2016-08-12 11:50:00 +00:00
|
|
|
import pytest
|
|
|
|
|
2017-01-24 16:26:51 +00:00
|
|
|
pytestmark = pytest.requires_eigen_and_numpy
|
|
|
|
|
2016-08-12 11:50:00 +00:00
|
|
|
with pytest.suppress(ImportError):
|
|
|
|
import numpy as np
|
|
|
|
|
2017-01-17 01:35:14 +00:00
|
|
|
ref = np.array([[ 0., 3, 0, 0, 0, 11],
|
2016-08-25 15:08:09 +00:00
|
|
|
[22, 0, 0, 0, 17, 11],
|
|
|
|
[ 7, 5, 0, 1, 0, 11],
|
|
|
|
[ 0, 0, 0, 0, 0, 11],
|
|
|
|
[ 0, 0, 14, 0, 8, 11]])
|
2016-08-12 11:50:00 +00:00
|
|
|
|
|
|
|
|
|
|
|
def assert_equal_ref(mat):
|
|
|
|
np.testing.assert_array_equal(mat, ref)
|
|
|
|
|
|
|
|
|
|
|
|
def assert_sparse_equal_ref(sparse_mat):
|
|
|
|
assert_equal_ref(sparse_mat.todense())
|
|
|
|
|
|
|
|
|
|
|
|
def test_fixed():
|
2017-01-17 01:35:14 +00:00
|
|
|
from pybind11_tests import fixed_r, fixed_c, fixed_copy_r, fixed_copy_c
|
2016-08-12 11:50:00 +00:00
|
|
|
|
|
|
|
assert_equal_ref(fixed_c())
|
|
|
|
assert_equal_ref(fixed_r())
|
2017-01-17 01:35:14 +00:00
|
|
|
assert_equal_ref(fixed_copy_r(fixed_r()))
|
|
|
|
assert_equal_ref(fixed_copy_c(fixed_c()))
|
|
|
|
assert_equal_ref(fixed_copy_r(fixed_c()))
|
|
|
|
assert_equal_ref(fixed_copy_c(fixed_r()))
|
2016-08-12 11:50:00 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_dense():
|
2017-01-17 01:35:14 +00:00
|
|
|
from pybind11_tests import dense_r, dense_c, dense_copy_r, dense_copy_c
|
2016-08-12 11:50:00 +00:00
|
|
|
|
|
|
|
assert_equal_ref(dense_r())
|
|
|
|
assert_equal_ref(dense_c())
|
2017-01-17 01:35:14 +00:00
|
|
|
assert_equal_ref(dense_copy_r(dense_r()))
|
|
|
|
assert_equal_ref(dense_copy_c(dense_c()))
|
|
|
|
assert_equal_ref(dense_copy_r(dense_c()))
|
|
|
|
assert_equal_ref(dense_copy_c(dense_r()))
|
|
|
|
|
2016-08-12 11:50:00 +00:00
|
|
|
|
Eigen: fix partially-fixed matrix conversion
Currently when we do a conversion between a numpy array and an Eigen
Vector, we allow the conversion only if the Eigen type is a
compile-time vector (i.e. at least one dimension is fixed at 1 at
compile time), or if the type is dynamic on *both* dimensions.
This means we can run into cases where MatrixXd allow things that
conforming, compile-time sizes does not: for example,
`Matrix<double,4,Dynamic>` is currently not allowed, even when assigning
from a 4-element vector, but it *is* allowed for a
`Matrix<double,Dynamic,Dynamic>`.
This commit also reverts the current behaviour of using the matrix's
storage order to determine the structure when the Matrix is fully
dynamic (i.e. in both dimensions). Currently we assign to an eigen row
if the storage order is row-major, and column otherwise: this seems
wrong (the storage order has nothing to do with the shape!). While
numpy doesn't distinguish between a row/column vector, Eigen does, but
it makes more sense to consistently choose one than to produce
something with a different shape based on the intended storage layout.
2017-01-13 00:50:33 +00:00
|
|
|
def test_partially_fixed():
|
2017-01-17 01:35:14 +00:00
|
|
|
from pybind11_tests import (partial_copy_four_rm_r, partial_copy_four_rm_c,
|
|
|
|
partial_copy_four_cm_r, partial_copy_four_cm_c)
|
|
|
|
|
|
|
|
ref2 = np.array([[0., 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]])
|
|
|
|
np.testing.assert_array_equal(partial_copy_four_rm_r(ref2), ref2)
|
|
|
|
np.testing.assert_array_equal(partial_copy_four_rm_c(ref2), ref2)
|
|
|
|
np.testing.assert_array_equal(partial_copy_four_rm_r(ref2[:, 1]), ref2[:, [1]])
|
|
|
|
np.testing.assert_array_equal(partial_copy_four_rm_c(ref2[0, :]), ref2[[0], :])
|
|
|
|
np.testing.assert_array_equal(partial_copy_four_rm_r(ref2[:, (0, 2)]), ref2[:, (0, 2)])
|
|
|
|
np.testing.assert_array_equal(
|
|
|
|
partial_copy_four_rm_c(ref2[(3, 1, 2), :]), ref2[(3, 1, 2), :])
|
|
|
|
|
|
|
|
np.testing.assert_array_equal(partial_copy_four_cm_r(ref2), ref2)
|
|
|
|
np.testing.assert_array_equal(partial_copy_four_cm_c(ref2), ref2)
|
|
|
|
np.testing.assert_array_equal(partial_copy_four_cm_r(ref2[:, 1]), ref2[:, [1]])
|
|
|
|
np.testing.assert_array_equal(partial_copy_four_cm_c(ref2[0, :]), ref2[[0], :])
|
|
|
|
np.testing.assert_array_equal(partial_copy_four_cm_r(ref2[:, (0, 2)]), ref2[:, (0, 2)])
|
|
|
|
np.testing.assert_array_equal(
|
|
|
|
partial_copy_four_cm_c(ref2[(3, 1, 2), :]), ref2[(3, 1, 2), :])
|
|
|
|
|
|
|
|
|
|
|
|
def test_mutator_descriptors():
|
|
|
|
from pybind11_tests import fixed_mutator_r, fixed_mutator_c, fixed_mutator_a
|
|
|
|
zr = np.arange(30, dtype='float32').reshape(5, 6) # row-major
|
|
|
|
