pybind11/include/pybind11/pybind11.h

1484 lines
61 KiB
C
Raw Normal View History

2015-07-05 18:05:44 +00:00
/*
pybind11/pybind11.h: Main header file of the C++11 python
binding generator library
2015-07-05 18:05:44 +00:00
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
2015-07-05 18:05:44 +00:00
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
2015-07-11 15:41:48 +00:00
#pragma once
2015-07-05 18:05:44 +00:00
#if defined(_MSC_VER)
# pragma warning(push)
# pragma warning(disable: 4100) // warning C4100: Unreferenced formal parameter
# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
# pragma warning(disable: 4512) // warning C4512: Assignment operator was implicitly defined as deleted
# pragma warning(disable: 4800) // warning C4800: 'int': forcing value to bool 'true' or 'false' (performance warning)
# pragma warning(disable: 4996) // warning C4996: The POSIX name for this item is deprecated. Instead, use the ISO C and C++ conformant name
#elif defined(__INTEL_COMPILER)
2016-02-18 20:25:51 +00:00
# pragma warning(push)
# pragma warning(disable: 186) // pointless comparison of unsigned integer with zero
# pragma warning(disable: 1334) // the "template" keyword used for syntactic disambiguation may only be used within a template
# pragma warning(disable: 2196) // warning #2196: routine is both "inline" and "noinline"
2016-05-01 18:47:49 +00:00
#elif defined(__GNUG__) && !defined(__clang__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wunused-but-set-parameter"
# pragma GCC diagnostic ignored "-Wunused-but-set-variable"
# pragma GCC diagnostic ignored "-Wmissing-field-initializers"
2016-05-15 21:54:34 +00:00
# pragma GCC diagnostic ignored "-Wstrict-aliasing"
# pragma GCC diagnostic ignored "-Wattributes"
2015-07-05 18:05:44 +00:00
#endif
#include "attr.h"
2015-07-05 18:05:44 +00:00
NAMESPACE_BEGIN(pybind11)
2015-07-05 18:05:44 +00:00
2015-07-26 14:33:49 +00:00
/// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object
2015-07-11 15:41:48 +00:00
class cpp_function : public function {
2015-07-26 14:33:49 +00:00
public:
2015-07-11 15:41:48 +00:00
cpp_function() { }
2015-07-26 14:33:49 +00:00
/// Construct a cpp_function from a vanilla function pointer
template <typename Return, typename... Args, typename... Extra>
cpp_function(Return (*f)(Args...), const Extra&... extra) {
initialize(f, f, extra...);
2015-07-26 14:33:49 +00:00
}
/// Construct a cpp_function from a lambda function (possibly with internal state)
template <typename Func, typename... Extra> cpp_function(Func &&f, const Extra&... extra) {
initialize(std::forward<Func>(f),
2015-07-26 14:33:49 +00:00
(typename detail::remove_class<decltype(
&std::remove_reference<Func>::type::operator())>::type *) nullptr, extra...);
2015-07-26 14:33:49 +00:00
}
/// Construct a cpp_function from a class method (non-const)
template <typename Return, typename Class, typename... Arg, typename... Extra>
cpp_function(Return (Class::*f)(Arg...), const Extra&... extra) {
initialize([f](Class *c, Arg... args) -> Return { return (c->*f)(args...); },
(Return (*) (Class *, Arg...)) nullptr, extra...);
2015-07-05 18:05:44 +00:00
}
2015-07-26 14:33:49 +00:00
/// Construct a cpp_function from a class method (const)
template <typename Return, typename Class, typename... Arg, typename... Extra>
cpp_function(Return (Class::*f)(Arg...) const, const Extra&... extra) {
initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(args...); },
(Return (*)(const Class *, Arg ...)) nullptr, extra...);
2015-07-26 14:33:49 +00:00
}
/// Return the function name
object name() const { return attr("__name__"); }
protected:
/// Special internal constructor for functors, lambda functions, etc.
template <typename Func, typename Return, typename... Args, typename... Extra>
void initialize(Func &&f, Return (*)(Args...), const Extra&... extra) {
static_assert(detail::expected_num_args<Extra...>(sizeof...(Args)),
"The number of named arguments does not match the function signature");
struct capture { typename std::remove_reference<Func>::type f; };
2015-07-26 14:33:49 +00:00
/* Store the function including any extra state it might have (e.g. a lambda capture object) */
auto rec = new detail::function_record();
/* Store the capture object directly in the function record if there is enough space */
if (sizeof(capture) <= sizeof(rec->data)) {
/* Without these pragmas, GCC warns that there might not be
enough space to use the placement new operator. However, the
'if' statement above ensures that this is the case. */
#if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wplacement-new"
#endif
new ((capture *) &rec->data) capture { std::forward<Func>(f) };
#if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6
# pragma GCC diagnostic pop
#endif
if (!std::is_trivially_destructible<Func>::value)
rec->free_data = [](detail::function_record *r) { ((capture *) &r->data)->~capture(); };
} else {
rec->data[0] = new capture { std::forward<Func>(f) };
rec->free_data = [](detail::function_record *r) { delete ((capture *) r->data[0]); };
}
/* Type casters for the function arguments and return value */
typedef detail::type_caster<typename std::tuple<Args...>> cast_in;
typedef detail::type_caster<typename std::conditional<
std::is_void<Return>::value, detail::void_type,
typename detail::intrinsic_type<Return>::type>::type> cast_out;
2015-07-26 14:33:49 +00:00
/* Dispatch code which converts function arguments and performs the actual function call */
rec->impl = [](detail::function_record *rec, handle args, handle kwargs, handle parent) -> handle {
cast_in args_converter;
/* Try to cast the function arguments into the C++ domain */
if (!args_converter.load_args(args, kwargs, true))
return PYBIND11_TRY_NEXT_OVERLOAD;
/* Invoke call policy pre-call hook */
detail::process_attributes<Extra...>::precall(args);
/* Get a pointer to the capture object */
capture *cap = (capture *) (sizeof(capture) <= sizeof(rec->data)
? &rec->data : rec->data[0]);
/* Perform the function call */
handle result = cast_out::cast(args_converter.template call<Return>(cap->f),
rec->policy, parent);
/* Invoke call policy post-call hook */
detail::process_attributes<Extra...>::postcall(args, result);
return result;
2015-07-26 14:33:49 +00:00
};
/* Process any user-provided function attributes */
detail::process_attributes<Extra...>::init(extra..., rec);
/* Generate a readable signature describing the function's arguments and return value types */
using detail::descr; using detail::_;
PYBIND11_DESCR signature = _("(") + cast_in::element_names() + _(") -> ") + cast_out::name();
/* Register the function with Python from generic (non-templated) code */
initialize_generic(rec, signature.text(), signature.types(), sizeof...(Args));
if (cast_in::has_args) rec->has_args = true;
if (cast_in::has_kwargs) rec->has_kwargs = true;
/* Stash some additional information used by an important optimization in 'functional.h' */
using FunctionType = Return (*)(Args...);
constexpr bool is_function_ptr =
std::is_convertible<Func, FunctionType>::value &&
sizeof(capture) == sizeof(void *);
if (is_function_ptr) {
rec->is_stateless = true;
rec->data[1] = (void *) &typeid(FunctionType);
}
}
/// Register a function call with Python (generic non-templated code goes here)
void initialize_generic(detail::function_record *rec, const char *text,
const std::type_info *const *types, size_t args) {
/* Create copies of all referenced C-style strings */
rec->name = strdup(rec->name ? rec->name : "");
if (rec->doc) rec->doc = strdup(rec->doc);
for (auto &a: rec->args) {
if (a.name)
a.name = strdup(a.name);
if (a.descr)
a.descr = strdup(a.descr);
else if (a.value)
a.descr = strdup(((std::string) ((object) handle(a.value).attr("__repr__"))().str()).c_str());
}
auto const &registered_types = detail::get_internals().registered_types_cpp;
/* Generate a proper function signature */
std::string signature;
size_t type_depth = 0, char_index = 0, type_index = 0, arg_index = 0;
while (true) {
char c = text[char_index++];
if (c == '\0')
break;
if (c == '{') {
// Write arg name for everything except *args, **kwargs and return type.
