pybind11/tests/test_numpy_vectorize.cpp

42 lines
1.6 KiB
C++
Raw Normal View History

2015-07-26 14:33:49 +00:00
/*
tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array
arguments
2015-07-26 14:33:49 +00:00
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
2015-07-26 14:33:49 +00:00
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
#include <pybind11/numpy.h>
2015-07-26 14:33:49 +00:00
double my_func(int x, float y, double z) {
std::cout << "my_func(x:int=" << x << ", y:float=" << y << ", z:float=" << z << ")" << std::endl;
return (float) x*y*z;
2015-07-26 14:33:49 +00:00
}
2015-07-28 14:12:20 +00:00
std::complex<double> my_func3(std::complex<double> c) {
return c * std::complex<double>(2.f);
}
test_initializer numpy_vectorize([](py::module &m) {
// Vectorize all arguments of a function (though non-vector arguments are also allowed)
2015-07-26 14:33:49 +00:00
m.def("vectorized_func", py::vectorize(my_func));
2015-07-26 14:33:49 +00:00
// Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
m.def("vectorized_func2",
[](py::array_t<int> x, py::array_t<float> y, float z) {
2015-07-26 14:33:49 +00:00
return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y);
}
);
// Vectorize a complex-valued function
2015-07-28 14:12:20 +00:00
m.def("vectorized_func3", py::vectorize(my_func3));
/// Numpy function which only accepts specific data types
m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; });
m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; });
m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; });
});