最大子节点的索引,继续调整
idx = largest;
}
}
public:
// 插入一个新元素
void push(int value) {
heap.push_back(value); // 将新元素添加到堆的末尾
siftUp(heap.size() - 1); // 调整堆以保持最大堆性质
}
// 移除堆顶元素(最大值)
void pop() {
if (heap.empty()) throw std::runtime_error("Heap is empty"); // 异常处理,堆为空时抛出错误
heap[0] = heap.back(); // 用最后一个元素替换堆顶
heap.pop_back(); // 删除最后一个元素
if (!heap.empty()) siftDown(0); // 调整堆以保持最大堆性质
}
// 获取堆顶元素(最大值),但不删除
int top() const {
if (heap.empty()) throw std::runtime_error("Heap is empty"); // 异常处理,堆为空时抛出错误
return heap[0]; // 返回堆顶元素
}
// 判断堆是否为空
bool empty() const {
return heap.empty(); // 堆为空返回 true
}
};
int main() {
MaxHeap pq; // 创建一个最大堆对象
// 插入元素到堆中
pq.push(10);
pq.push(20);
pq.push(15);
// 输出堆顶元素(最大值)
std::cout << "最大值: " << pq.top() << std::endl; // 输出 20
pq.pop(); // 移除堆顶元素
std::cout << "第二大值: " << pq.top() << std::endl; // 输出 15
return 0;
}
```
### 代码讲解:
1. **`siftUp()``siftDown()`**:这两个函数是核心的调整堆结构的操作。`siftUp` 在插入新元素后执行,上浮新元素以保持最大堆结构。`siftDown` 在移除堆顶元素后执行,下沉新的堆顶以保持最大堆结构。
2. **插入操作**
- 当调用 `push()` 函数时,将新元素添加到堆的末尾,并调用 `siftUp()` 函数调整堆的结构,确保最大堆的性质得到维护。
3. **删除操作**
- 当调用 `pop()` 函数时,删除堆顶元素(最大值)。为了保持堆的连续性,使用最后一个元素替代堆顶,然后调用 `siftDown()` 来恢复最大堆性质。
4. **`top()` 函数**:返回当前堆中的最大元素,但不删除它。如果堆为空,则抛出异常。
5. **`empty()` 函数**:用于检查堆是否为空。
### 示例输出:
```text
最大值: 20
第二大值: 15
```
## ST表
> [OI Wiki链接](https://oi-wiki.org/ds/sparse-table/)
ST表Sparse Table是一种用于解决静态区间查询问题的数据结构通常用于查询不可变数组中的区间最值最小值、最大值、最大公约数等。它的构建时间复杂度为 \(O(n \log n)\),查询时间复杂度为 \(O(1)\)非常适合处理多次查询的场景。ST表的原理基于“倍增法”通过预处理使得每次查询时可以通过少量预处理信息快速得出结果。
### 原理
ST表的核心思想是将原数组分块并记录每个块中的区间最值。具体来说给定一个数组 `arr`ST表预处理的是所有长度为 \(2^j\) 的区间的最值,其中 \(j\) 表示区间的大小为 \(2^j\)。
#### 数据结构
ST表用一个二维数组 `st[i][j]` 表示:
- \(st[i][j]\) 表示从位置 \(i\) 开始,长度为 \(2^j\) 的区间中的最值,即区间 `[i, i + 2^j - 1]` 中的最小值(或最大值、其他运算)。
#### 预处理
预处理的过程如下:
1. 初始化:长度为 \(2^0 = 1\) 的区间的最值就是数组本身。因此,\[
st[i][0] = arr[i] \quad \text{对于每个} \ i \in [0, n-1]。
\]
2. 填充其他长度的区间:
对于 \(j \geq 1\),区间 `[i, i + 2^j - 1]` 可以通过合并两个长度为 \(2^{j-1}\) 的区间得到:\[
st[i][j] = \min(st[i][j-1], st[i + 2^{j-1}][j-1])。
\]
其中,`min` 操作可以替换为其他操作(如 `max``gcd`),根据具体需求调整。
#### 查询
对于任意区间 `[L, R]`,我们可以通过分解成两个重叠区间的方式来计算区间最值:
1. 找到满足 \(2^j \leq (R - L + 1)\) 的最大 \(j\),这个 \(j\) 可以通过查找预处理的 `log` 数组得到(常用二进制计算)。
2. 使用两个长度为 \(2^j\) 的区间覆盖 `[L, R]`\[
\min(st[L][j], st[R - 2^j + 1][j])
\]
因为两个区间 `[L, L + 2^j - 1]``[R - 2^j + 1, R]` 会完全覆盖区间 `[L, R]`
### C++ 实现
以下是 ST 表求区间最小值的 C++ 实现:
下面是为这段 ST 表代码添加的详细注释:
```cpp
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
// ST表类支持区间最小值查询
class SparseTable {
vector<vector<int>> st; // 用于存储不同区间长度的最小值
vector<int> log; // 用于快速查找 log2 值
int n; // 数组长度
public:
// 构造函数,传入数组并进行预处理
SparseTable(const vector<int>& arr) {
n = arr.size(); // 获取输入数组的大小
int maxLog = log2(n) + 1; // 最大区间长度所需的 log 值,最多到 log2(n)
st.assign(n, vector<int>(maxLog)); // 分配 st 表存储空间n 行,每行 maxLog 列
log.assign(n + 1, 0); // 初始化 log 数组,存储 log2 的值0 到 n 共 n+1 个位置
// 初始化 log 数组
// log[i] 表示 log2(i),从 2 开始进行预处理