if (type_depth == 0 && text[char_index] != '*' && arg_index < args) {
if (!rec->args.empty()) {
signature += rec->args[arg_index].name;
} else if (arg_index == 0 && rec->class_) {
signature += "self";
} else {
signature += "arg" + std::to_string(arg_index - (rec->class_ ? 1 : 0));
}
signature += ": ";
}
++type_depth;
} else if (c == '}') {
--type_depth;
if (type_depth == 0) {
if (arg_index < rec->args.size() && rec->args[arg_index].descr) {
signature += "=";
signature += rec->args[arg_index].descr;
}
arg_index++;
}
} else if (c == '%') {
const std::type_info *t = types[type_index++];
if (!t)
pybind11_fail("Internal error while parsing type signature (1)");
auto it = registered_types.find(std::type_index(*t));
if (it != registered_types.end()) {
signature += ((const detail::type_info *) it->second)->type->tp_name;
} else {
std::string tname(t->name());
detail::clean_type_id(tname);
signature += tname;
}
} else {
signature += c;
}
}
if (type_depth != 0 || types[type_index] != nullptr)
pybind11_fail("Internal error while parsing type signature (2)");
#if !defined(PYBIND11_CPP14)
delete[] types;
delete[] text;
#endif
#if PY_MAJOR_VERSION < 3
if (strcmp(rec->name, "__next__") == 0) {
std::free(rec->name);
rec->name = strdup("next");
2016-05-16 16:52:46 +00:00
} else if (strcmp(rec->name, "__bool__") == 0) {
std::free(rec->name);
rec->name = strdup("__nonzero__");
}
#endif
rec->signature = strdup(signature.c_str());
rec->args.shrink_to_fit();
2016-05-15 21:54:13 +00:00
rec->is_constructor = !strcmp(rec->name, "__init__") || !strcmp(rec->name, "__setstate__");
rec->is_stateless = false;
rec->has_args = false;
rec->has_kwargs = false;
2016-05-15 21:55:06 +00:00
rec->nargs = (uint16_t) args;
#if PY_MAJOR_VERSION < 3
if (rec->sibling && PyMethod_Check(rec->sibling.ptr()))
rec->sibling = PyMethod_GET_FUNCTION(rec->sibling.ptr());
#endif
detail::function_record *chain = nullptr, *chain_start = rec;
if (rec->sibling && PyCFunction_Check(rec->sibling.ptr())) {
capsule rec_capsule(PyCFunction_GetSelf(rec->sibling.ptr()), true);
chain = (detail::function_record *) rec_capsule;
/* Never append a method to an overload chain of a parent class;
instead, hide the parent's overloads in this case */
if (chain->class_ != rec->class_)
chain = nullptr;
}
if (!chain) {
/* No existing overload was found, create a new function object */
rec->def = new PyMethodDef();
memset(rec->def, 0, sizeof(PyMethodDef));
rec->def->ml_name = rec->name;
rec->def->ml_meth = reinterpret_cast<PyCFunction>(*dispatcher);
rec->def->ml_flags = METH_VARARGS | METH_KEYWORDS;
capsule rec_capsule(rec, [](PyObject *o) {
destruct((detail::function_record *) PyCapsule_GetPointer(o, nullptr));
});
object scope_module;
if (rec->scope) {
scope_module = (object) rec->scope.attr("__module__");
if (!scope_module)
scope_module = (object) rec->scope.attr("__name__");
}
m_ptr = PyCFunction_NewEx(rec->def, rec_capsule.ptr(), scope_module.ptr());
2015-07-05 18:05:44 +00:00
if (!m_ptr)
pybind11_fail("cpp_function::cpp_function(): Could not allocate function object");
2015-07-05 18:05:44 +00:00
} else {
/* Append at the end of the overload chain */
m_ptr = rec->sibling.ptr();
2015-07-05 18:05:44 +00:00
inc_ref();
chain_start = chain;
while (chain->next)
chain = chain->next;
chain->next = rec;
2015-07-05 18:05:44 +00:00
}
2015-07-05 18:05:44 +00:00
std::string signatures;
int index = 0;
/* Create a nice pydoc rec including all signatures and
docstrings of the functions in the overload chain */
2016-03-08 21:42:12 +00:00
if (chain) {
// First a generic signature
signatures += rec->name;
signatures += "(*args, **kwargs)\n";
signatures += "Overloaded function.\n\n";
}
// Then specific overload signatures
for (auto it = chain_start; it != nullptr; it = it->next) {
if (chain)
signatures += std::to_string(++index) + ". ";
2016-02-29 02:23:39 +00:00
signatures += rec->name;
signatures += it->signature;
signatures += "\n";
if (it->doc && strlen(it->doc) > 0) {
signatures += "\n";
signatures += it->doc;
signatures += "\n";
}
if (it->next)
2015-07-05 18:05:44 +00:00
signatures += "\n";
}
/* Install docstring */
2015-07-05 18:05:44 +00:00
PyCFunctionObject *func = (PyCFunctionObject *) m_ptr;
if (func->m_ml->ml_doc)
std::free((char *) func->m_ml->ml_doc);
2015-07-05 18:05:44 +00:00
func->m_ml->ml_doc = strdup(signatures.c_str());
if (rec->class_) {
m_ptr = PYBIND11_INSTANCE_METHOD_NEW(m_ptr, rec->class_.ptr());
2015-07-05 18:05:44 +00:00
if (!m_ptr)
pybind11_fail("cpp_function::cpp_function(): Could not allocate instance method object");
2015-07-05 18:05:44 +00:00
Py_DECREF(func);
}
}
/// When a cpp_function is GCed, release any memory allocated by pybind11
static void destruct(detail::function_record *rec) {
while (rec) {
detail::function_record *next = rec->next;
if (rec->free_data)
rec->free_data(rec);
std::free((char *) rec->name);
std::free((char *) rec->doc);
std::free((char *) rec->signature);
for (auto &arg: rec->args) {
std::free((char *) arg.name);
std::free((char *) arg.descr);
arg.value.dec_ref();
}
if (rec->def) {
std::free((char *) rec->def->ml_doc);
delete rec->def;
}
delete rec;
rec = next;
}
}
/// Main dispatch logic for calls to functions bound using pybind11
static PyObject *dispatcher(PyObject *self, PyObject *args, PyObject *kwargs) {
/* Iterator over the list of potentially admissible overloads */
detail::function_record *overloads = (detail::function_record *) PyCapsule_GetPointer(self, nullptr),
*it = overloads;
/* Need to know how many arguments + keyword arguments there are to pick the right overload */
size_t nargs = (size_t) PyTuple_GET_SIZE(args),
nkwargs = kwargs ? (size_t) PyDict_Size(kwargs) : 0;
handle parent = nargs > 0 ? PyTuple_GET_ITEM(args, 0) : nullptr,
result = PYBIND11_TRY_NEXT_OVERLOAD;
try {
for (; it != nullptr; it = it->next) {
tuple args_(args, true);
size_t kwargs_consumed = 0;
/* For each overload:
1. If the required list of arguments is longer than the
actually provided amount, create a copy of the argument
list and fill in any available keyword/default arguments.
2. Ensure that all keyword arguments were "consumed"
3. Call the function call dispatcher (function_record::impl)
*/
size_t nargs_ = nargs;
if (nargs < it->args.size()) {
nargs_ = it->args.size();
args_ = tuple(nargs_);
for (size_t i = 0; i < nargs; ++i) {
handle item = PyTuple_GET_ITEM(args, i);
PyTuple_SET_ITEM(args_.ptr(), i, item.inc_ref().ptr());
}
int arg_ctr = 0;
for (auto const &it2 : it->args) {
int index = arg_ctr++;
if (PyTuple_GET_ITEM(args_.ptr(), index))
continue;
handle value;
if (kwargs)
value = PyDict_GetItemString(kwargs, it2.name);
if (value)
kwargs_consumed++;
else if (it2.value)
value = it2.value;
if (value) {
PyTuple_SET_ITEM(args_.ptr(), index, value.inc_ref().ptr());
} else {
kwargs_consumed = (size_t) -1; /* definite failure */
break;
}
}
}
try {
if ((kwargs_consumed == nkwargs || it->has_kwargs) &&
(nargs_ == it->nargs || it->has_args))
result = it->impl(it, args_, kwargs, parent);
} catch (reference_cast_error &) {
result = PYBIND11_TRY_NEXT_OVERLOAD;
}
if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD)
break;
}
} catch (const error_already_set &) {
return nullptr;
} catch (...) {
/* When an exception is caught, give each registered exception
translator a chance to translate it to a Python exception
in reverse order of registration.
