pybind11/tests/test_sequences_and_iterator...

241 lines
7.5 KiB
C++
Raw Normal View History

2015-07-05 18:05:44 +00:00
/*
tests/test_sequences_and_iterators.cpp -- supporting Pythons' sequence protocol, iterators,
etc.
2015-07-05 18:05:44 +00:00
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
2015-07-05 18:05:44 +00:00
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
#include "constructor_stats.h"
#include <pybind11/operators.h>
#include <pybind11/stl.h>
2015-07-05 18:05:44 +00:00
class Sequence {
public:
Sequence(size_t size) : m_size(size) {
Improve constructor/destructor tracking This commit rewrites the examples that look for constructor/destructor calls to do so via static variable tracking rather than output parsing. The added ConstructorStats class provides methods to keep track of constructors and destructors, number of default/copy/move constructors, and number of copy/move assignments. It also provides a mechanism for storing values (e.g. for value construction), and then allows all of this to be checked at the end of a test by getting the statistics for a C++ (or python mapping) class. By not relying on the precise pattern of constructions/destructions, but rather simply ensuring that every construction is matched with a destruction on the same object, we ensure that everything that gets created also gets destroyed as expected. This replaces all of the various "std::cout << whatever" code in constructors/destructors with `print_created(this)`/`print_destroyed(this)`/etc. functions which provide similar output, but now has a unified format across the different examples, including a new ### prefix that makes mixed example output and lifecycle events easier to distinguish. With this change, relaxed mode is no longer needed, which enables testing for proper destruction under MSVC, and under any other compiler that generates code calling extra constructors, or optimizes away any constructors. GCC/clang are used as the baseline for move constructors; the tests are adapted to allow more move constructors to be evoked (but other types are constructors much have matching counts). This commit also disables output buffering of tests, as the buffering sometimes results in C++ output ending up in the middle of python output (or vice versa), depending on the OS/python version.
2016-08-07 17:05:26 +00:00
print_created(this, "of size", m_size);
2015-07-05 18:05:44 +00:00
m_data = new float[size];
memset(m_data, 0, sizeof(float) * size);
}
Sequence(const std::vector<float> &value) : m_size(value.size()) {
Improve constructor/destructor tracking This commit rewrites the examples that look for constructor/destructor calls to do so via static variable tracking rather than output parsing. The added ConstructorStats class provides methods to keep track of constructors and destructors, number of default/copy/move constructors, and number of copy/move assignments. It also provides a mechanism for storing values (e.g. for value construction), and then allows all of this to be checked at the end of a test by getting the statistics for a C++ (or python mapping) class. By not relying on the precise pattern of constructions/destructions, but rather simply ensuring that every construction is matched with a destruction on the same object, we ensure that everything that gets created also gets destroyed as expected. This replaces all of the various "std::cout << whatever" code in constructors/destructors with `print_created(this)`/`print_destroyed(this)`/etc. functions which provide similar output, but now has a unified format across the different examples, including a new ### prefix that makes mixed example output and lifecycle events easier to distinguish. With this change, relaxed mode is no longer needed, which enables testing for proper destruction under MSVC, and under any other compiler that generates code calling extra constructors, or optimizes away any constructors. GCC/clang are used as the baseline for move constructors; the tests are adapted to allow more move constructors to be evoked (but other types are constructors much have matching counts). This commit also disables output buffering of tests, as the buffering sometimes results in C++ output ending up in the middle of python output (or vice versa), depending on the OS/python version.
