2015-10-13 00:57:16 +00:00
|
|
|
.. _advanced:
|
|
|
|
|
|
|
|
Advanced topics
|
|
|
|
###############
|
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
For brevity, the rest of this chapter assumes that the following two lines are
|
|
|
|
present:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
2015-10-15 16:13:33 +00:00
|
|
|
#include <pybind11/pybind11.h>
|
2015-10-13 21:21:54 +00:00
|
|
|
|
2015-10-15 20:46:07 +00:00
|
|
|
namespace py = pybind11;
|
2015-10-13 21:21:54 +00:00
|
|
|
|
2016-02-02 10:38:21 +00:00
|
|
|
Exporting constants and mutable objects
|
|
|
|
=======================================
|
|
|
|
|
|
|
|
To expose a C++ constant, use the ``attr`` function to register it in a module
|
|
|
|
as shown below. The ``int_`` class is one of many small wrapper objects defined
|
|
|
|
in ``pybind11/pytypes.h``. General objects (including integers) can also be
|
|
|
|
converted using the function ``cast``.
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
PYBIND11_PLUGIN(example) {
|
|
|
|
py::module m("example", "pybind11 example plugin");
|
|
|
|
m.attr("MY_CONSTANT") = py::int_(123);
|
|
|
|
m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
|
|
|
|
}
|
|
|
|
|
2015-10-13 00:57:16 +00:00
|
|
|
Operator overloading
|
|
|
|
====================
|
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
Suppose that we're given the following ``Vector2`` class with a vector addition
|
|
|
|
and scalar multiplication operation, all implemented using overloaded operators
|
|
|
|
in C++.
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
class Vector2 {
|
|
|
|
public:
|
|
|
|
Vector2(float x, float y) : x(x), y(y) { }
|
|
|
|
|
|
|
|
std::string toString() const { return "[" + std::to_string(x) + ", " + std::to_string(y) + "]"; }
|
|
|
|
|
|
|
|
Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
|
|
|
|
Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
|
|
|
|
Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
|
|
|
|
Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
|
|
|
|
|
|
|
|
friend Vector2 operator*(float f, const Vector2 &v) { return Vector2(f * v.x, f * v.y); }
|
|
|
|
|
|
|
|
private:
|
|
|
|
float x, y;
|
|
|
|
};
|
|
|
|
|
|
|
|
The following snippet shows how the above operators can be conveniently exposed
|
|
|
|
to Python.
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
2015-10-15 16:13:33 +00:00
|
|
|
#include <pybind11/operators.h>
|
2015-10-13 21:21:54 +00:00
|
|
|
|
2015-10-18 14:48:30 +00:00
|
|
|
PYBIND11_PLUGIN(example) {
|
2015-10-15 16:13:33 +00:00
|
|
|
py::module m("example", "pybind11 example plugin");
|
2015-10-13 21:21:54 +00:00
|
|
|
|
|
|
|
py::class_<Vector2>(m, "Vector2")
|
|
|
|
.def(py::init<float, float>())
|
|
|
|
.def(py::self + py::self)
|
|
|
|
.def(py::self += py::self)
|
|
|
|
.def(py::self *= float())
|
|
|
|
.def(float() * py::self)
|
|
|
|
.def("__repr__", &Vector2::toString);
|
|
|
|
|
|
|
|
return m.ptr();
|
|
|
|
}
|
|
|
|
|
|
|
|
Note that a line like
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
.def(py::self * float())
|
|
|
|
|
|
|
|
is really just short hand notation for
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
.def("__mul__", [](const Vector2 &a, float b) {
|
|
|
|
return a * b;
|
|
|
|
})
|
|
|
|
|
|
|
|
This can be useful for exposing additional operators that don't exist on the
|
|
|
|
C++ side, or to perform other types of customization.
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
|
|
|
|
To use the more convenient ``py::self`` notation, the additional
|
2015-10-15 16:13:33 +00:00
|
|
|
header file :file:`pybind11/operators.h` must be included.
|
2015-10-13 21:21:54 +00:00
|
|
|
|
|
|
|
.. seealso::
|
|
|
|
|
|
|
|
The file :file:`example/example3.cpp` contains a complete example that
|
|
|
|
demonstrates how to work with overloaded operators in more detail.
|
|
|
|
|
|
|
|
Callbacks and passing anonymous functions
|
|
|
|
=========================================
|
|
|
|
|
|
|
|
The C++11 standard brought lambda functions and the generic polymorphic
|
|
|
|
function wrapper ``std::function<>`` to the C++ programming language, which
|
|
|
|
enable powerful new ways of working with functions. Lambda functions come in
|
|
|
|
two flavors: stateless lambda function resemble classic function pointers that
|
|
|
|
link to an anonymous piece of code, while stateful lambda functions
|
|
|
|
additionally depend on captured variables that are stored in an anonymous
|
|
|
|
*lambda closure object*.
|
|
|
|
|
|
|
|
Here is a simple example of a C++ function that takes an arbitrary function
|
|
|
|
(stateful or stateless) with signature ``int -> int`` as an argument and runs
|
|
|
|
it with the value 10.
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
int func_arg(const std::function<int(int)> &f) {
|
|
|
|
return f(10);
|
|
|
|
}
|
|
|
|
|
|
|
|
The example below is more involved: it takes a function of signature ``int -> int``
|
|
|
|
and returns another function of the same kind. The return value is a stateful
|
|
|
|
lambda function, which stores the value ``f`` in the capture object and adds 1 to
|
|
|
|
its return value upon execution.