A translator may choose to do one of the following:
- catch the exception and call PyErr_SetString or PyErr_SetObject
to set a standard (or custom) Python exception, or
- do nothing and let the exception fall through to the next translator, or
- delegate translation to the next translator by throwing a new type of exception. */
auto last_exception = std::current_exception();
auto &registered_exception_translators = pybind11::detail::get_internals().registered_exception_translators;
for (auto& translator : registered_exception_translators) {
try {
translator(last_exception);
} catch (...) {
last_exception = std::current_exception();
continue;
}
return nullptr;
}
PyErr_SetString(PyExc_SystemError, "Exception escaped from default exception translator!");
return nullptr;
}
if (result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) {
std::string msg = "Incompatible " + std::string(overloads->is_constructor ? "constructor" : "function") +
" arguments. The following argument types are supported:\n";
int ctr = 0;
for (detail::function_record *it2 = overloads; it2 != nullptr; it2 = it2->next) {
msg += " "+ std::to_string(++ctr) + ". ";
bool wrote_sig = false;
if (overloads->is_constructor) {
// For a constructor, rewrite `(self: Object, arg0, ...) -> NoneType` as `Object(arg0, ...)`
std::string sig = it2->signature;
size_t start = sig.find('(') + 7; // skip "(self: "
if (start < sig.size()) {
// End at the , for the next argument
size_t end = sig.find(", "), next = end + 2;
size_t ret = sig.rfind(" -> ");
// Or the ), if there is no comma:
if (end >= sig.size()) next = end = sig.find(')');
if (start < end && next < sig.size()) {
msg.append(sig, start, end - start);
msg += '(';
msg.append(sig, next, ret - next);
wrote_sig = true;
}
}
}
if (!wrote_sig) msg += it2->signature;
msg += "\n";
}
msg += " Invoked with: ";
tuple args_(args, true);
for (size_t ti = overloads->is_constructor ? 1 : 0; ti < args_.size(); ++ti) {
msg += static_cast<std::string>(static_cast<object>(args_[ti]).str());
if ((ti + 1) != args_.size() )
msg += ", ";
}
PyErr_SetString(PyExc_TypeError, msg.c_str());
return nullptr;
} else if (!result) {
std::string msg = "Unable to convert function return value to a "
"Python type! The signature was\n\t";
msg += it->signature;
PyErr_SetString(PyExc_TypeError, msg.c_str());
return nullptr;
} else {
if (overloads->is_constructor) {
/* When a constructor ran successfully, the corresponding
holder type (e.g. std::unique_ptr) must still be initialized. */
PyObject *inst = PyTuple_GET_ITEM(args, 0);
auto tinfo = detail::get_type_info(Py_TYPE(inst));
tinfo->init_holder(inst, nullptr);
}
return result.ptr();
}
}
2015-07-05 18:05:44 +00:00
};
/// Wrapper for Python extension modules
2015-07-05 18:05:44 +00:00
class module : public object {
public:
PYBIND11_OBJECT_DEFAULT(module, object, PyModule_Check)
2015-07-05 18:05:44 +00:00
module(const char *name, const char *doc = nullptr) {
#if PY_MAJOR_VERSION >= 3
2015-07-05 18:05:44 +00:00
PyModuleDef *def = new PyModuleDef();
memset(def, 0, sizeof(PyModuleDef));
def->m_name = name;
def->m_doc = doc;
def->m_size = -1;
Py_INCREF(def);
m_ptr = PyModule_Create(def);
#else
m_ptr = Py_InitModule3(name, nullptr, doc);
#endif
2015-07-05 18:05:44 +00:00
if (m_ptr == nullptr)
pybind11_fail("Internal error in module::module()");
2015-07-05 18:05:44 +00:00
inc_ref();
}
template <typename Func, typename... Extra>
module &def(const char *name_, Func &&f, const Extra& ... extra) {
cpp_function func(std::forward<Func>(f), name(name_),
sibling((handle) attr(name_)), scope(*this), extra...);
/* PyModule_AddObject steals a reference to 'func' */
PyModule_AddObject(ptr(), name_, func.inc_ref().ptr());
2015-07-05 18:05:44 +00:00
return *this;
}
2015-07-11 15:41:48 +00:00
module def_submodule(const char *name, const char *doc = nullptr) {
2015-07-05 18:05:44 +00:00
std::string full_name = std::string(PyModule_GetName(m_ptr))
+ std::string(".") + std::string(name);
module result(PyImport_AddModule(full_name.c_str()), true);
2015-07-11 15:41:48 +00:00
if (doc)
result.attr("__doc__") = pybind11::str(doc);
2015-07-05 18:05:44 +00:00
attr(name) = result;
return result;
}
2015-10-13 21:44:25 +00:00
static module import(const char *name) {
PyObject *obj = PyImport_ImportModule(name);
if (!obj)
pybind11_fail("Module \"" + std::string(name) + "\" not found!");
return module(obj, false);
2015-10-13 21:44:25 +00:00
}
2015-07-05 18:05:44 +00:00
};
NAMESPACE_BEGIN(detail)
/// Generic support for creating new Python heap types
class generic_type : public object {
template <typename...> friend class class_;
2015-07-05 18:05:44 +00:00
public:
PYBIND11_OBJECT_DEFAULT(generic_type, object, PyType_Check)
protected:
void initialize(type_record *rec) {
if (rec->base_type) {
if (rec->base_handle)
pybind11_fail("generic_type: specified base type multiple times!");
rec->base_handle = detail::get_type_handle(*(rec->base_type));
if (!rec->base_handle) {
std::string tname(rec->base_type->name());
detail::clean_type_id(tname);
pybind11_fail("generic_type: type \"" + std::string(rec->name) +
"\" referenced unknown base type \"" + tname + "\"");
}
}
auto &internals = get_internals();
auto tindex = std::type_index(*(rec->type));
if (internals.registered_types_cpp.find(tindex) !=
internals.registered_types_cpp.end())
pybind11_fail("generic_type: type \"" + std::string(rec->name) +
"\" is already registered!");
object name(PYBIND11_FROM_STRING(rec->name), false);
object scope_module;
if (rec->scope) {
scope_module = (object) rec->scope.attr("__module__");
if (!scope_module)
scope_module = (object) rec->scope.attr("__name__");
}
#if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3
/* Qualified names for Python >= 3.3 */
object scope_qualname;
if (rec->scope)
scope_qualname = (object) rec->scope.attr("__qualname__");
object ht_qualname;
if (scope_qualname) {
ht_qualname = object(PyUnicode_FromFormat(
"%U.%U", scope_qualname.ptr(), name.ptr()), false);
} else {
ht_qualname = name;
}
#endif
std::string full_name = (scope_module ? ((std::string) scope_module.str() + "." + rec->name)
: std::string(rec->name));
char *tp_doc = nullptr;
if (rec->doc) {
/* Allocate memory for docstring (using PyObject_MALLOC, since
Python will free this later on) */
size_t size = strlen(rec->doc) + 1;
tp_doc = (char *) PyObject_MALLOC(size);
memcpy((void *) tp_doc, rec->doc, size);
}
object type_holder(PyType_Type.tp_alloc(&PyType_Type, 0), false);
auto type = (PyHeapTypeObject*) type_holder.ptr();
if (!type_holder || !name)
pybind11_fail("generic_type: unable to create type object!");
/* Register supplemental type information in C++ dict */
detail::type_info *tinfo = new detail::type_info();
tinfo->type = (PyTypeObject *) type;
tinfo->type_size = rec->type_size;
tinfo->init_holder = rec->init_holder;
internals.registered_types_cpp[tindex] = tinfo;
internals.registered_types_py[type] = tinfo;
/* Basic type attributes */
type->ht_type.tp_name = strdup(full_name.c_str());
type->ht_type.tp_basicsize = (ssize_t) rec->instance_size;
type->ht_type.tp_base = (PyTypeObject *) rec->base_handle.ptr();
rec->base_handle.inc_ref();
type->ht_name = name.release().ptr();
#if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3
type->ht_qualname = ht_qualname.release().ptr();
#endif
2015-07-05 18:05:44 +00:00
/* Supported protocols */
type->ht_type.tp_as_number = &type->as_number;
type->ht_type.tp_as_sequence = &type->as_sequence;
type->ht_type.tp_as_mapping = &type->as_mapping;
2015-07-05 18:05:44 +00:00
/* Supported elementary operations */
2015-07-05 18:05:44 +00:00
type->ht_type.tp_init = (initproc) init;