zc = zr.reshape(6, 5).transpose() # column-major
|
|
|
|
|
|
|
|
fixed_mutator_r(zr)
|
|
|
|
fixed_mutator_c(zc)
|
|
|
|
fixed_mutator_a(zr)
|
|
|
|
fixed_mutator_a(zc)
|
|
|
|
with pytest.raises(TypeError) as excinfo:
|
|
|
|
fixed_mutator_r(zc)
|
2017-04-08 23:26:42 +00:00
|
|
|
assert ('(arg0: numpy.ndarray[float32[5, 6], flags.writeable, flags.c_contiguous]) -> None'
|
2017-01-17 01:35:14 +00:00
|
|
|
in str(excinfo.value))
|
|
|
|
with pytest.raises(TypeError) as excinfo:
|
|
|
|
fixed_mutator_c(zr)
|
2017-04-08 23:26:42 +00:00
|
|
|
assert ('(arg0: numpy.ndarray[float32[5, 6], flags.writeable, flags.f_contiguous]) -> None'
|
2017-01-17 01:35:14 +00:00
|
|
|
in str(excinfo.value))
|
|
|
|
with pytest.raises(TypeError) as excinfo:
|
|
|
|
fixed_mutator_a(np.array([[1, 2], [3, 4]], dtype='float32'))
|
2017-04-08 23:26:42 +00:00
|
|
|
assert ('(arg0: numpy.ndarray[float32[5, 6], flags.writeable]) -> None'
|
2017-01-17 01:35:14 +00:00
|
|
|
in str(excinfo.value))
|
|
|
|
zr.flags.writeable = False
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
fixed_mutator_r(zr)
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
fixed_mutator_a(zr)
|
|
|
|
|
Eigen: fix partially-fixed matrix conversion
Currently when we do a conversion between a numpy array and an Eigen
Vector, we allow the conversion only if the Eigen type is a
compile-time vector (i.e. at least one dimension is fixed at 1 at
compile time), or if the type is dynamic on *both* dimensions.
This means we can run into cases where MatrixXd allow things that
conforming, compile-time sizes does not: for example,
`Matrix<double,4,Dynamic>` is currently not allowed, even when assigning
from a 4-element vector, but it *is* allowed for a
`Matrix<double,Dynamic,Dynamic>`.
This commit also reverts the current behaviour of using the matrix's
storage order to determine the structure when the Matrix is fully
dynamic (i.e. in both dimensions). Currently we assign to an eigen row
if the storage order is row-major, and column otherwise: this seems
wrong (the storage order has nothing to do with the shape!). While
numpy doesn't distinguish between a row/column vector, Eigen does, but
it makes more sense to consistently choose one than to produce
something with a different shape based on the intended storage layout.
2017-01-13 00:50:33 +00:00
|
|
|
|
2017-01-17 01:35:14 +00:00
|
|
|
def test_cpp_casting():
|
|
|
|
from pybind11_tests import (cpp_copy, cpp_ref_c, cpp_ref_r, cpp_ref_any,
|
|
|
|
fixed_r, fixed_c, get_cm_ref, get_rm_ref, ReturnTester)
|
|
|
|
assert cpp_copy(fixed_r()) == 22.
|
|
|
|
assert cpp_copy(fixed_c()) == 22.
|
|
|
|
z = np.array([[5., 6], [7, 8]])
|
|
|
|
assert cpp_copy(z) == 7.
|
|
|
|
assert cpp_copy(get_cm_ref()) == 21.
|
|
|
|
assert cpp_copy(get_rm_ref()) == 21.
|
|
|
|
assert cpp_ref_c(get_cm_ref()) == 21.
|
|
|
|
assert cpp_ref_r(get_rm_ref()) == 21.
|
|
|
|
with pytest.raises(RuntimeError) as excinfo:
|
|
|
|
# Can't reference fixed_c: it contains floats, cpp_ref_any wants doubles
|
|
|
|
cpp_ref_any(fixed_c())
|
|
|
|
assert 'Unable to cast Python instance' in str(excinfo.value)
|
|
|
|
with pytest.raises(RuntimeError) as excinfo:
|
|
|
|
# Can't reference fixed_r: it contains floats, cpp_ref_any wants doubles
|
|
|
|
cpp_ref_any(fixed_r())
|
|
|
|
assert 'Unable to cast Python instance' in str(excinfo.value)
|
|
|
|
assert cpp_ref_any(ReturnTester.create()) == 1.
|
|
|
|
|
|
|
|
assert cpp_ref_any(get_cm_ref()) == 21.
|
|
|
|
assert cpp_ref_any(get_cm_ref()) == 21.
|
|
|
|
|
|
|
|
|
|
|
|
def test_pass_readonly_array():
|
|
|
|
from pybind11_tests import fixed_copy_r, fixed_r, fixed_r_const
|
|
|
|
z = np.full((5, 6), 42.0)
|
|
|
|
z.flags.writeable = False
|
|
|
|
np.testing.assert_array_equal(z, fixed_copy_r(z))
|
|
|
|
np.testing.assert_array_equal(fixed_r_const(), fixed_r())
|
|
|
|
assert not fixed_r_const().flags.writeable
|
|
|
|
np.testing.assert_array_equal(fixed_copy_r(fixed_r_const()), fixed_r_const())
|
Eigen: fix partially-fixed matrix conversion
Currently when we do a conversion between a numpy array and an Eigen
Vector, we allow the conversion only if the Eigen type is a
compile-time vector (i.e. at least one dimension is fixed at 1 at
compile time), or if the type is dynamic on *both* dimensions.
This means we can run into cases where MatrixXd allow things that
conforming, compile-time sizes does not: for example,
`Matrix<double,4,Dynamic>` is currently not allowed, even when assigning
from a 4-element vector, but it *is* allowed for a
`Matrix<double,Dynamic,Dynamic>`.