for (int i = 2; i <= n; ++i)
log[i] = log[i / 2] + 1;
// 初始化 st 表中的长度为 1 的区间 (即 st[i][0]),这些区间的最小值就是数组本身
for (int i = 0; i < n; ++i)
st[i][0] = arr[i];
// 预处理区间长度为 2^j 的最小值,动态规划填充 st 表
for (int j = 1; j < maxLog; ++j) { // 枚举区间长度 2^j
for (int i = 0; i + (1 << j) <= n; ++i) { // 枚举起点 i保证 i + 2^j 不越界
// 合并两个长度为 2^(j-1) 的区间,得到长度为 2^j 的区间最小值
st[i][j] = min(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);
}
}
}
// 查询区间 [L, R] 的最小值
int query(int L, int R) {
// 根据区间长度 R - L + 1 找到最大的 j 使得 2^j <= R - L + 1
int j = log[R - L + 1];
// 返回两个部分的最小值,分别为 [L, L + 2^j - 1] 和 [R - 2^j + 1, R]
return min(st[L][j], st[R - (1 << j) + 1][j]);
}
};
int main() {
// 输入数组
vector<int> arr = {1, 3, 2, 7, 9, 11, 3, 5, 8, 10};
// 创建 ST 表,并传入数组进行预处理
SparseTable st(arr);
// 查询区间 [3, 7] 的最小值
cout << "Minimum in range [3, 7]: " << st.query(3, 7) << endl; // 输出 3
// 查询区间 [1, 4] 的最小值
cout << "Minimum in range [1, 4]: " << st.query(1, 4) << endl; // 输出 2
return 0;
}
```
### 详细注释讲解:
1. **数据结构:**
- `st` 是一个二维数组,存储每个区间的最小值。`st[i][j]` 存储的是从位置 `i` 开始,长度为 \(2^j\) 的区间的最小值。
- `log` 是一个辅助数组,用于存储每个数的对数值,便于快速确定区间大小。
2. **预处理:**
- `log` 数组用来预处理快速计算 \( \log_2 \) 值,避免在查询时重复计算对数。
- `st` 表的初始化从长度为 \(2^0 = 1\) 的区间开始,其值就是数组的原始元素,然后通过倍增法构建更长的区间。
3. **查询:**
- 查询区间 `[L, R]` 时,找到最大的 \( j \) 使得 \(2^j \leq (R - L + 1)\),并使用两个长度为 \(2^j\) 的区间覆盖原始区间 `[L, R]`
- 两个区间分别为 `[L, L + 2^j - 1]``[R - 2^j + 1, R]`,查询这两个子区间的最小值。
4. **主要操作:**
- `log[i / 2] + 1` 用来快速得到当前区间的对数值,确保动态规划的填充和查询过程中的高效计算。
- `min(st[i][j - 1], st[i + (1 << (j - 1))][j - 1])` 使用两个较小的区间合并得到更大的区间最值。
5. **时间复杂度:**
- **预处理**\(O(n \log n)\),遍历每个长度的区间进行最小值计算。
- **查询**\(O(1)\),每次查询只需要比较两个最小值即可。
# 集合与森林
## 并查集
当然可以!下面是带有详细注释的 C++ 并查集代码,并说明 `rank` 的作用。
```cpp
#include <vector>
using namespace std;
class UnionFind {
public:
// 构造函数,初始化并查集
UnionFind(int size) {
parent.resize(size); // 动态数组存储每个节点的父节点
rank.resize(size, 1); // 动态数组存储每个节点的秩(树的高度)
// 初始化每个节点的父节点为自己
for (int i = 0; i < size; i++) {
parent[i] = i;
}
}
// 查找操作查找节点p的根节点同时进行路径压缩
int find(int p) {
if (parent[p] != p) {
parent[p] = find(parent[p]); // 路径压缩
}
return parent[p]; // 返回根节点
}
// 合并操作将节点p和节点q所在的集合合并
void unionSets(int p, int q) {
int rootP = find(p); // 找到p的根节点
int rootQ = find(q); // 找到q的根节点
if (rootP != rootQ) { // 如果两个节点不在同一集合
// 按秩合并
if (rank[rootP] > rank[rootQ]) {
parent[rootQ] = rootP; // 将小树合并到大树下
} else if (rank[rootP] < rank[rootQ]) {
parent[rootP] = rootQ; // 将小树合并到大树下
} else {
parent[rootQ] = rootP; // 如果秩相同,任意合并
rank[rootP]++; // 提高合并后的树的秩
}
}
}
private:
vector<int> parent; // 存储每个节点的父节点
vector<int> rank; // 存储每个节点的秩(树的高度)
};
```
### `rank` 的作用:
- **树的高度**`rank` 数组用于记录每个集合的树的高度(或深度)。通过保持较小的树总是连接到较大的树,减少了树的高度,从而提高了查找操作的效率。
- **避免不必要的深度**:如果不使用 `rank`,在多次合并中可能导致某棵树的高度迅速增加,使得查找操作的时间复杂度增加到 O(n)。
## 树的孩子兄弟表示法
# 特殊树
@ -394,6 +816,7 @@ int main() {
## 平衡树(AVL, treap, splay)
# 常见图
## 稀疏图
## 偶图(二分图)
@ -413,5 +836,3 @@ int main() {
## 字符串哈希函数构造
## 哈希冲突的常用处理方法