type->ht_type.tp_new = (newfunc) new_instance;
type->ht_type.tp_dealloc = rec->dealloc;
/* Support weak references (needed for the keep_alive feature) */
type->ht_type.tp_weaklistoffset = offsetof(instance_essentials<void>, weakrefs);
/* Flags */
type->ht_type.tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_MAJOR_VERSION < 3
type->ht_type.tp_flags |= Py_TPFLAGS_CHECKTYPES;
#endif
type->ht_type.tp_flags &= ~Py_TPFLAGS_HAVE_GC;
type->ht_type.tp_doc = tp_doc;
2015-07-05 18:05:44 +00:00
if (PyType_Ready(&type->ht_type) < 0)
pybind11_fail("generic_type: PyType_Ready failed!");
m_ptr = type_holder.ptr();
2015-07-05 18:05:44 +00:00
if (scope_module) // Needed by pydoc
attr("__module__") = scope_module;
2015-07-05 18:05:44 +00:00
/* Register type with the parent scope */
if (rec->scope)
rec->scope.attr(handle(type->ht_name)) = *this;
2015-07-05 18:05:44 +00:00
type_holder.release();
2015-07-05 18:05:44 +00:00
}
/// Allocate a metaclass on demand (for static properties)
2015-07-05 18:05:44 +00:00
handle metaclass() {
auto &ht_type = ((PyHeapTypeObject *) m_ptr)->ht_type;
auto &ob_type = PYBIND11_OB_TYPE(ht_type);
2015-07-05 18:05:44 +00:00
if (ob_type == &PyType_Type) {
std::string name_ = std::string(ht_type.tp_name) + "__Meta";
#if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3
object ht_qualname(PyUnicode_FromFormat(
"%U__Meta", ((object) attr("__qualname__")).ptr()), false);
#endif
object name(PYBIND11_FROM_STRING(name_.c_str()), false);
object type_holder(PyType_Type.tp_alloc(&PyType_Type, 0), false);
if (!type_holder || !name)
pybind11_fail("generic_type::metaclass(): unable to create type object!");
auto type = (PyHeapTypeObject*) type_holder.ptr();
type->ht_name = name.release().ptr();
#if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3
/* Qualified names for Python >= 3.3 */
type->ht_qualname = ht_qualname.release().ptr();
#endif
2015-07-05 18:05:44 +00:00
type->ht_type.tp_name = strdup(name_.c_str());
type->ht_type.tp_base = ob_type;
type->ht_type.tp_flags |= (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE) &
~Py_TPFLAGS_HAVE_GC;
2015-07-05 18:05:44 +00:00
if (PyType_Ready(&type->ht_type) < 0)
pybind11_fail("generic_type::metaclass(): PyType_Ready failed!");
ob_type = (PyTypeObject *) type_holder.release().ptr();
2015-07-05 18:05:44 +00:00
}
return handle((PyObject *) ob_type);
}
static int init(void *self, PyObject *, PyObject *) {
std::string msg = std::string(Py_TYPE(self)->tp_name) + ": No constructor defined!";
PyErr_SetString(PyExc_TypeError, msg.c_str());
return -1;
}
static PyObject *new_instance(PyTypeObject *type, PyObject *, PyObject *) {
instance<void> *self = (instance<void> *) PyType_GenericAlloc((PyTypeObject *) type, 0);
auto tinfo = detail::get_type_info(type);
self->value = ::operator new(tinfo->type_size);
2015-07-05 18:05:44 +00:00
self->owned = true;
self->constructed = false;
detail::get_internals().registered_instances.emplace(self->value, (PyObject *) self);
2015-07-05 18:05:44 +00:00
return (PyObject *) self;
}
static void dealloc(instance<void> *self) {
if (self->value) {
auto instance_type = Py_TYPE(self);
auto &registered_instances = detail::get_internals().registered_instances;
auto range = registered_instances.equal_range(self->value);
bool found = false;
for (auto it = range.first; it != range.second; ++it) {
if (instance_type == Py_TYPE(it->second)) {
registered_instances.erase(it);
found = true;
break;
}
2015-07-05 18:05:44 +00:00
}
if (!found)
pybind11_fail("generic_type::dealloc(): Tried to deallocate unregistered instance!");
if (self->weakrefs)
PyObject_ClearWeakRefs((PyObject *) self);
2015-07-05 18:05:44 +00:00
}
Py_TYPE(self)->tp_free((PyObject*) self);
}
2015-07-28 14:12:20 +00:00
void install_buffer_funcs(
buffer_info *(*get_buffer)(PyObject *, void *),
void *get_buffer_data) {
2015-07-05 18:05:44 +00:00
PyHeapTypeObject *type = (PyHeapTypeObject*) m_ptr;
type->ht_type.tp_as_buffer = &type->as_buffer;
#if PY_MAJOR_VERSION < 3
type->ht_type.tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER;
#endif
2015-07-05 18:05:44 +00:00
type->as_buffer.bf_getbuffer = getbuffer;
type->as_buffer.bf_releasebuffer = releasebuffer;
auto tinfo = detail::get_type_info(&type->ht_type);
tinfo->get_buffer = get_buffer;
tinfo->get_buffer_data = get_buffer_data;
2015-07-05 18:05:44 +00:00
}
static int getbuffer(PyObject *obj, Py_buffer *view, int flags) {
auto tinfo = detail::get_type_info(Py_TYPE(obj));
if (view == nullptr || obj == nullptr || !tinfo || !tinfo->get_buffer) {
PyErr_SetString(PyExc_BufferError, "generic_type::getbuffer(): Internal error");
2015-07-05 18:05:44 +00:00
return -1;
}
memset(view, 0, sizeof(Py_buffer));
buffer_info *info = tinfo->get_buffer(obj, tinfo->get_buffer_data);
2015-07-05 18:05:44 +00:00
view->obj = obj;
view->ndim = 1;
view->internal = info;
view->buf = info->ptr;
view->itemsize = (ssize_t) info->itemsize;
2015-07-05 18:05:44 +00:00
view->len = view->itemsize;
for (auto s : info->shape)
view->len *= s;
if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT)
view->format = const_cast<char *>(info->format.c_str());
if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) {
view->ndim = (int) info->ndim;
view->strides = (ssize_t *) &info->strides[0];
view->shape = (ssize_t *) &info->shape[0];
2015-07-05 18:05:44 +00:00
}
Py_INCREF(view->obj);
return 0;
}
static void releasebuffer(PyObject *, Py_buffer *view) { delete (buffer_info *) view->internal; }
};
NAMESPACE_END(detail)
template <typename type_, typename... options>
class class_ : public detail::generic_type {
template <typename T> using is_holder = detail::is_holder_type<type_, T>;
template <typename T> using is_subtype = detail::bool_constant<std::is_base_of<type_, T>::value && !std::is_same<T, type_>::value>;
template <typename T> using is_valid_class_option =
detail::bool_constant<
is_holder<T>::value ||
is_subtype<T>::value
>;
using extracted_holder_t = typename detail::first_of_t<is_holder, options...>;
2015-07-05 18:05:44 +00:00
public:
using type = type_;
using type_alias = detail::first_of_t<is_subtype, options...>;
constexpr static bool has_alias = !std::is_void<type_alias>::value;
using holder_type = typename std::conditional<
std::is_void<extracted_holder_t>::value,
std::unique_ptr<type>,
extracted_holder_t
>::type;
using instance_type = detail::instance<type, holder_type>;
static_assert(detail::all_of_t<is_valid_class_option, options...>::value,
"Unknown/invalid class_ template parameters provided");
2015-07-05 18:05:44 +00:00
PYBIND11_OBJECT(class_, detail::generic_type, PyType_Check)
2015-07-05 18:05:44 +00:00
template <typename... Extra>
class_(handle scope, const char *name, const Extra &... extra) {
detail::type_record record;
record.scope = scope;
record.name = name;
record.type = &typeid(type);
record.type_size = sizeof(type);
record.instance_size = sizeof(instance_type);
record.init_holder = init_holder;
record.dealloc = dealloc;
/* Process optional arguments, if any */
detail::process_attributes<Extra...>::init(extra..., &record);
detail::generic_type::initialize(&record);
if (has_alias) {
auto &instances = pybind11::detail::get_internals().registered_types_cpp;
instances[std::type_index(typeid(type_alias))] = instances[std::type_index(typeid(type))];
}
}
2015-07-05 18:05:44 +00:00
template <typename Func, typename... Extra>
class_ &def(const char *name_, Func&& f, const Extra&... extra) {
cpp_function cf(std::forward<Func>(f), name(name_),
sibling(attr(name_)), is_method(*this),
extra...);
attr(cf.name()) = cf;
2015-07-05 18:05:44 +00:00
return *this;
}