This commit also reverts the current behaviour of using the matrix's
storage order to determine the structure when the Matrix is fully
dynamic (i.e. in both dimensions). Currently we assign to an eigen row
if the storage order is row-major, and column otherwise: this seems
wrong (the storage order has nothing to do with the shape!). While
numpy doesn't distinguish between a row/column vector, Eigen does, but
it makes more sense to consistently choose one than to produce
something with a different shape based on the intended storage layout.
2017-01-13 00:50:33 +00:00
|
|
|
|
2016-08-12 11:50:00 +00:00
|
|
|
|
|
|
|
def test_nonunit_stride_from_python():
|
2017-01-17 01:35:14 +00:00
|
|
|
from pybind11_tests import (
|
2017-02-28 17:07:51 +00:00
|
|
|
double_row, double_col, double_complex, double_mat_cm, double_mat_rm,
|
2017-01-17 01:35:14 +00:00
|
|
|
double_threec, double_threer)
|
2016-08-12 11:50:00 +00:00
|
|
|
|
|
|
|
counting_mat = np.arange(9.0, dtype=np.float32).reshape((3, 3))
|
2017-01-17 01:35:14 +00:00
|
|
|
second_row = counting_mat[1, :]
|
|
|
|
second_col = counting_mat[:, 1]
|
|
|
|
np.testing.assert_array_equal(double_row(second_row), 2.0 * second_row)
|
|
|
|
np.testing.assert_array_equal(double_col(second_row), 2.0 * second_row)
|
2017-02-28 17:07:51 +00:00
|
|
|
np.testing.assert_array_equal(double_complex(second_row), 2.0 * second_row)
|
2017-01-17 01:35:14 +00:00
|
|
|
np.testing.assert_array_equal(double_row(second_col), 2.0 * second_col)
|
|
|
|
np.testing.assert_array_equal(double_col(second_col), 2.0 * second_col)
|
2017-02-28 17:07:51 +00:00
|
|
|
np.testing.assert_array_equal(double_complex(second_col), 2.0 * second_col)
|
2016-08-12 11:50:00 +00:00
|
|
|
|
|
|
|
counting_3d = np.arange(27.0, dtype=np.float32).reshape((3, 3, 3))
|
|
|
|
slices = [counting_3d[0, :, :], counting_3d[:, 0, :], counting_3d[:, :, 0]]
|
|
|
|
for slice_idx, ref_mat in enumerate(slices):
|
Eigen: fix partially-fixed matrix conversion
Currently when we do a conversion between a numpy array and an Eigen
Vector, we allow the conversion only if the Eigen type is a
compile-time vector (i.e. at least one dimension is fixed at 1 at
compile time), or if the type is dynamic on *both* dimensions.
This means we can run into cases where MatrixXd allow things that
conforming, compile-time sizes does not: for example,
`Matrix<double,4,Dynamic>` is currently not allowed, even when assigning
from a 4-element vector, but it *is* allowed for a
`Matrix<double,Dynamic,Dynamic>`.
This commit also reverts the current behaviour of using the matrix's
storage order to determine the structure when the Matrix is fully
dynamic (i.e. in both dimensions). Currently we assign to an eigen row
if the storage order is row-major, and column otherwise: this seems
wrong (the storage order has nothing to do with the shape!). While
numpy doesn't distinguish between a row/column vector, Eigen does, but
it makes more sense to consistently choose one than to produce
something with a different shape based on the intended storage layout.
2017-01-13 00:50:33 +00:00
|
|
|
np.testing.assert_array_equal(double_mat_cm(ref_mat), 2.0 * ref_mat)
|
|
|
|
np.testing.assert_array_equal(double_mat_rm(ref_mat), 2.0 * ref_mat)
|
2016-08-12 11:50:00 +00:00
|
|
|
|
2017-01-17 01:35:14 +00:00
|
|
|
# Mutator:
|
|
|
|
double_threer(second_row)
|
|
|
|
double_threec(second_col)
|
|
|
|
np.testing.assert_array_equal(counting_mat, [[0., 2, 2], [6, 16, 10], [6, 14, 8]])
|
|
|
|
|
2016-08-12 11:50:00 +00:00
|
|
|
|
|
|
|
def test_nonunit_stride_to_python():
|
|
|
|
from pybind11_tests import diagonal, diagonal_1, diagonal_n, block
|
|
|
|
|
|
|
|
assert np.all(diagonal(ref) == ref.diagonal())
|
|
|
|
assert np.all(diagonal_1(ref) == ref.diagonal(1))
|
|
|
|
for i in range(-5, 7):
|
|
|
|
assert np.all(diagonal_n(ref, i) == ref.diagonal(i)), "diagonal_n({})".format(i)
|
|
|
|
|
|
|
|
assert np.all(block(ref, 2, 1, 3, 3) == ref[2:5, 1:4])
|
|
|
|
assert np.all(block(ref, 1, 4, 4, 2) == ref[1:, 4:])
|
|
|
|
assert np.all(block(ref, 1, 4, 3, 2) == ref[1:4, 4:])
|
|
|
|
|
|
|
|
|
|
|
|
def test_eigen_ref_to_python():
|
2017-01-17 01:35:14 +00:00
|
|
|
from pybind11_tests import cholesky1, cholesky2, cholesky3, cholesky4
|
2016-08-12 11:50:00 +00:00
