2016-08-12 11:50:00 +00:00
|
|
|
import pytest
|
|
|
|
|
2017-01-24 16:26:51 +00:00
|
|
|
pytestmark = pytest.requires_numpy
|
|
|
|
|
2016-08-12 11:50:00 +00:00
|
|
|
with pytest.suppress(ImportError):
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
def test_vectorize(capture):
|
|
|
|
from pybind11_tests import vectorized_func, vectorized_func2, vectorized_func3
|
|
|
|
|
|
|
|
assert np.isclose(vectorized_func3(np.array(3 + 7j)), [6 + 14j])
|
|
|
|
|
|
|
|
for f in [vectorized_func, vectorized_func2]:
|
|
|
|
with capture:
|
|
|
|
assert np.isclose(f(1, 2, 3), 6)
|
|
|
|
assert capture == "my_func(x:int=1, y:float=2, z:float=3)"
|
|
|
|
with capture:
|
|
|
|
assert np.isclose(f(np.array(1), np.array(2), 3), 6)
|
|
|
|
assert capture == "my_func(x:int=1, y:float=2, z:float=3)"
|
|
|
|
with capture:
|
|
|
|
assert np.allclose(f(np.array([1, 3]), np.array([2, 4]), 3), [6, 36])
|
|
|
|
assert capture == """
|
|
|
|
my_func(x:int=1, y:float=2, z:float=3)
|
|
|
|
my_func(x:int=3, y:float=4, z:float=3)
|
|
|
|
"""
|
2017-03-19 00:11:59 +00:00
|
|
|
with capture:
|
|
|
|
a = np.array([[1, 2], [3, 4]], order='F')
|
|
|
|
b = np.array([[10, 20], [30, 40]], order='F')
|
|
|
|
c = 3
|
|
|
|
result = f(a, b, c)
|
|
|
|
assert np.allclose(result, a * b * c)
|
|
|
|
assert result.flags.f_contiguous
|
|
|
|
# All inputs are F order and full or singletons, so we the result is in col-major order:
|
|
|
|
assert capture == """
|
|
|
|
my_func(x:int=1, y:float=10, z:float=3)
|
|
|
|
my_func(x:int=3, y:float=30, z:float=3)
|
|
|
|
my_func(x:int=2, y:float=20, z:float=3)
|
|
|
|
my_func(x:int=4, y:float=40, z:float=3)
|
|
|
|
"""
|
2016-08-12 11:50:00 +00:00
|
|
|
with capture:
|
|
|
|
a, b, c = np.array([[1, 3, 5], [7, 9, 11]]), np.array([[2, 4, 6], [8, 10, 12]]), 3
|
|
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
|
|
assert capture == """
|
|
|
|
my_func(x:int=1, y:float=2, z:float=3)
|
|
|
|
my_func(x:int=3, y:float=4, z:float=3)
|
|
|
|
my_func(x:int=5, y:float=6, z:float=3)
|
|
|
|
my_func(x:int=7, y:float=8, z:float=3)
|
|
|
|
my_func(x:int=9, y:float=10, z:float=3)
|
|
|
|
my_func(x:int=11, y:float=12, z:float=3)
|
|
|
|
"""
|
|
|
|
with capture:
|
|
|
|
a, b, c = np.array([[1, 2, 3], [4, 5, 6]]), np.array([2, 3, 4]), 2
|
|
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
|
|
assert capture == """
|
|
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
|
|
my_func(x:int=2, y:float=3, z:float=2)
|
|
|
|
my_func(x:int=3, y:float=4, z:float=2)
|
|
|
|
my_func(x:int=4, y:float=2, z:float=2)
|
|
|
|
my_func(x:int=5, y:float=3, z:float=2)
|
|
|
|
my_func(x:int=6, y:float=4, z:float=2)
|
|
|
|
"""
|
|
|
|
with capture:
|
|
|
|
a, b, c = np.array([[1, 2, 3], [4, 5, 6]]), np.array([[2], [3]]), 2
|
|
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
|
|
assert capture == """
|
|
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
|
|
my_func(x:int=2, y:float=2, z:float=2)
|
|
|
|
my_func(x:int=3, y:float=2, z:float=2)
|
|
|
|
my_func(x:int=4, y:float=3, z:float=2)
|
|
|
|
my_func(x:int=5, y:float=3, z:float=2)
|
|
|
|
my_func(x:int=6, y:float=3, z:float=2)
|
|
|
|
"""
|
Stop forcing c-contiguous in py::vectorize
The only part of the vectorize code that actually needs c-contiguous is
the "trivial" broadcast; for non-trivial arguments, the code already
uses strides properly (and so handles C-style, F-style, neither, slices,
etc.)