template <typename Func, typename... Extra> class_ &
def_static(const char *name_, Func f, const Extra&... extra) {
cpp_function cf(std::forward<Func>(f), name(name_),
sibling(attr(name_)), scope(*this), extra...);
attr(cf.name()) = cf;
2015-07-05 18:05:44 +00:00
return *this;
}
template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra>
class_ &def(const detail::op_<id, ot, L, R> &op, const Extra&... extra) {
op.execute(*this, extra...);
2015-07-05 18:05:44 +00:00
return *this;
}
template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra>
class_ & def_cast(const detail::op_<id, ot, L, R> &op, const Extra&... extra) {
op.execute_cast(*this, extra...);
2015-07-05 18:05:44 +00:00
return *this;
}
template <typename... Args, typename... Extra>
class_ &def(const detail::init<Args...> &init, const Extra&... extra) {
init.execute(*this, extra...);
2015-07-05 18:05:44 +00:00
return *this;
}
template <typename... Args, typename... Extra>
class_ &def(const detail::init_alias<Args...> &init, const Extra&... extra) {
init.execute(*this, extra...);
return *this;
}
template <typename Func> class_& def_buffer(Func &&func) {
2015-07-28 14:12:20 +00:00
struct capture { Func func; };
capture *ptr = new capture { std::forward<Func>(func) };
install_buffer_funcs([](PyObject *obj, void *ptr) -> buffer_info* {
2015-07-05 18:05:44 +00:00
detail::type_caster<type> caster;
if (!caster.load(obj, false))
return nullptr;
2015-07-28 14:12:20 +00:00
return new buffer_info(((capture *) ptr)->func(caster));
}, ptr);
2015-07-05 18:05:44 +00:00
return *this;
}
template <typename C, typename D, typename... Extra>
class_ &def_readwrite(const char *name, D C::*pm, const Extra&... extra) {
cpp_function fget([pm](const C &c) -> const D &{ return c.*pm; }, is_method(*this)),
fset([pm](C &c, const D &value) { c.*pm = value; }, is_method(*this));
def_property(name, fget, fset, return_value_policy::reference_internal, extra...);
2015-07-05 18:05:44 +00:00
return *this;
}
template <typename C, typename D, typename... Extra>
class_ &def_readonly(const char *name, const D C::*pm, const Extra& ...extra) {
cpp_function fget([pm](const C &c) -> const D &{ return c.*pm; }, is_method(*this));
def_property_readonly(name, fget, return_value_policy::reference_internal, extra...);
2015-07-05 18:05:44 +00:00
return *this;
}
template <typename D, typename... Extra>
class_ &def_readwrite_static(const char *name, D *pm, const Extra& ...extra) {
cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this)),
fset([pm](object, const D &value) { *pm = value; }, scope(*this));
def_property_static(name, fget, fset, return_value_policy::reference, extra...);
2015-07-05 18:05:44 +00:00
return *this;
}
template <typename D, typename... Extra>
class_ &def_readonly_static(const char *name, const D *pm, const Extra& ...extra) {
cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this));
def_property_readonly_static(name, fget, return_value_policy::reference, extra...);
2015-07-05 18:05:44 +00:00
return *this;
}
template <typename... Extra>
class_ &def_property_readonly(const char *name, const cpp_function &fget, const Extra& ...extra) {
def_property(name, fget, cpp_function(), extra...);
2015-07-05 18:05:44 +00:00
return *this;
}
template <typename... Extra>
class_ &def_property_readonly_static(const char *name, const cpp_function &fget, const Extra& ...extra) {
def_property_static(name, fget, cpp_function(), extra...);
2015-07-05 18:05:44 +00:00
return *this;
}
template <typename... Extra>
class_ &def_property(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) {
return def_property_static(name, fget, fset, is_method(*this), extra...);
2015-07-05 18:05:44 +00:00
}
template <typename... Extra>
class_ &def_property_static(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) {
auto rec_fget = get_function_record(fget), rec_fset = get_function_record(fset);
char *doc_prev = rec_fget->doc; /* 'extra' field may include a property-specific documentation string */
detail::process_attributes<Extra...>::init(extra..., rec_fget);
if (rec_fget->doc && rec_fget->doc != doc_prev) {
free(doc_prev);
rec_fget->doc = strdup(rec_fget->doc);
}
if (rec_fset) {
doc_prev = rec_fset->doc;
detail::process_attributes<Extra...>::init(extra..., rec_fset);
if (rec_fset->doc && rec_fset->doc != doc_prev) {
free(doc_prev);
rec_fset->doc = strdup(rec_fset->doc);
}
}
pybind11::str doc_obj = pybind11::str(rec_fget->doc ? rec_fget->doc : "");
2015-07-05 18:05:44 +00:00
object property(
PyObject_CallFunctionObjArgs((PyObject *) &PyProperty_Type, fget.ptr() ? fget.ptr() : Py_None,
fset.ptr() ? fset.ptr() : Py_None, Py_None, doc_obj.ptr(), nullptr), false);
if (rec_fget->class_)
attr(name) = property;
else
metaclass().attr(name) = property;
2015-07-05 18:05:44 +00:00
return *this;
}
2015-07-05 18:05:44 +00:00
private:
/// Initialize holder object, variant 1: object derives from enable_shared_from_this
template <typename T>
static void init_holder_helper(instance_type *inst, const holder_type * /* unused */, const std::enable_shared_from_this<T> * /* dummy */) {
try {
new (&inst->holder) holder_type(std::static_pointer_cast<typename holder_type::element_type>(inst->value->shared_from_this()));
} catch (const std::bad_weak_ptr &) {
new (&inst->holder) holder_type(inst->value);
}
}
/// Initialize holder object, variant 2: try to construct from existing holder object, if possible
template <typename T = holder_type,
typename std::enable_if<std::is_copy_constructible<T>::value, int>::type = 0>
static void init_holder_helper(instance_type *inst, const holder_type *holder_ptr, const void * /* dummy */) {
if (holder_ptr)
new (&inst->holder) holder_type(*holder_ptr);
else
new (&inst->holder) holder_type(inst->value);
}
/// Initialize holder object, variant 3: holder is not copy constructible (e.g. unique_ptr), always initialize from raw pointer
template <typename T = holder_type,
typename std::enable_if<!std::is_copy_constructible<T>::value, int>::type = 0>
static void init_holder_helper(instance_type *inst, const holder_type * /* unused */, const void * /* dummy */) {
new (&inst->holder) holder_type(inst->value);
}
/// Initialize holder object of an instance, possibly given a pointer to an existing holder
static void init_holder(PyObject *inst_, const void *holder_ptr) {
auto inst = (instance_type *) inst_;
init_holder_helper(inst, (const holder_type *) holder_ptr, inst->value);
inst->constructed = true;
}
2015-07-05 18:05:44 +00:00
static void dealloc(PyObject *inst_) {
instance_type *inst = (instance_type *) inst_;
if (inst->owned) {
if (inst->constructed)
inst->holder.~holder_type();
else
::operator delete(inst->value);
}
generic_type::dealloc((detail::instance<void> *) inst);
2015-07-05 18:05:44 +00:00
}
static detail::function_record *get_function_record(handle h) {
h = detail::get_function(h);
return h ? (detail::function_record *) capsule(
PyCFunction_GetSelf(h.ptr()), true) : nullptr;
}
2015-07-05 18:05:44 +00:00
};
/// Binds C++ enumerations and enumeration classes to Python
template <typename Type> class enum_ : public class_<Type> {
public:
using class_<Type>::def;
using UnderlyingType = typename std::underlying_type<Type>::type;
template <typename... Extra>
enum_(const handle &scope, const char *name, const Extra&... extra)
: class_<Type>(scope, name, extra...), m_parent(scope) {
auto entries = new std::unordered_map<UnderlyingType, const char *>();
def("__repr__", [name, entries](Type value) -> std::string {
auto it = entries->find((UnderlyingType) value);
2015-07-05 18:05:44 +00:00
return std::string(name) + "." +
((it == entries->end()) ? std::string("???")