|
|
|
|
2017-01-17 01:35:14 +00:00
|
|
|
chols = [cholesky1, cholesky2, cholesky3, cholesky4]
|
2016-08-12 11:50:00 +00:00
|
|
|
for i, chol in enumerate(chols, start=1):
|
2017-01-17 01:35:14 +00:00
|
|
|
mymat = chol(np.array([[1., 2, 4], [2, 13, 23], [4, 23, 77]]))
|
2016-08-12 11:50:00 +00:00
|
|
|
assert np.all(mymat == np.array([[1, 0, 0], [2, 3, 0], [4, 5, 6]])), "cholesky{}".format(i)
|
|
|
|
|
|
|
|
|
2017-01-17 01:35:14 +00:00
|
|
|
def assign_both(a1, a2, r, c, v):
|
|
|
|
a1[r, c] = v
|
|
|
|
a2[r, c] = v
|
|
|
|
|
|
|
|
|
|
|
|
def array_copy_but_one(a, r, c, v):
|
|
|
|
z = np.array(a, copy=True)
|
|
|
|
z[r, c] = v
|
|
|
|
return z
|
|
|
|
|
|
|
|
|
|
|
|
def test_eigen_return_references():
|
|
|
|
"""Tests various ways of returning references and non-referencing copies"""
|
|
|
|
from pybind11_tests import ReturnTester
|
|
|
|
master = np.ones((10, 10))
|
|
|
|
a = ReturnTester()
|
|
|
|
a_get1 = a.get()
|
|
|
|
assert not a_get1.flags.owndata and a_get1.flags.writeable
|
|
|
|
assign_both(a_get1, master, 3, 3, 5)
|
|
|
|
a_get2 = a.get_ptr()
|
|
|
|
assert not a_get2.flags.owndata and a_get2.flags.writeable
|
|
|
|
assign_both(a_get1, master, 2, 3, 6)
|
|
|
|
|
|
|
|
a_view1 = a.view()
|
|
|
|
assert not a_view1.flags.owndata and not a_view1.flags.writeable
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
a_view1[2, 3] = 4
|
|
|
|
a_view2 = a.view_ptr()
|
|
|
|
assert not a_view2.flags.owndata and not a_view2.flags.writeable
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
a_view2[2, 3] = 4
|
|
|
|
|
|
|
|
a_copy1 = a.copy_get()
|
|
|
|
assert a_copy1.flags.owndata and a_copy1.flags.writeable
|
|
|
|
np.testing.assert_array_equal(a_copy1, master)
|
|
|
|
a_copy1[7, 7] = -44 # Shouldn't affect anything else
|
|
|
|
c1want = array_copy_but_one(master, 7, 7, -44)
|
|
|
|
a_copy2 = a.copy_view()
|
|
|
|
assert a_copy2.flags.owndata and a_copy2.flags.writeable
|
|
|
|
np.testing.assert_array_equal(a_copy2, master)
|
|
|
|
a_copy2[4, 4] = -22 # Shouldn't affect anything else
|
|
|
|
c2want = array_copy_but_one(master, 4, 4, -22)
|
|
|
|
|
|
|
|
a_ref1 = a.ref()
|
|
|
|
assert not a_ref1.flags.owndata and a_ref1.flags.writeable
|
|
|
|
assign_both(a_ref1, master, 1, 1, 15)
|
|
|
|
a_ref2 = a.ref_const()
|
|
|
|
assert not a_ref2.flags.owndata and not a_ref2.flags.writeable
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
a_ref2[5, 5] = 33
|
|
|
|
a_ref3 = a.ref_safe()
|
|
|
|
assert not a_ref3.flags.owndata and a_ref3.flags.writeable
|
|
|
|
assign_both(a_ref3, master, 0, 7, 99)
|
|
|
|
a_ref4 = a.ref_const_safe()
|
|
|
|
assert not a_ref4.flags.owndata and not a_ref4.flags.writeable
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
a_ref4[7, 0] = 987654321
|
|
|
|
|
|
|
|
a_copy3 = a.copy_ref()
|
|
|
|
assert a_copy3.flags.owndata and a_copy3.flags.writeable
|
|
|
|
np.testing.assert_array_equal(a_copy3, master)
|
|
|
|
a_copy3[8, 1] = 11
|
|
|
|
c3want = array_copy_but_one(master, 8, 1, 11)
|
|
|
|
a_copy4 = a.copy_ref_const()
|
|
|
|
assert a_copy4.flags.owndata and a_copy4.flags.writeable
|
|
|
|
np.testing.assert_array_equal(a_copy4, master)
|
|
|
|
a_copy4[8, 4] = 88
|
|
|
|
c4want = array_copy_but_one(master, 8, 4, 88)
|
|
|
|
|
|
|
|
a_block1 = a.block(3, 3, 2, 2)
|
|
|
|
assert not a_block1.flags.owndata and a_block1.flags.writeable
|
|
|
|
a_block1[0, 0] = 55
|
|
|
|
master[3, 3] = 55
|
|
|
|
a_block2 = a.block_safe(2, 2, 3, 2)
|
|
|
|
assert not a_block2.flags.owndata and a_block2.flags.writeable
|
|
|
|
a_block2[2, 1] = -123
|
|
|
|
master[4, 3] = -123
|
|
|
|
a_block3 = a.block_const(6, 7, 4, 3)
|
|
|
|
assert not a_block3.flags.owndata and not a_block3.flags.writeable
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
a_block3[2, 2] = -44444
|
|
|
|
|
|
|
|
a_copy5 = a.copy_block(2, 2, 2, 3)
|
|
|
|
assert a_copy5.flags.owndata and a_copy5.flags.writeable
|
|
|
|
np.testing.assert_array_equal(a_copy5, master[2:4, 2:5])
|
|
|
|
a_copy5[1, 1] = 777
|
|
|
|
c5want = array_copy_but_one(master[2:4, 2:5], 1, 1, 777)
|
|
|
|
|
|
|
|
a_corn1 = a.corners()
|
|
|
|
assert not a_corn1.flags.owndata and a_corn1.flags.writeable
|
|
|
|
a_corn1 *= 50
|
|
|
|
a_corn1[1, 1] = 999
|
|
|
|
master[0, 0] = 50
|
|
|
|
master[0, 9] = 50
|
|
|
|
master[9, 0] = 50