This commit rewrites `broadcast` to additionally check for C-contiguous
storage, then takes off the `c_style` flag for the arguments, which
will keep the functionality more or less the same, except for no longer
requiring an array copy for non-c-contiguous input arrays.
Additionally, if we're given a singleton slice (e.g. a[0::4, 0::4] for a
4x4 or smaller array), we no longer fail triviality because the trivial
code path never actually uses the strides on a singleton.
2017-03-15 03:57:56 +00:00
|
|
|
with capture:
|
|
|
|
a, b, c = np.array([[1, 2, 3], [4, 5, 6]], order='F'), np.array([[2], [3]]), 2
|
|
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
|
|
assert capture == """
|
|
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
|
|
my_func(x:int=2, y:float=2, z:float=2)
|
|
|
|
my_func(x:int=3, y:float=2, z:float=2)
|
|
|
|
my_func(x:int=4, y:float=3, z:float=2)
|
|
|
|
my_func(x:int=5, y:float=3, z:float=2)
|
|
|
|
my_func(x:int=6, y:float=3, z:float=2)
|
|
|
|
"""
|
|
|
|
with capture:
|
|
|
|
a, b, c = np.array([[1, 2, 3], [4, 5, 6]])[::, ::2], np.array([[2], [3]]), 2
|
|
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
|
|
assert capture == """
|
|
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
|
|
my_func(x:int=3, y:float=2, z:float=2)
|
|
|
|
my_func(x:int=4, y:float=3, z:float=2)
|
|
|
|
my_func(x:int=6, y:float=3, z:float=2)
|
|
|
|
"""
|
|
|
|
with capture:
|
|
|
|
a, b, c = np.array([[1, 2, 3], [4, 5, 6]], order='F')[::, ::2], np.array([[2], [3]]), 2
|
|
|
|
assert np.allclose(f(a, b, c), a * b * c)
|
|
|
|
assert capture == """
|
|
|
|
my_func(x:int=1, y:float=2, z:float=2)
|
|
|
|
my_func(x:int=3, y:float=2, z:float=2)
|
|
|
|
my_func(x:int=4, y:float=3, z:float=2)
|
|
|
|
my_func(x:int=6, y:float=3, z:float=2)
|
|
|
|
"""
|
2016-08-12 11:50:00 +00:00
|
|
|
|
|
|
|
|
2016-08-12 20:28:31 +00:00
|
|
|
def test_type_selection():
|
2016-08-12 11:50:00 +00:00
|
|
|
from pybind11_tests import selective_func
|
|
|
|
|
2016-08-12 20:28:31 +00:00
|
|
|
assert selective_func(np.array([1], dtype=np.int32)) == "Int branch taken."
|
|
|
|
assert selective_func(np.array([1.0], dtype=np.float32)) == "Float branch taken."
|
|
|
|
assert selective_func(np.array([1.0j], dtype=np.complex64)) == "Complex float branch taken."
|
2016-08-12 11:50:00 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_docs(doc):
|
|
|
|
from pybind11_tests import vectorized_func
|
|
|
|
|
2016-12-12 23:59:28 +00:00
|
|
|
assert doc(vectorized_func) == """
|
2017-03-13 18:17:18 +00:00
|
|
|
vectorized_func(arg0: numpy.ndarray[int32], arg1: numpy.ndarray[float32], arg2: numpy.ndarray[float64]) -> object
|
2016-12-12 23:59:28 +00:00
|
|
|
""" # noqa: E501 line too long
|
Stop forcing c-contiguous in py::vectorize
The only part of the vectorize code that actually needs c-contiguous is
the "trivial" broadcast; for non-trivial arguments, the code already
uses strides properly (and so handles C-style, F-style, neither, slices,
etc.)
This commit rewrites `broadcast` to additionally check for C-contiguous
storage, then takes off the `c_style` flag for the arguments, which
will keep the functionality more or less the same, except for no longer
requiring an array copy for non-c-contiguous input arrays.
Additionally, if we're given a singleton slice (e.g. a[0::4, 0::4] for a
4x4 or smaller array), we no longer fail triviality because the trivial
code path never actually uses the strides on a singleton.
2017-03-15 03:57:56 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_trivial_broadcasting():
|
2017-03-19 00:11:59 +00:00
|
|
|
from pybind11_tests import vectorized_is_trivial, trivial, vectorized_func
|
Stop forcing c-contiguous in py::vectorize
The only part of the vectorize code that actually needs c-contiguous is
the "trivial" broadcast; for non-trivial arguments, the code already
uses strides properly (and so handles C-style, F-style, neither, slices,
etc.)