: std::string(it->second));
});
def("__init__", [](Type& value, UnderlyingType i) { value = (Type)i; });
def("__init__", [](Type& value, UnderlyingType i) { new (&value) Type((Type) i); });
def("__int__", [](Type value) { return (UnderlyingType) value; });
def("__eq__", [](const Type &value, Type *value2) { return value2 && value == *value2; });
def("__ne__", [](const Type &value, Type *value2) { return !value2 || value != *value2; });
if (std::is_convertible<Type, UnderlyingType>::value) {
// Don't provide comparison with the underlying type if the enum isn't convertible,
// i.e. if Type is a scoped enum, mirroring the C++ behaviour. (NB: we explicitly
// convert Type to UnderlyingType below anyway because this needs to compile).
def("__eq__", [](const Type &value, UnderlyingType value2) { return (UnderlyingType) value == value2; });
def("__ne__", [](const Type &value, UnderlyingType value2) { return (UnderlyingType) value != value2; });
}
def("__hash__", [](const Type &value) { return (UnderlyingType) value; });
2016-09-06 04:02:29 +00:00
// Pickling and unpickling -- needed for use with the 'multiprocessing' module
def("__getstate__", [](const Type &value) { return pybind11::make_tuple((UnderlyingType) value); });
def("__setstate__", [](Type &p, tuple t) { new (&p) Type((Type) t[0].cast<UnderlyingType>()); });
2015-07-05 18:05:44 +00:00
m_entries = entries;
}
/// Export enumeration entries into the parent scope
void export_values() {
PyObject *dict = ((PyTypeObject *) this->m_ptr)->tp_dict;
PyObject *key, *value;
ssize_t pos = 0;
2015-07-05 18:05:44 +00:00
while (PyDict_Next(dict, &pos, &key, &value))
if (PyObject_IsInstance(value, this->m_ptr))
m_parent.attr(key) = value;
}
/// Add an enumeration entry
enum_& value(char const* name, Type value) {
this->attr(name) = pybind11::cast(value, return_value_policy::copy);
(*m_entries)[(UnderlyingType) value] = name;
2015-07-05 18:05:44 +00:00
return *this;
}
private:
std::unordered_map<UnderlyingType, const char *> *m_entries;
handle m_parent;
2015-07-05 18:05:44 +00:00
};
NAMESPACE_BEGIN(detail)
template <typename... Args> struct init {
template <typename Class, typename... Extra, typename std::enable_if<!Class::has_alias, int>::type = 0>
void execute(Class &cl, const Extra&... extra) const {
using Base = typename Class::type;
2015-07-05 18:05:44 +00:00
/// Function which calls a specific C++ in-place constructor
cl.def("__init__", [](Base *self_, Args... args) { new (self_) Base(args...); }, extra...);
}
template <typename Class, typename... Extra,
typename std::enable_if<Class::has_alias &&
std::is_constructible<typename Class::type, Args...>::value, int>::type = 0>
void execute(Class &cl, const Extra&... extra) const {
using Base = typename Class::type;
using Alias = typename Class::type_alias;
handle cl_type = cl;
cl.def("__init__", [cl_type](handle self_, Args... args) {
if (self_.get_type() == cl_type)
new (self_.cast<Base *>()) Base(args...);
else
new (self_.cast<Alias *>()) Alias(args...);
}, extra...);
}
template <typename Class, typename... Extra,
typename std::enable_if<Class::has_alias &&
!std::is_constructible<typename Class::type, Args...>::value, int>::type = 0>
void execute(Class &cl, const Extra&... extra) const {
using Alias = typename Class::type_alias;
cl.def("__init__", [](Alias *self_, Args... args) { new (self_) Alias(args...); }, extra...);
2015-07-05 18:05:44 +00:00
}
};
inline void keep_alive_impl(handle nurse, handle patient) {
/* Clever approach based on weak references taken from Boost.Python */
if (!nurse || !patient)
pybind11_fail("Could not activate keep_alive!");
if (patient.ptr() == Py_None || nurse.ptr() == Py_None)
return; /* Nothing to keep alive or nothing to be kept alive by */
cpp_function disable_lifesupport(
[patient](handle weakref) { patient.dec_ref(); weakref.dec_ref(); });
weakref wr(nurse, disable_lifesupport);
patient.inc_ref(); /* reference patient and leak the weak reference */
(void) wr.release();
}
PYBIND11_NOINLINE inline void keep_alive_impl(int Nurse, int Patient, handle args, handle ret) {
handle nurse (Nurse > 0 ? PyTuple_GetItem(args.ptr(), Nurse - 1) : ret.ptr());
handle patient(Patient > 0 ? PyTuple_GetItem(args.ptr(), Patient - 1) : ret.ptr());
keep_alive_impl(nurse, patient);
}
template <typename Iterator, typename Sentinel, bool KeyIterator, typename... Extra>
struct iterator_state {
Iterator it;
Sentinel end;
bool first;
};
2015-07-05 18:05:44 +00:00
NAMESPACE_END(detail)
template <typename... Args> detail::init<Args...> init() { return detail::init<Args...>(); }
2015-07-05 18:05:44 +00:00
template <typename Iterator,
typename Sentinel,
typename ValueType = decltype(*std::declval<Iterator>()),
typename... Extra>
iterator make_iterator(Iterator first, Sentinel last, Extra &&... extra) {
typedef detail::iterator_state<Iterator, Sentinel, false, Extra...> state;
if (!detail::get_type_info(typeid(state))) {
class_<state>(handle(), "iterator")
.def("__iter__", [](state &s) -> state& { return s; })
.def("__next__", [](state &s) -> ValueType {
if (!s.first)
++s.it;
else
s.first = false;
if (s.it == s.end)
throw stop_iteration();
return *s.it;
}, return_value_policy::reference_internal, std::forward<Extra>(extra)...);
}
return (iterator) cast(state { first, last, true });
}
template <typename Iterator,
typename Sentinel,
typename KeyType = decltype((*std::declval<Iterator>()).first),
typename... Extra>
iterator make_key_iterator(Iterator first, Sentinel last, Extra &&... extra) {
typedef detail::iterator_state<Iterator, Sentinel, true, Extra...> state;
if (!detail::get_type_info(typeid(state))) {
class_<state>(handle(), "iterator")
.def("__iter__", [](state &s) -> state& { return s; })
.def("__next__", [](state &s) -> KeyType {
if (!s.first)
++s.it;
else
s.first = false;
if (s.it == s.end)
throw stop_iteration();
return (*s.it).first;
}, return_value_policy::reference_internal, std::forward<Extra>(extra)...);
}
return (iterator) cast(state { first, last, true });
}
template <typename Type, typename... Extra> iterator make_iterator(Type &value, Extra&&... extra) {
return make_iterator(std::begin(value), std::end(value), extra...);
}
template <typename Type, typename... Extra> iterator make_key_iterator(Type &value, Extra&&... extra) {
return make_key_iterator(std::begin(value), std::end(value), extra...);
}
2015-07-05 18:05:44 +00:00
template <typename InputType, typename OutputType> void implicitly_convertible() {
auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject * {
2015-07-05 18:05:44 +00:00
if (!detail::type_caster<InputType>().load(obj, false))
return nullptr;
tuple args(1);
args[0] = obj;
PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr);
if (result == nullptr)
PyErr_Clear();
return result;
};
auto &registered_types = detail::get_internals().registered_types_cpp;
auto it = registered_types.find(std::type_index(typeid(OutputType)));
2015-07-05 18:05:44 +00:00
if (it == registered_types.end())
pybind11_fail("implicitly_convertible: Unable to find type " + type_id<OutputType>());
((detail::type_info *) it->second)->implicit_conversions.push_back(implicit_caster);
2015-07-05 18:05:44 +00:00
}
template <typename ExceptionTranslator>
void register_exception_translator(ExceptionTranslator&& translator) {
detail::get_internals().registered_exception_translators.push_front(
std::forward<ExceptionTranslator>(translator));
}
/* Wrapper to generate a new Python exception type.