|
|
|
|
master[9, 9] = 999
|
|
|
|
a_corn2 = a.corners_const()
|
|
|
|
assert not a_corn2.flags.owndata and not a_corn2.flags.writeable
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
a_corn2[1, 0] = 51
|
|
|
|
|
|
|
|
# All of the changes made all the way along should be visible everywhere
|
|
|
|
# now (except for the copies, of course)
|
|
|
|
np.testing.assert_array_equal(a_get1, master)
|
|
|
|
np.testing.assert_array_equal(a_get2, master)
|
|
|
|
np.testing.assert_array_equal(a_view1, master)
|
|
|
|
np.testing.assert_array_equal(a_view2, master)
|
|
|
|
np.testing.assert_array_equal(a_ref1, master)
|
|
|
|
np.testing.assert_array_equal(a_ref2, master)
|
|
|
|
np.testing.assert_array_equal(a_ref3, master)
|
|
|
|
np.testing.assert_array_equal(a_ref4, master)
|
|
|
|
np.testing.assert_array_equal(a_block1, master[3:5, 3:5])
|
|
|
|
np.testing.assert_array_equal(a_block2, master[2:5, 2:4])
|
|
|
|
np.testing.assert_array_equal(a_block3, master[6:10, 7:10])
|
|
|
|
np.testing.assert_array_equal(a_corn1, master[0::master.shape[0] - 1, 0::master.shape[1] - 1])
|
|
|
|
np.testing.assert_array_equal(a_corn2, master[0::master.shape[0] - 1, 0::master.shape[1] - 1])
|
|
|
|
|
|
|
|
np.testing.assert_array_equal(a_copy1, c1want)
|
|
|
|
np.testing.assert_array_equal(a_copy2, c2want)
|
|
|
|
np.testing.assert_array_equal(a_copy3, c3want)
|
|
|
|
np.testing.assert_array_equal(a_copy4, c4want)
|
|
|
|
np.testing.assert_array_equal(a_copy5, c5want)
|
|
|
|
|
|
|
|
|
|
|
|
def assert_keeps_alive(cl, method, *args):
|
|
|
|
from pybind11_tests import ConstructorStats
|
|
|
|
cstats = ConstructorStats.get(cl)
|
|
|
|
start_with = cstats.alive()
|
|
|
|
a = cl()
|
|
|
|
assert cstats.alive() == start_with + 1
|
|
|
|
z = method(a, *args)
|
|
|
|
assert cstats.alive() == start_with + 1
|
|
|
|
del a
|
|
|
|
# Here's the keep alive in action:
|
|
|
|
assert cstats.alive() == start_with + 1
|
|
|
|
del z
|
|
|
|
# Keep alive should have expired:
|
|
|
|
assert cstats.alive() == start_with
|
|
|
|
|
|
|
|
|
|
|
|
def test_eigen_keepalive():
|
|
|
|
from pybind11_tests import ReturnTester, ConstructorStats
|
|
|
|
a = ReturnTester()
|
|
|
|
|
|
|
|
cstats = ConstructorStats.get(ReturnTester)
|
|
|
|
assert cstats.alive() == 1
|
|
|
|
unsafe = [a.ref(), a.ref_const(), a.block(1, 2, 3, 4)]
|
|
|
|
copies = [a.copy_get(), a.copy_view(), a.copy_ref(), a.copy_ref_const(),
|
|
|
|
a.copy_block(4, 3, 2, 1)]
|
|
|
|
del a
|
|
|
|
assert cstats.alive() == 0
|
|
|
|
del unsafe
|
|
|
|
del copies
|
|
|
|
|
|
|
|
for meth in [ReturnTester.get, ReturnTester.get_ptr, ReturnTester.view,
|
|
|
|
ReturnTester.view_ptr, ReturnTester.ref_safe, ReturnTester.ref_const_safe,
|
|
|
|
ReturnTester.corners, ReturnTester.corners_const]:
|
|
|
|
assert_keeps_alive(ReturnTester, meth)
|
|
|
|
|
|
|
|
for meth in [ReturnTester.block_safe, ReturnTester.block_const]:
|
|
|
|
assert_keeps_alive(ReturnTester, meth, 4, 3, 2, 1)
|
|
|
|
|
|
|
|
|
|
|
|
def test_eigen_ref_mutators():
|
|
|
|
"""Tests whether Eigen can mutate numpy values"""
|
|
|
|
from pybind11_tests import add_rm, add_cm, add_any, add1, add2
|
|
|
|
orig = np.array([[1., 2, 3], [4, 5, 6], [7, 8, 9]])
|
|
|
|
zr = np.array(orig)
|
|
|
|
zc = np.array(orig, order='F')
|
|
|
|
add_rm(zr, 1, 0, 100)
|
|
|
|
assert np.all(zr == np.array([[1., 2, 3], [104, 5, 6], [7, 8, 9]]))
|
|
|
|
add_cm(zc, 1, 0, 200)
|
|
|
|
assert np.all(zc == np.array([[1., 2, 3], [204, 5, 6], [7, 8, 9]]))
|
|
|
|
|
|
|
|
add_any(zr, 1, 0, 20)
|
|
|
|
assert np.all(zr == np.array([[1., 2, 3], [124, 5, 6], [7, 8, 9]]))
|
|
|
|
add_any(zc, 1, 0, 10)
|
|
|
|
assert np.all(zc == np.array([[1., 2, 3], [214, 5, 6], [7, 8, 9]]))
|
|
|
|
|
|
|
|
# Can't reference a col-major array with a row-major Ref, and vice versa:
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
add_rm(zc, 1, 0, 1)
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
add_cm(zr, 1, 0, 1)
|
|
|
|
|
|
|
|
# Overloads:
|
|
|
|
add1(zr, 1, 0, -100)
|
|
|
|
add2(zr, 1, 0, -20)
|
|
|
|
assert np.all(zr == orig)
|
|
|
|
add1(zc, 1, 0, -200)
|
|
|
|
add2(zc, 1, 0, -10)
|
|
|
|
assert np.all(zc == orig)
|
|
|
|
|
|
|
|
# a non-contiguous slice (this won't work on either the row- or
|
|
|
|
# column-contiguous refs, but should work for the any)
|