2016-08-07 17:05:26 +00:00
print_created(this, "of size", m_size, "from std::vector");
2015-07-05 18:05:44 +00:00
m_data = new float[m_size];
memcpy(m_data, &value[0], sizeof(float) * m_size);
}
Sequence(const Sequence &s) : m_size(s.m_size) {
Improve constructor/destructor tracking This commit rewrites the examples that look for constructor/destructor calls to do so via static variable tracking rather than output parsing. The added ConstructorStats class provides methods to keep track of constructors and destructors, number of default/copy/move constructors, and number of copy/move assignments. It also provides a mechanism for storing values (e.g. for value construction), and then allows all of this to be checked at the end of a test by getting the statistics for a C++ (or python mapping) class. By not relying on the precise pattern of constructions/destructions, but rather simply ensuring that every construction is matched with a destruction on the same object, we ensure that everything that gets created also gets destroyed as expected. This replaces all of the various "std::cout << whatever" code in constructors/destructors with `print_created(this)`/`print_destroyed(this)`/etc. functions which provide similar output, but now has a unified format across the different examples, including a new ### prefix that makes mixed example output and lifecycle events easier to distinguish. With this change, relaxed mode is no longer needed, which enables testing for proper destruction under MSVC, and under any other compiler that generates code calling extra constructors, or optimizes away any constructors. GCC/clang are used as the baseline for move constructors; the tests are adapted to allow more move constructors to be evoked (but other types are constructors much have matching counts). This commit also disables output buffering of tests, as the buffering sometimes results in C++ output ending up in the middle of python output (or vice versa), depending on the OS/python version.
2016-08-07 17:05:26 +00:00
print_copy_created(this);
2015-07-05 18:05:44 +00:00
m_data = new float[m_size];
memcpy(m_data, s.m_data, sizeof(float)*m_size);
}
Sequence(Sequence &&s) : m_size(s.m_size), m_data(s.m_data) {
Improve constructor/destructor tracking This commit rewrites the examples that look for constructor/destructor calls to do so via static variable tracking rather than output parsing. The added ConstructorStats class provides methods to keep track of constructors and destructors, number of default/copy/move constructors, and number of copy/move assignments. It also provides a mechanism for storing values (e.g. for value construction), and then allows all of this to be checked at the end of a test by getting the statistics for a C++ (or python mapping) class. By not relying on the precise pattern of constructions/destructions, but rather simply ensuring that every construction is matched with a destruction on the same object, we ensure that everything that gets created also gets destroyed as expected. This replaces all of the various "std::cout << whatever" code in constructors/destructors with `print_created(this)`/`print_destroyed(this)`/etc. functions which provide similar output, but now has a unified format across the different examples, including a new ### prefix that makes mixed example output and lifecycle events easier to distinguish. With this change, relaxed mode is no longer needed, which enables testing for proper destruction under MSVC, and under any other compiler that generates code calling extra constructors, or optimizes away any constructors. GCC/clang are used as the baseline for move constructors; the tests are adapted to allow more move constructors to be evoked (but other types are constructors much have matching counts). This commit also disables output buffering of tests, as the buffering sometimes results in C++ output ending up in the middle of python output (or vice versa), depending on the OS/python version.
2016-08-07 17:05:26 +00:00
print_move_created(this);
2015-07-05 18:05:44 +00:00
s.m_size = 0;
s.m_data = nullptr;
}
~Sequence() {
Improve constructor/destructor tracking This commit rewrites the examples that look for constructor/destructor calls to do so via static variable tracking rather than output parsing. The added ConstructorStats class provides methods to keep track of constructors and destructors, number of default/copy/move constructors, and number of copy/move assignments. It also provides a mechanism for storing values (e.g. for value construction), and then allows all of this to be checked at the end of a test by getting the statistics for a C++ (or python mapping) class. By not relying on the precise pattern of constructions/destructions, but rather simply ensuring that every construction is matched with a destruction on the same object, we ensure that everything that gets created also gets destroyed as expected. This replaces all of the various "std::cout << whatever" code in constructors/destructors with `print_created(this)`/`print_destroyed(this)`/etc. functions which provide similar output, but now has a unified format across the different examples, including a new ### prefix that makes mixed example output and lifecycle events easier to distinguish. With this change, relaxed mode is no longer needed, which enables testing for proper destruction under MSVC, and under any other compiler that generates code calling extra constructors, or optimizes away any constructors. GCC/clang are used as the baseline for move constructors; the tests are adapted to allow more move constructors to be evoked (but other types are constructors much have matching counts). This commit also disables output buffering of tests, as the buffering sometimes results in C++ output ending up in the middle of python output (or vice versa), depending on the OS/python version.