This commit rewrites `broadcast` to additionally check for C-contiguous
storage, then takes off the `c_style` flag for the arguments, which
will keep the functionality more or less the same, except for no longer
requiring an array copy for non-c-contiguous input arrays.
Additionally, if we're given a singleton slice (e.g. a[0::4, 0::4] for a
4x4 or smaller array), we no longer fail triviality because the trivial
code path never actually uses the strides on a singleton.
2017-03-15 03:57:56 +00:00
|
|
|
|
2017-03-19 00:11:59 +00:00
|
|
|
assert vectorized_is_trivial(1, 2, 3) == trivial.c_trivial
|
|
|
|
assert vectorized_is_trivial(np.array(1), np.array(2), 3) == trivial.c_trivial
|
|
|
|
assert vectorized_is_trivial(np.array([1, 3]), np.array([2, 4]), 3) == trivial.c_trivial
|
|
|
|
assert trivial.c_trivial == vectorized_is_trivial(
|
Stop forcing c-contiguous in py::vectorize
The only part of the vectorize code that actually needs c-contiguous is
the "trivial" broadcast; for non-trivial arguments, the code already
uses strides properly (and so handles C-style, F-style, neither, slices,
etc.)
This commit rewrites `broadcast` to additionally check for C-contiguous
storage, then takes off the `c_style` flag for the arguments, which
will keep the functionality more or less the same, except for no longer
requiring an array copy for non-c-contiguous input arrays.
Additionally, if we're given a singleton slice (e.g. a[0::4, 0::4] for a
4x4 or smaller array), we no longer fail triviality because the trivial
code path never actually uses the strides on a singleton.
2017-03-15 03:57:56 +00:00
|
|
|
np.array([[1, 3, 5], [7, 9, 11]]), np.array([[2, 4, 6], [8, 10, 12]]), 3)
|
2017-03-19 00:11:59 +00:00
|
|
|
assert vectorized_is_trivial(
|
|
|
|
np.array([[1, 2, 3], [4, 5, 6]]), np.array([2, 3, 4]), 2) == trivial.non_trivial
|
|
|
|
assert vectorized_is_trivial(
|
|
|
|
np.array([[1, 2, 3], [4, 5, 6]]), np.array([[2], [3]]), 2) == trivial.non_trivial
|
Stop forcing c-contiguous in py::vectorize
The only part of the vectorize code that actually needs c-contiguous is
the "trivial" broadcast; for non-trivial arguments, the code already
uses strides properly (and so handles C-style, F-style, neither, slices,
etc.)
This commit rewrites `broadcast` to additionally check for C-contiguous
storage, then takes off the `c_style` flag for the arguments, which
will keep the functionality more or less the same, except for no longer
requiring an array copy for non-c-contiguous input arrays.
Additionally, if we're given a singleton slice (e.g. a[0::4, 0::4] for a
4x4 or smaller array), we no longer fail triviality because the trivial
code path never actually uses the strides on a singleton.
2017-03-15 03:57:56 +00:00
|
|
|
z1 = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype='int32')
|
|
|
|
z2 = np.array(z1, dtype='float32')
|
|
|
|
z3 = np.array(z1, dtype='float64')
|
2017-03-19 00:11:59 +00:00
|
|
|
assert vectorized_is_trivial(z1, z2, z3) == trivial.c_trivial
|
|
|
|
assert vectorized_is_trivial(1, z2, z3) == trivial.c_trivial
|
|
|
|
assert vectorized_is_trivial(z1, 1, z3) == trivial.c_trivial
|
|
|
|
assert vectorized_is_trivial(z1, z2, 1) == trivial.c_trivial
|
|
|
|
assert vectorized_is_trivial(z1[::2, ::2], 1, 1) == trivial.non_trivial
|
|
|
|
assert vectorized_is_trivial(1, 1, z1[::2, ::2]) == trivial.c_trivial
|
|
|
|
assert vectorized_is_trivial(1, 1, z3[::2, ::2]) == trivial.non_trivial
|
|
|
|
assert vectorized_is_trivial(z1, 1, z3[1::4, 1::4]) == trivial.c_trivial
|
Stop forcing c-contiguous in py::vectorize
The only part of the vectorize code that actually needs c-contiguous is
the "trivial" broadcast; for non-trivial arguments, the code already
uses strides properly (and so handles C-style, F-style, neither, slices,
etc.)