|
|
|
cornersr = zr[0::2, 0::2]
|
|
|
|
cornersc = zc[0::2, 0::2]
|
|
|
|
|
|
|
|
assert np.all(cornersr == np.array([[1., 3], [7, 9]]))
|
|
|
|
assert np.all(cornersc == np.array([[1., 3], [7, 9]]))
|
|
|
|
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
add_rm(cornersr, 0, 1, 25)
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
add_cm(cornersr, 0, 1, 25)
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
add_rm(cornersc, 0, 1, 25)
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
add_cm(cornersc, 0, 1, 25)
|
|
|
|
add_any(cornersr, 0, 1, 25)
|
|
|
|
add_any(cornersc, 0, 1, 44)
|
|
|
|
assert np.all(zr == np.array([[1., 2, 28], [4, 5, 6], [7, 8, 9]]))
|
|
|
|
assert np.all(zc == np.array([[1., 2, 47], [4, 5, 6], [7, 8, 9]]))
|
|
|
|
|
|
|
|
# You shouldn't be allowed to pass a non-writeable array to a mutating Eigen method:
|
|
|
|
zro = zr[0:4, 0:4]
|
|
|
|
zro.flags.writeable = False
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
add_rm(zro, 0, 0, 0)
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
add_any(zro, 0, 0, 0)
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
add1(zro, 0, 0, 0)
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
add2(zro, 0, 0, 0)
|
|
|
|
|
|
|
|
# integer array shouldn't be passable to a double-matrix-accepting mutating func:
|
|
|
|
zi = np.array([[1, 2], [3, 4]])
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
add_rm(zi)
|
|
|
|
|
|
|
|
|
|
|
|
def test_numpy_ref_mutators():
|
|
|
|
"""Tests numpy mutating Eigen matrices (for returned Eigen::Ref<...>s)"""
|
|
|
|
from pybind11_tests import (
|
|
|
|
get_cm_ref, get_cm_const_ref, get_rm_ref, get_rm_const_ref, reset_refs)
|
|
|
|
reset_refs() # In case another test already changed it
|
|
|
|
|
|
|
|
zc = get_cm_ref()
|
|
|
|
zcro = get_cm_const_ref()
|
|
|
|
zr = get_rm_ref()
|
|
|
|
zrro = get_rm_const_ref()
|
|
|
|
|
|
|
|
assert [zc[1, 2], zcro[1, 2], zr[1, 2], zrro[1, 2]] == [23] * 4
|
|
|
|
|
|
|
|
assert not zc.flags.owndata and zc.flags.writeable
|
|
|
|
assert not zr.flags.owndata and zr.flags.writeable
|
|
|
|
assert not zcro.flags.owndata and not zcro.flags.writeable
|
|
|
|
assert not zrro.flags.owndata and not zrro.flags.writeable
|
|
|
|
|
|
|
|
zc[1, 2] = 99
|
|
|
|
expect = np.array([[11., 12, 13], [21, 22, 99], [31, 32, 33]])
|
|
|
|
# We should have just changed zc, of course, but also zcro and the original eigen matrix
|
|
|
|
assert np.all(zc == expect)
|
|
|
|
assert np.all(zcro == expect)
|
|
|
|
assert np.all(get_cm_ref() == expect)
|
|
|
|
|
|
|
|
zr[1, 2] = 99
|
|
|
|
assert np.all(zr == expect)
|
|
|
|
assert np.all(zrro == expect)
|
|
|
|
assert np.all(get_rm_ref() == expect)
|
|
|
|
|
|
|
|
# Make sure the readonly ones are numpy-readonly:
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
zcro[1, 2] = 6
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
zrro[1, 2] = 6
|
|
|
|
|
|
|
|
# We should be able to explicitly copy like this (and since we're copying,
|
|
|
|
# the const should drop away)
|
|
|
|
y1 = np.array(get_cm_const_ref())
|
|
|
|
|
|
|
|
assert y1.flags.owndata and y1.flags.writeable
|
|
|
|
# We should get copies of the eigen data, which was modified above:
|
|
|
|
assert y1[1, 2] == 99
|
|
|
|
y1[1, 2] += 12
|
|
|
|
assert y1[1, 2] == 111
|
|
|
|
assert zc[1, 2] == 99 # Make sure we aren't referencing the original
|
|
|
|
|
|
|
|
|
|
|
|
def test_both_ref_mutators():
|
|
|
|
"""Tests a complex chain of nested eigen/numpy references"""
|
|
|
|
from pybind11_tests import (
|
|
|
|
incr_matrix, get_cm_ref, incr_matrix_any, even_cols, even_rows, reset_refs)
|
|
|
|
reset_refs() # In case another test already changed it
|
|
|
|
|
|
|
|
z = get_cm_ref() # numpy -> eigen
|
|
|
|
z[0, 2] -= 3
|
|
|
|
z2 = incr_matrix(z, 1) # numpy -> eigen -> numpy -> eigen
|
|
|
|
z2[1, 1] += 6
|
|
|
|
z3 = incr_matrix(z, 2) # (numpy -> eigen)^3
|
|
|
|
z3[2, 2] += -5
|
|
|
|
z4 = incr_matrix(z, 3) # (numpy -> eigen)^4
|
|
|
|
z4[1, 1] -= 1
|
|
|
|
z5 = incr_matrix(z, 4) # (numpy -> eigen)^5
|
|
|
|
z5[0, 0] = 0
|
|
|
|
assert np.all(z == z2)
|
|
|
|
assert np.all(z == z3)
|
|
|
|
assert np.all(z == z4)
|
|
|
|
assert np.all(z == z5)
|
|
|
|
expect = np.array([[0., 22, 20], [31, 37, 33], [41, 42, 38]])
|
|
|
|