2016-08-07 17:05:26 +00:00
print_destroyed(this);
2015-07-05 18:05:44 +00:00
delete[] m_data;
}
Sequence &operator=(const Sequence &s) {
Improve constructor/destructor tracking This commit rewrites the examples that look for constructor/destructor calls to do so via static variable tracking rather than output parsing. The added ConstructorStats class provides methods to keep track of constructors and destructors, number of default/copy/move constructors, and number of copy/move assignments. It also provides a mechanism for storing values (e.g. for value construction), and then allows all of this to be checked at the end of a test by getting the statistics for a C++ (or python mapping) class. By not relying on the precise pattern of constructions/destructions, but rather simply ensuring that every construction is matched with a destruction on the same object, we ensure that everything that gets created also gets destroyed as expected. This replaces all of the various "std::cout << whatever" code in constructors/destructors with `print_created(this)`/`print_destroyed(this)`/etc. functions which provide similar output, but now has a unified format across the different examples, including a new ### prefix that makes mixed example output and lifecycle events easier to distinguish. With this change, relaxed mode is no longer needed, which enables testing for proper destruction under MSVC, and under any other compiler that generates code calling extra constructors, or optimizes away any constructors. GCC/clang are used as the baseline for move constructors; the tests are adapted to allow more move constructors to be evoked (but other types are constructors much have matching counts). This commit also disables output buffering of tests, as the buffering sometimes results in C++ output ending up in the middle of python output (or vice versa), depending on the OS/python version.
2016-08-07 17:05:26 +00:00
if (&s != this) {
delete[] m_data;
m_size = s.m_size;
m_data = new float[m_size];
memcpy(m_data, s.m_data, sizeof(float)*m_size);
}
print_copy_assigned(this);
2015-07-05 18:05:44 +00:00
return *this;
}
Sequence &operator=(Sequence &&s) {
if (&s != this) {
delete[] m_data;
m_size = s.m_size;
m_data = s.m_data;
s.m_size = 0;
s.m_data = nullptr;
}
Improve constructor/destructor tracking This commit rewrites the examples that look for constructor/destructor calls to do so via static variable tracking rather than output parsing. The added ConstructorStats class provides methods to keep track of constructors and destructors, number of default/copy/move constructors, and number of copy/move assignments. It also provides a mechanism for storing values (e.g. for value construction), and then allows all of this to be checked at the end of a test by getting the statistics for a C++ (or python mapping) class. By not relying on the precise pattern of constructions/destructions, but rather simply ensuring that every construction is matched with a destruction on the same object, we ensure that everything that gets created also gets destroyed as expected. This replaces all of the various "std::cout << whatever" code in constructors/destructors with `print_created(this)`/`print_destroyed(this)`/etc. functions which provide similar output, but now has a unified format across the different examples, including a new ### prefix that makes mixed example output and lifecycle events easier to distinguish. With this change, relaxed mode is no longer needed, which enables testing for proper destruction under MSVC, and under any other compiler that generates code calling extra constructors, or optimizes away any constructors. GCC/clang are used as the baseline for move constructors; the tests are adapted to allow more move constructors to be evoked (but other types are constructors much have matching counts). This commit also disables output buffering of tests, as the buffering sometimes results in C++ output ending up in the middle of python output (or vice versa), depending on the OS/python version.
2016-08-07 17:05:26 +00:00
print_move_assigned(this);
2015-07-05 18:05:44 +00:00
return *this;
}
bool operator==(const Sequence &s) const {
if (m_size != s.size())
return false;
for (size_t i=0; i<m_size; ++i)
if (m_data[i] != s[i])
return false;
return true;
}
bool operator!=(const Sequence &s) const {
return !operator==(s);
}
float operator[](size_t index) const {
return m_data[index];
}
float &operator[](size_t index) {
return m_data[index];
}
bool contains(float v) const {
for (size_t i=0; i<m_size; ++i)
if (v == m_data[i])
return true;
return false;
}
Sequence reversed() const {
Sequence result(m_size);
for (size_t i=0; i<m_size; ++i)
result[m_size-i-1] = m_data[i];
return result;
}
size_t size() const { return m_size; }
const float *begin() const { return m_data; }
const float *end() const { return m_data+m_size; }
2015-07-05 18:05:44 +00:00
private:
size_t m_size;
float *m_data;
};
// Interface of a map-like object that isn't (directly) an unordered_map, but provides some basic
// map-like functionality.