This commit rewrites `broadcast` to additionally check for C-contiguous
storage, then takes off the `c_style` flag for the arguments, which
will keep the functionality more or less the same, except for no longer
requiring an array copy for non-c-contiguous input arrays.
Additionally, if we're given a singleton slice (e.g. a[0::4, 0::4] for a
4x4 or smaller array), we no longer fail triviality because the trivial
code path never actually uses the strides on a singleton.
2017-03-15 03:57:56 +00:00
|
|
|
|
|
|
|
y1 = np.array(z1, order='F')
|
|
|
|
y2 = np.array(y1)
|
|
|
|
y3 = np.array(y1)
|
2017-03-19 00:11:59 +00:00
|
|
|
assert vectorized_is_trivial(y1, y2, y3) == trivial.f_trivial
|
|
|
|
assert vectorized_is_trivial(y1, 1, 1) == trivial.f_trivial
|
|
|
|
assert vectorized_is_trivial(1, y2, 1) == trivial.f_trivial
|
|
|
|
assert vectorized_is_trivial(1, 1, y3) == trivial.f_trivial
|
|
|
|
assert vectorized_is_trivial(y1, z2, 1) == trivial.non_trivial
|
|
|
|
assert vectorized_is_trivial(z1[1::4, 1::4], y2, 1) == trivial.f_trivial
|
|
|
|
assert vectorized_is_trivial(y1[1::4, 1::4], z2, 1) == trivial.c_trivial
|
|
|
|
|
|
|
|
assert vectorized_func(z1, z2, z3).flags.c_contiguous
|
|
|
|
assert vectorized_func(y1, y2, y3).flags.f_contiguous
|
|
|
|
assert vectorized_func(z1, 1, 1).flags.c_contiguous
|
|
|
|
assert vectorized_func(1, y2, 1).flags.f_contiguous
|
|
|
|
assert vectorized_func(z1[1::4, 1::4], y2, 1).flags.f_contiguous
|
|
|
|
assert vectorized_func(y1[1::4, 1::4], z2, 1).flags.c_contiguous
|
2017-03-26 03:51:40 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_passthrough_arguments(doc):
|
|
|
|
from pybind11_tests import vec_passthrough, NonPODClass
|
|
|
|
|
|
|
|
assert doc(vec_passthrough) == (
|
|
|
|
"vec_passthrough("
|
|
|
|
"arg0: float, arg1: numpy.ndarray[float64], arg2: numpy.ndarray[float64], "
|
|
|
|
"arg3: numpy.ndarray[int32], arg4: int, arg5: m.NonPODClass, arg6: numpy.ndarray[float64]"
|
|
|
|
") -> object")
|
|
|
|
|
|
|
|
b = np.array([[10, 20, 30]], dtype='float64')
|
|
|
|
c = np.array([100, 200]) # NOT a vectorized argument
|
|
|
|
d = np.array([[1000], [2000], [3000]], dtype='int')
|
|
|
|
g = np.array([[1000000, 2000000, 3000000]], dtype='int') # requires casting
|
|
|
|
assert np.all(
|
|
|
|
vec_passthrough(1, b, c, d, 10000, NonPODClass(100000), g) ==
|
|
|
|
np.array([[1111111, 2111121, 3111131],
|
|
|
|
[1112111, 2112121, 3112131],
|
|
|
|
[1113111, 2113121, 3113131]]))
|
|
|
|
|
|
|
|
|
|
|
|
def test_method_vectorization():
|
|
|
|
from pybind11_tests import VectorizeTestClass
|
|
|
|
|
|
|
|
o = VectorizeTestClass(3)
|
|
|
|
x = np.array([1, 2], dtype='int')
|
|
|
|
y = np.array([[10], [20]], dtype='float32')
|
|
|
|
assert np.all(o.method(x, y) == [[14, 15], [24, 25]])
|
|
|
|
|
|
|
|
|
|
|
|
def test_array_collapse():
|
|
|
|
from pybind11_tests import vectorized_func
|
|
|
|
|
|
|
|
assert not isinstance(vectorized_func(1, 2, 3), np.ndarray)
|
|
|
|
assert not isinstance(vectorized_func(np.array(1), 2, 3), np.ndarray)
|
|
|
|
z = vectorized_func([1], 2, 3)
|
|
|
|
assert isinstance(z, np.ndarray)
|
|
|
|
assert z.shape == (1, )
|
|
|
|
z = vectorized_func(1, [[[2]]], 3)
|
|
|
|
assert isinstance(z, np.ndarray)
|
|
|
|
assert z.shape == (1, 1, 1)
|