assert np.all(z == expect)
|
|
|
|
|
|
|
|
y = np.array(range(100), dtype='float64').reshape(10, 10)
|
|
|
|
y2 = incr_matrix_any(y, 10) # np -> eigen -> np
|
|
|
|
y3 = incr_matrix_any(y2[0::2, 0::2], -33) # np -> eigen -> np slice -> np -> eigen -> np
|
|
|
|
y4 = even_rows(y3) # numpy -> eigen slice -> (... y3)
|
|
|
|
y5 = even_cols(y4) # numpy -> eigen slice -> (... y4)
|
|
|
|
y6 = incr_matrix_any(y5, 1000) # numpy -> eigen -> (... y5)
|
|
|
|
|
|
|
|
# Apply same mutations using just numpy:
|
|
|
|
yexpect = np.array(range(100), dtype='float64').reshape(10, 10)
|
|
|
|
yexpect += 10
|
|
|
|
yexpect[0::2, 0::2] -= 33
|
|
|
|
yexpect[0::4, 0::4] += 1000
|
|
|
|
assert np.all(y6 == yexpect[0::4, 0::4])
|
|
|
|
assert np.all(y5 == yexpect[0::4, 0::4])
|
|
|
|
assert np.all(y4 == yexpect[0::4, 0::2])
|
|
|
|
assert np.all(y3 == yexpect[0::2, 0::2])
|
|
|
|
assert np.all(y2 == yexpect)
|
|
|
|
assert np.all(y == yexpect)
|
|
|
|
|
|
|
|
|
|
|
|
def test_nocopy_wrapper():
|
|
|
|
from pybind11_tests import get_elem, get_elem_nocopy, get_elem_rm_nocopy
|
|
|
|
# get_elem requires a column-contiguous matrix reference, but should be
|
|
|
|
# callable with other types of matrix (via copying):
|
|
|
|
int_matrix_colmajor = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], order='F')
|
|
|
|
dbl_matrix_colmajor = np.array(int_matrix_colmajor, dtype='double', order='F', copy=True)
|
|
|
|
int_matrix_rowmajor = np.array(int_matrix_colmajor, order='C', copy=True)
|
|
|
|
dbl_matrix_rowmajor = np.array(int_matrix_rowmajor, dtype='double', order='C', copy=True)
|
|
|
|
|
|
|
|
# All should be callable via get_elem:
|
|
|
|
assert get_elem(int_matrix_colmajor) == 8
|
|
|
|
assert get_elem(dbl_matrix_colmajor) == 8
|
|
|
|
assert get_elem(int_matrix_rowmajor) == 8
|
|
|
|
assert get_elem(dbl_matrix_rowmajor) == 8
|
|
|
|
|
|
|
|
# All but the second should fail with get_elem_nocopy:
|
|
|
|
with pytest.raises(TypeError) as excinfo:
|
|
|
|
get_elem_nocopy(int_matrix_colmajor)
|
|
|
|
assert ('get_elem_nocopy(): incompatible function arguments.' in str(excinfo.value) and
|
|
|
|
', flags.f_contiguous' in str(excinfo.value))
|
|
|
|
assert get_elem_nocopy(dbl_matrix_colmajor) == 8
|
|
|
|
with pytest.raises(TypeError) as excinfo:
|
|
|
|
get_elem_nocopy(int_matrix_rowmajor)
|
|
|
|
assert ('get_elem_nocopy(): incompatible function arguments.' in str(excinfo.value) and
|
|
|
|
', flags.f_contiguous' in str(excinfo.value))
|
|
|
|
with pytest.raises(TypeError) as excinfo:
|
|
|
|
get_elem_nocopy(dbl_matrix_rowmajor)
|
|
|
|
assert ('get_elem_nocopy(): incompatible function arguments.' in str(excinfo.value) and
|
|
|
|
', flags.f_contiguous' in str(excinfo.value))
|
|
|
|
|
|
|
|
# For the row-major test, we take a long matrix in row-major, so only the third is allowed:
|
|
|
|
with pytest.raises(TypeError) as excinfo:
|
|
|
|
get_elem_rm_nocopy(int_matrix_colmajor)
|
|
|
|
assert ('get_elem_rm_nocopy(): incompatible function arguments.' in str(excinfo.value) and
|
|
|
|
', flags.c_contiguous' in str(excinfo.value))
|
|
|
|
with pytest.raises(TypeError) as excinfo:
|
|
|
|
get_elem_rm_nocopy(dbl_matrix_colmajor)
|
|
|
|
assert ('get_elem_rm_nocopy(): incompatible function arguments.' in str(excinfo.value) and
|
|
|
|
', flags.c_contiguous' in str(excinfo.value))
|
|
|
|
assert get_elem_rm_nocopy(int_matrix_rowmajor) == 8
|
|
|
|
with pytest.raises(TypeError) as excinfo:
|
|
|
|
get_elem_rm_nocopy(dbl_matrix_rowmajor)
|
|
|
|
assert ('get_elem_rm_nocopy(): incompatible function arguments.' in str(excinfo.value) and
|
|
|
|
', flags.c_contiguous' in str(excinfo.value))
|
|
|
|
|
|
|
|
|
2016-08-12 11:50:00 +00:00
|
|
|
def test_special_matrix_objects():
|
|
|
|
from pybind11_tests import incr_diag, symmetric_upper, symmetric_lower
|
|
|
|
|
2017-01-17 01:35:14 +00:00
|
|
|
assert np.all(incr_diag(7) == np.diag([1., 2, 3, 4, 5, 6, 7]))
|
2016-08-12 11:50:00 +00:00
|
|
|
|
2017-01-17 01:35:14 +00:00
|
|
|
asymm = np.array([[ 1., 2, 3, 4],
|
2016-08-12 11:50:00 +00:00
|
|
|
[ 5, 6, 7, 8],
|
|
|
|
[ 9, 10, 11, 12],
|
|
|
|
[13, 14, 15, 16]])
|
|
|
|
symm_lower = np.array(asymm)
|
|
|
|
symm_upper = np.array(asymm)
|
|
|
|
for i in range(4):
|
|
|
|
for j in range(i + 1, 4):
|
|
|
|
symm_lower[i, j] = symm_lower[j, i]