class StringMap {
public:
StringMap(std::unordered_map<std::string, std::string> init = {})
: map(std::move(init)) {}
void set(std::string key, std::string val) {
map[key] = val;
}
std::string get(std::string key) const {
return map.at(key);
}
size_t size() const {
return map.size();
}
private:
std::unordered_map<std::string, std::string> map;
public:
decltype(map.cbegin()) begin() const { return map.cbegin(); }
decltype(map.cend()) end() const { return map.cend(); }
};
void init_ex_sequences_and_iterators(py::module &m) {
2015-07-05 18:05:44 +00:00
py::class_<Sequence> seq(m, "Sequence");
seq.def(py::init<size_t>())
.def(py::init<const std::vector<float>&>())
/// Bare bones interface
.def("__getitem__", [](const Sequence &s, size_t i) {
if (i >= s.size())
throw py::index_error();
return s[i];
})
.def("__setitem__", [](Sequence &s, size_t i, float v) {
if (i >= s.size())
throw py::index_error();
s[i] = v;
})
.def("__len__", &Sequence::size)
/// Optional sequence protocol operations
.def("__iter__", [](const Sequence &s) { return py::make_iterator(s.begin(), s.end()); },
py::keep_alive<0, 1>() /* Essential: keep object alive while iterator exists */)
2015-07-05 18:05:44 +00:00
.def("__contains__", [](const Sequence &s, float v) { return s.contains(v); })
.def("__reversed__", [](const Sequence &s) -> Sequence { return s.reversed(); })
/// Slicing protocol (optional)
.def("__getitem__", [](const Sequence &s, py::slice slice) -> Sequence* {
size_t start, stop, step, slicelength;
2015-07-05 18:05:44 +00:00
if (!slice.compute(s.size(), &start, &stop, &step, &slicelength))
throw py::error_already_set();
Sequence *seq = new Sequence(slicelength);
for (size_t i=0; i<slicelength; ++i) {
2015-07-05 18:05:44 +00:00
(*seq)[i] = s[start]; start += step;
}
return seq;
})
.def("__setitem__", [](Sequence &s, py::slice slice, const Sequence &value) {
size_t start, stop, step, slicelength;
2015-07-05 18:05:44 +00:00
if (!slice.compute(s.size(), &start, &stop, &step, &slicelength))
throw py::error_already_set();
if (slicelength != value.size())
2015-07-05 18:05:44 +00:00
throw std::runtime_error("Left and right hand size of slice assignment have different sizes!");
for (size_t i=0; i<slicelength; ++i) {
2015-07-05 18:05:44 +00:00
s[start] = value[i]; start += step;
}
})
/// Comparisons
.def(py::self == py::self)
.def(py::self != py::self);
// Could also define py::self + py::self for concatenation, etc.
py::class_<StringMap> map(m, "StringMap");
map .def(py::init<>())
.def(py::init<std::unordered_map<std::string, std::string>>())
.def("__getitem__", [](const StringMap &map, std::string key) {
try { return map.get(key); }
catch (const std::out_of_range&) {
throw py::key_error("key '" + key + "' does not exist");
}
})
.def("__setitem__", &StringMap::set)
.def("__len__", &StringMap::size)
.def("__iter__", [](const StringMap &map) { return py::make_key_iterator(map.begin(), map.end()); },
py::keep_alive<0, 1>())
.def("items", [](const StringMap &map) { return py::make_iterator(map.begin(), map.end()); },
py::keep_alive<0, 1>())
;
#if 0
// Obsolete: special data structure for exposing custom iterator types to python
// kept here for illustrative purposes because there might be some use cases which
// are not covered by the much simpler py::make_iterator
struct PySequenceIterator {
PySequenceIterator(const Sequence &seq, py::object ref) : seq(seq), ref(ref) { }
float next() {
if (index == seq.size())
throw py::stop_iteration();
return seq[index++];
}
const Sequence &seq;
py::object ref; // keep a reference
size_t index = 0;
};
2015-07-05 18:05:44 +00:00
py::class_<PySequenceIterator>(seq, "Iterator")
.def("__iter__", [](PySequenceIterator &it) -> PySequenceIterator& { return it; })
.def("__next__", &PySequenceIterator::next);
On the actual Sequence object, the iterator would be constructed as follows:
.def("__iter__", [](py::object s) { return PySequenceIterator(s.cast<const Sequence &>(), s); })
#endif
2015-07-05 18:05:44 +00:00
}