*
* This should only be used with PyErr_SetString for now.
* It is not (yet) possible to use as a py::base.
* Template type argument is reserved for future use.
*/
template <typename type>
class exception : public object {
public:
exception(module &m, const std::string name, PyObject* base=PyExc_Exception) {
std::string full_name = std::string(PyModule_GetName(m.ptr()))
+ std::string(".") + name;
char* exception_name = const_cast<char*>(full_name.c_str());
m_ptr = PyErr_NewException(exception_name, base, NULL);
inc_ref(); // PyModule_AddObject() steals a reference
PyModule_AddObject(m.ptr(), name.c_str(), m_ptr);
}
};
NAMESPACE_BEGIN(detail)
PYBIND11_NOINLINE inline void print(tuple args, dict kwargs) {
auto strings = tuple(args.size());
for (size_t i = 0; i < args.size(); ++i) {
strings[i] = args[i].cast<object>().str();
}
auto sep = kwargs["sep"] ? kwargs["sep"] : cast(" ");
auto line = sep.attr("join").cast<object>()(strings);
auto file = kwargs["file"] ? kwargs["file"].cast<object>()
: module::import("sys").attr("stdout");
auto write = file.attr("write").cast<object>();
write(line);
write(kwargs["end"] ? kwargs["end"] : cast("\n"));
if (kwargs["flush"] && kwargs["flush"].cast<bool>()) {
file.attr("flush").cast<object>()();
}
}
NAMESPACE_END(detail)
template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args>
void print(Args &&...args) {
auto c = detail::collect_arguments<policy>(std::forward<Args>(args)...);
detail::print(c.args(), c.kwargs());
}
#if defined(WITH_THREAD)
/* The functions below essentially reproduce the PyGILState_* API using a RAII
* pattern, but there are a few important differences:
*
* 1. When acquiring the GIL from an non-main thread during the finalization
* phase, the GILState API blindly terminates the calling thread, which
* is often not what is wanted. This API does not do this.
*
* 2. The gil_scoped_release function can optionally cut the relationship
* of a PyThreadState and its associated thread, which allows moving it to
* another thread (this is a fairly rare/advanced use case).
*
* 3. The reference count of an acquired thread state can be controlled. This
* can be handy to prevent cases where callbacks issued from an external
* thread would otherwise constantly construct and destroy thread state data
* structures.
*
* See the Python bindings of NanoGUI (http://github.com/wjakob/nanogui) for an
* example which uses features 2 and 3 to migrate the Python thread of
* execution to another thread (to run the event loop on the original thread,
* in this case).
*/
2015-07-05 18:05:44 +00:00
class gil_scoped_acquire {
public:
PYBIND11_NOINLINE gil_scoped_acquire() {
auto const &internals = detail::get_internals();
tstate = (PyThreadState *) PyThread_get_key_value(internals.tstate);
if (!tstate) {
tstate = PyThreadState_New(internals.istate);
#if !defined(NDEBUG)
if (!tstate)
pybind11_fail("scoped_acquire: could not create thread state!");
#endif
tstate->gilstate_counter = 0;
#if PY_MAJOR_VERSION < 3
PyThread_delete_key_value(internals.tstate);
#endif
PyThread_set_key_value(internals.tstate, tstate);
} else {
release = detail::get_thread_state_unchecked() != tstate;
}
if (release) {
/* Work around an annoying assertion in PyThreadState_Swap */
#if defined(Py_DEBUG)
PyInterpreterState *interp = tstate->interp;
tstate->interp = nullptr;
#endif
PyEval_AcquireThread(tstate);
#if defined(Py_DEBUG)
tstate->interp = interp;
#endif
}
inc_ref();
}
void inc_ref() {
++tstate->gilstate_counter;
}
PYBIND11_NOINLINE void dec_ref() {
--tstate->gilstate_counter;
#if !defined(NDEBUG)
if (detail::get_thread_state_unchecked() != tstate)
pybind11_fail("scoped_acquire::dec_ref(): thread state must be current!");
if (tstate->gilstate_counter < 0)
pybind11_fail("scoped_acquire::dec_ref(): reference count underflow!");
#endif
if (tstate->gilstate_counter == 0) {
#if !defined(NDEBUG)
if (!release)
pybind11_fail("scoped_acquire::dec_ref(): internal error!");
#endif
PyThreadState_Clear(tstate);
PyThreadState_DeleteCurrent();
PyThread_delete_key_value(detail::get_internals().tstate);
release = false;
}
}
PYBIND11_NOINLINE ~gil_scoped_acquire() {
dec_ref();
if (release)
PyEval_SaveThread();
}
private:
PyThreadState *tstate = nullptr;
bool release = true;
2015-07-05 18:05:44 +00:00
};
class gil_scoped_release {
public:
gil_scoped_release(bool disassoc = false) : disassoc(disassoc) {
tstate = PyEval_SaveThread();
if (disassoc) {
auto key = detail::get_internals().tstate;
#if PY_MAJOR_VERSION < 3
PyThread_delete_key_value(key);
#else
PyThread_set_key_value(key, nullptr);
#endif
}
}
~gil_scoped_release() {
if (!tstate)
return;
PyEval_RestoreThread(tstate);
if (disassoc) {
auto key = detail::get_internals().tstate;
#if PY_MAJOR_VERSION < 3
PyThread_delete_key_value(key);
#endif
PyThread_set_key_value(key, tstate);
}
}
private:
PyThreadState *tstate;
bool disassoc;
2015-07-05 18:05:44 +00:00
};
#else
class gil_scoped_acquire { };
class gil_scoped_release { };
#endif
2015-07-05 18:05:44 +00:00
inline function get_type_overload(const void *this_ptr, const detail::type_info *this_type, const char *name) {
handle py_object = detail::get_object_handle(this_ptr, this_type);
if (!py_object)
return function();
handle type = py_object.get_type();
auto key = std::make_pair(type.ptr(), name);
/* Cache functions that aren't overloaded in Python to avoid
many costly Python dictionary lookups below */
auto &cache = detail::get_internals().inactive_overload_cache;
if (cache.find(key) != cache.end())
return function();
function overload = (function) py_object.attr(name);
if (overload.is_cpp_function()) {
cache.insert(key);
return function();
}
/* Don't call dispatch code if invoked from overridden function */
PyFrameObject *frame = PyThreadState_Get()->frame;
if (frame && (std::string) pybind11::handle(frame->f_code->co_name).str() == name &&
frame->f_code->co_argcount > 0) {
PyFrame_FastToLocals(frame);
PyObject *self_caller = PyDict_GetItem(
frame->f_locals, PyTuple_GET_ITEM(frame->f_code->co_varnames, 0));
if (self_caller == py_object.ptr())
return function();
}
return overload;
}
template <class T> function get_overload(const T *this_ptr, const char *name) {
auto &cpp_types = detail::get_internals().registered_types_cpp;
auto it = cpp_types.find(typeid(T));
if (it == cpp_types.end())
return function();
return get_type_overload(this_ptr, (const detail::type_info *) it->second, name);
}
Fix template trampoline overload lookup failure Problem ======= The template trampoline pattern documented in PR #322 has a problem with virtual method overloads in intermediate classes in the inheritance chain between the trampoline class and the base class. For example, consider the following inheritance structure, where `B` is the actual class, `PyB<B>` is the trampoline class, and `PyA<B>` is an intermediate class adding A's methods into the trampoline: PyB<B> -> PyA<B> -> B -> A Suppose PyA<B> has a method `some_method()` with a PYBIND11_OVERLOAD in it to overload the virtual `A::some_method()`. If a Python class `C` is defined that inherits from the pybind11-registered `B` and tries to provide an overriding `some_method()`, the PYBIND11_OVERLOADs declared in PyA<B> fails to find this overloaded method, and thus never invoke it (or, if pure virtual and not overridden in PyB<B>, raises an exception). This happens because the base (internal) `PYBIND11_OVERLOAD_INT` macro simply calls `get_overload(this, name)`; `get_overload()` then uses the inferred type of `this` to do a type lookup in `registered_types_cpp`. This is where it fails: `this` will be a `PyA<B> *`, but `PyA<B>` is neither the base type (`B`) nor the trampoline type (`PyB<B>`). As a result, the overload fails and we get a failed overload lookup. The fix ======= The fix is relatively simple: we can cast `this` passed to `get_overload()` to a `const B *`, which lets get_overload look up the correct class. Since trampoline classes should be derived from `B` classes anyway, this cast should be perfectly safe. This does require adding the class name as an argument to the PYBIND11_OVERLOAD_INT macro, but leaves the public macro signatures unchanged.