|
|
|
|
symm_upper[j, i] = symm_upper[i, j]
|
|
|
|
|
|
|
|
assert np.all(symmetric_lower(asymm) == symm_lower)
|
|
|
|
assert np.all(symmetric_upper(asymm) == symm_upper)
|
|
|
|
|
|
|
|
|
|
|
|
def test_dense_signature(doc):
|
2017-02-28 17:07:51 +00:00
|
|
|
from pybind11_tests import double_col, double_row, double_complex, double_mat_rm
|
2016-08-12 11:50:00 +00:00
|
|
|
|
2016-12-12 23:59:28 +00:00
|
|
|
assert doc(double_col) == """
|
|
|
|
double_col(arg0: numpy.ndarray[float32[m, 1]]) -> numpy.ndarray[float32[m, 1]]
|
|
|
|
"""
|
|
|
|
assert doc(double_row) == """
|
|
|
|
double_row(arg0: numpy.ndarray[float32[1, n]]) -> numpy.ndarray[float32[1, n]]
|
|
|
|
"""
|
2017-02-28 17:07:51 +00:00
|
|
|
assert doc(double_complex) == """
|
|
|
|
double_complex(arg0: numpy.ndarray[complex64[m, 1]]) -> numpy.ndarray[complex64[m, 1]]
|
|
|
|
"""
|
2016-12-12 23:59:28 +00:00
|
|
|
assert doc(double_mat_rm) == """
|
|
|
|
double_mat_rm(arg0: numpy.ndarray[float32[m, n]]) -> numpy.ndarray[float32[m, n]]
|
|
|
|
"""
|
2016-08-12 11:50:00 +00:00
|
|
|
|
|
|
|
|
2017-04-08 23:26:42 +00:00
|
|
|
def test_named_arguments():
|
|
|
|
from pybind11_tests import matrix_multiply
|
|
|
|
|
|
|
|
a = np.array([[1.0, 2], [3, 4], [5, 6]])
|
|
|
|
b = np.ones((2, 1))
|
|
|
|
|
|
|
|
assert np.all(matrix_multiply(a, b) == np.array([[3.], [7], [11]]))
|
|
|
|
assert np.all(matrix_multiply(A=a, B=b) == np.array([[3.], [7], [11]]))
|
|
|
|
assert np.all(matrix_multiply(B=b, A=a) == np.array([[3.], [7], [11]]))
|
|
|
|
|
|
|
|
with pytest.raises(ValueError) as excinfo:
|
|
|
|
matrix_multiply(b, a)
|
|
|
|
assert str(excinfo.value) == 'Nonconformable matrices!'
|
|
|
|
|
|
|
|
with pytest.raises(ValueError) as excinfo:
|
|
|
|
matrix_multiply(A=b, B=a)
|
|
|
|
assert str(excinfo.value) == 'Nonconformable matrices!'
|
|
|
|
|
|
|
|
with pytest.raises(ValueError) as excinfo:
|
|
|
|
matrix_multiply(B=a, A=b)
|
|
|
|
assert str(excinfo.value) == 'Nonconformable matrices!'
|
|
|
|
|
|
|
|
|
2016-08-12 11:50:00 +00:00
|
|
|
@pytest.requires_eigen_and_scipy
|
|
|
|
def test_sparse():
|
2017-01-17 01:35:14 +00:00
|
|
|
from pybind11_tests import sparse_r, sparse_c, sparse_copy_r, sparse_copy_c
|
2016-08-12 11:50:00 +00:00
|
|
|
|
|
|
|
assert_sparse_equal_ref(sparse_r())
|
|
|
|
assert_sparse_equal_ref(sparse_c())
|
2017-01-17 01:35:14 +00:00
|
|
|
assert_sparse_equal_ref(sparse_copy_r(sparse_r()))
|
|
|
|
assert_sparse_equal_ref(sparse_copy_c(sparse_c()))
|
|
|
|
assert_sparse_equal_ref(sparse_copy_r(sparse_c()))
|
|
|
|
assert_sparse_equal_ref(sparse_copy_c(sparse_r()))
|
2016-08-12 11:50:00 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.requires_eigen_and_scipy
|
|
|
|
def test_sparse_signature(doc):
|
2017-01-17 01:35:14 +00:00
|
|
|
from pybind11_tests import sparse_copy_r, sparse_copy_c
|
2016-08-12 11:50:00 +00:00
|
|
|
|
2017-01-17 01:35:14 +00:00
|
|
|
assert doc(sparse_copy_r) == """
|
|
|
|
sparse_copy_r(arg0: scipy.sparse.csr_matrix[float32]) -> scipy.sparse.csr_matrix[float32]
|
2016-12-12 23:59:28 +00:00
|
|
|
""" # noqa: E501 line too long
|
2017-01-17 01:35:14 +00:00
|
|
|
assert doc(sparse_copy_c) == """
|
|
|
|
sparse_copy_c(arg0: scipy.sparse.csc_matrix[float32]) -> scipy.sparse.csc_matrix[float32]
|
2016-12-12 23:59:28 +00:00
|
|
|
""" # noqa: E501 line too long
|
2017-03-17 17:51:52 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_issue738():
|
|
|
|
from pybind11_tests import iss738_f1, iss738_f2
|
|
|
|
|
|
|
|
assert np.all(iss738_f1(np.array([[1., 2, 3]])) == np.array([[1., 102, 203]]))
|
|
|
|
assert np.all(iss738_f1(np.array([[1.], [2], [3]])) == np.array([[1.], [12], [23]]))
|
|
|
|
|
|
|
|
assert np.all(iss738_f2(np.array([[1., 2, 3]])) == np.array([[1., 102, 203]]))
|
|
|
|
assert np.all(iss738_f2(np.array([[1.], [2], [3]])) == np.array([[1.], [12], [23]]))
|
2017-03-21 00:15:20 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_custom_operator_new():
|
|
|
|
"""Using Eigen types as member variables requires a class-specific
|
|
|
|
operator new with proper alignment"""
|
|
|
|
from pybind11_tests import CustomOperatorNew
|
|
|
|
|
|
|
|
o = CustomOperatorNew()
|
|
|
|
np.testing.assert_allclose(o.a, 0.0)
|
|
|
|
np.testing.assert_allclose(o.b.diagonal(), 1.0)
|