2016-08-29 22:16:46 +00:00
#define PYBIND11_OVERLOAD_INT(ret_type, cname, name, ...) { \
pybind11::gil_scoped_acquire gil; \
Fix template trampoline overload lookup failure Problem ======= The template trampoline pattern documented in PR #322 has a problem with virtual method overloads in intermediate classes in the inheritance chain between the trampoline class and the base class. For example, consider the following inheritance structure, where `B` is the actual class, `PyB<B>` is the trampoline class, and `PyA<B>` is an intermediate class adding A's methods into the trampoline: PyB<B> -> PyA<B> -> B -> A Suppose PyA<B> has a method `some_method()` with a PYBIND11_OVERLOAD in it to overload the virtual `A::some_method()`. If a Python class `C` is defined that inherits from the pybind11-registered `B` and tries to provide an overriding `some_method()`, the PYBIND11_OVERLOADs declared in PyA<B> fails to find this overloaded method, and thus never invoke it (or, if pure virtual and not overridden in PyB<B>, raises an exception). This happens because the base (internal) `PYBIND11_OVERLOAD_INT` macro simply calls `get_overload(this, name)`; `get_overload()` then uses the inferred type of `this` to do a type lookup in `registered_types_cpp`. This is where it fails: `this` will be a `PyA<B> *`, but `PyA<B>` is neither the base type (`B`) nor the trampoline type (`PyB<B>`). As a result, the overload fails and we get a failed overload lookup. The fix ======= The fix is relatively simple: we can cast `this` passed to `get_overload()` to a `const B *`, which lets get_overload look up the correct class. Since trampoline classes should be derived from `B` classes anyway, this cast should be perfectly safe. This does require adding the class name as an argument to the PYBIND11_OVERLOAD_INT macro, but leaves the public macro signatures unchanged.
2016-08-29 22:16:46 +00:00
pybind11::function overload = pybind11::get_overload(static_cast<const cname *>(this), name); \
if (overload) \
return overload(__VA_ARGS__).template cast<ret_type>(); }
#define PYBIND11_OVERLOAD_NAME(ret_type, cname, name, fn, ...) \
Fix template trampoline overload lookup failure Problem ======= The template trampoline pattern documented in PR #322 has a problem with virtual method overloads in intermediate classes in the inheritance chain between the trampoline class and the base class. For example, consider the following inheritance structure, where `B` is the actual class, `PyB<B>` is the trampoline class, and `PyA<B>` is an intermediate class adding A's methods into the trampoline: PyB<B> -> PyA<B> -> B -> A Suppose PyA<B> has a method `some_method()` with a PYBIND11_OVERLOAD in it to overload the virtual `A::some_method()`. If a Python class `C` is defined that inherits from the pybind11-registered `B` and tries to provide an overriding `some_method()`, the PYBIND11_OVERLOADs declared in PyA<B> fails to find this overloaded method, and thus never invoke it (or, if pure virtual and not overridden in PyB<B>, raises an exception). This happens because the base (internal) `PYBIND11_OVERLOAD_INT` macro simply calls `get_overload(this, name)`; `get_overload()` then uses the inferred type of `this` to do a type lookup in `registered_types_cpp`. This is where it fails: `this` will be a `PyA<B> *`, but `PyA<B>` is neither the base type (`B`) nor the trampoline type (`PyB<B>`). As a result, the overload fails and we get a failed overload lookup. The fix ======= The fix is relatively simple: we can cast `this` passed to `get_overload()` to a `const B *`, which lets get_overload look up the correct class. Since trampoline classes should be derived from `B` classes anyway, this cast should be perfectly safe. This does require adding the class name as an argument to the PYBIND11_OVERLOAD_INT macro, but leaves the public macro signatures unchanged.
2016-08-29 22:16:46 +00:00
PYBIND11_OVERLOAD_INT(ret_type, cname, name, __VA_ARGS__) \
return cname::fn(__VA_ARGS__)
#define PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, name, fn, ...) \
Fix template trampoline overload lookup failure Problem ======= The template trampoline pattern documented in PR #322 has a problem with virtual method overloads in intermediate classes in the inheritance chain between the trampoline class and the base class. For example, consider the following inheritance structure, where `B` is the actual class, `PyB<B>` is the trampoline class, and `PyA<B>` is an intermediate class adding A's methods into the trampoline: PyB<B> -> PyA<B> -> B -> A Suppose PyA<B> has a method `some_method()` with a PYBIND11_OVERLOAD in it to overload the virtual `A::some_method()`. If a Python class `C` is defined that inherits from the pybind11-registered `B` and tries to provide an overriding `some_method()`, the PYBIND11_OVERLOADs declared in PyA<B> fails to find this overloaded method, and thus never invoke it (or, if pure virtual and not overridden in PyB<B>, raises an exception). This happens because the base (internal) `PYBIND11_OVERLOAD_INT` macro simply calls `get_overload(this, name)`; `get_overload()` then uses the inferred type of `this` to do a type lookup in `registered_types_cpp`. This is where it fails: `this` will be a `PyA<B> *`, but `PyA<B>` is neither the base type (`B`) nor the trampoline type (`PyB<B>`). As a result, the overload fails and we get a failed overload lookup. The fix ======= The fix is relatively simple: we can cast `this` passed to `get_overload()` to a `const B *`, which lets get_overload look up the correct class. Since trampoline classes should be derived from `B` classes anyway, this cast should be perfectly safe. This does require adding the class name as an argument to the PYBIND11_OVERLOAD_INT macro, but leaves the public macro signatures unchanged.
2016-08-29 22:16:46 +00:00
PYBIND11_OVERLOAD_INT(ret_type, cname, name, __VA_ARGS__) \
pybind11::pybind11_fail("Tried to call pure virtual function \"" #cname "::" name "\"");
#define PYBIND11_OVERLOAD(ret_type, cname, fn, ...) \
PYBIND11_OVERLOAD_NAME(ret_type, cname, #fn, fn, __VA_ARGS__)
#define PYBIND11_OVERLOAD_PURE(ret_type, cname, fn, ...) \
PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, #fn, fn, __VA_ARGS__)
NAMESPACE_END(pybind11)
2015-07-05 18:05:44 +00:00
#if defined(_MSC_VER)
# pragma warning(pop)
#elif defined(__INTEL_COMPILER)
/* Leave ignored warnings on */
2016-05-01 18:47:49 +00:00
#elif defined(__GNUG__) && !defined(__clang__)
# pragma GCC diagnostic pop
2015-07-05 18:05:44 +00:00
#endif