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
std::function<int(int)> func_ret(const std::function<int(int)> &f) {
|
|
|
|
return [f](int i) {
|
|
|
|
return f(i) + 1;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2015-10-15 16:13:33 +00:00
|
|
|
After including the extra header file :file:`pybind11/functional.h`, it is almost
|
2015-10-13 21:21:54 +00:00
|
|
|
trivial to generate binding code for both of these functions.
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
2015-10-15 16:13:33 +00:00
|
|
|
#include <pybind11/functional.h>
|
2015-10-13 21:21:54 +00:00
|
|
|
|
2015-10-18 14:48:30 +00:00
|
|
|
PYBIND11_PLUGIN(example) {
|
2015-10-15 16:13:33 +00:00
|
|
|
py::module m("example", "pybind11 example plugin");
|
2015-10-13 21:21:54 +00:00
|
|
|
|
|
|
|
m.def("func_arg", &func_arg);
|
|
|
|
m.def("func_ret", &func_ret);
|
|
|
|
|
|
|
|
return m.ptr();
|
|
|
|
}
|
|
|
|
|
|
|
|
The following interactive session shows how to call them from Python.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
$ python
|
|
|
|
>>> import example
|
|
|
|
>>> def square(i):
|
|
|
|
... return i * i
|
|
|
|
...
|
|
|
|
>>> example.func_arg(square)
|
|
|
|
100L
|
|
|
|
>>> square_plus_1 = example.func_ret(square)
|
|
|
|
>>> square_plus_1(4)
|
|
|
|
17L
|
|
|
|
>>>
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
|
|
|
|
This functionality is very useful when generating bindings for callbacks in
|
|
|
|
C++ libraries (e.g. a graphical user interface library).
|
|
|
|
|
|
|
|
The file :file:`example/example5.cpp` contains a complete example that
|
|
|
|
demonstrates how to work with callbacks and anonymous functions in more detail.
|
|
|
|
|
2015-11-17 07:30:34 +00:00
|
|
|
.. warning::
|
|
|
|
|
|
|
|
Keep in mind that passing a function from C++ to Python (or vice versa)
|
|
|
|
will instantiate a piece of wrapper code that translates function
|
|
|
|
invocations between the two languages. Copying the same function back and
|
|
|
|
forth between Python and C++ many times in a row will cause these wrappers
|
|
|
|
to accumulate, which can decrease performance.
|
|
|
|
|
2015-10-13 00:57:16 +00:00
|
|
|
Overriding virtual functions in Python
|
|
|
|
======================================
|
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
Suppose that a C++ class or interface has a virtual function that we'd like to
|
|
|
|
to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
|
|
|
|
given as a specific example of how one would do this with traditional C++
|
|
|
|
code).
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
class Animal {
|
|
|
|
public:
|
|
|
|
virtual ~Animal() { }
|
|
|
|
virtual std::string go(int n_times) = 0;
|
|
|
|
};
|
|
|
|
|
|
|
|
class Dog : public Animal {
|
|
|
|
public:
|
|
|
|
std::string go(int n_times) {
|
|
|
|
std::string result;
|
|
|
|
for (int i=0; i<n_times; ++i)
|
|
|
|
result += "woof! ";
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
Let's also suppose that we are given a plain function which calls the
|
|
|
|
function ``go()`` on an arbitrary ``Animal`` instance.
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
std::string call_go(Animal *animal) {
|
|
|
|
return animal->go(3);
|
|
|
|
}
|
|
|
|
|
|
|
|
Normally, the binding code for these classes would look as follows:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
2015-10-18 14:48:30 +00:00
|
|
|
PYBIND11_PLUGIN(example) {
|
2015-10-15 16:13:33 +00:00
|
|
|
py::module m("example", "pybind11 example plugin");
|
2015-10-13 21:21:54 +00:00
|
|
|
|
|
|
|
py::class_<Animal> animal(m, "Animal");
|
|
|
|
animal
|
|
|
|
.def("go", &Animal::go);
|
|
|
|
|
|
|
|
py::class_<Dog>(m, "Dog", animal)
|
|
|
|
.def(py::init<>());
|
|
|
|
|
|
|
|
m.def("call_go", &call_go);
|
|
|
|
|
|
|
|
return m.ptr();
|
|
|
|
}
|
|
|
|
|
|
|
|
However, these bindings are impossible to extend: ``Animal`` is not
|
|
|
|
constructible, and we clearly require some kind of "trampoline" that
|
|
|
|
redirects virtual calls back to Python.
|
|
|
|
|
|
|
|
Defining a new type of ``Animal`` from within Python is possible but requires a
|
|
|
|
helper class that is defined as follows:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
class PyAnimal : public Animal {
|
|
|
|
public:
|
|
|
|
/* Inherit the constructors */
|
|
|
|
using Animal::Animal;
|
|
|
|
|
|
|
|
/* Trampoline (need one for each virtual function) */
|
|
|
|
std::string go(int n_times) {
|
2015-10-18 14:48:30 +00:00
|
|
|
PYBIND11_OVERLOAD_PURE(
|
2015-10-13 21:21:54 +00:00
|
|
|
std::string, /* Return type */
|
|
|
|
Animal, /* Parent class */
|
|
|
|
go, /* Name of function */
|
|
|
|
n_times /* Argument(s) */
|
|
|
|
);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2015-10-18 14:48:30 +00:00
|
|
|
The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
|
|
|
|
functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
|
2015-10-13 21:21:54 +00:00
|
|
|
a default implementation. The binding code also needs a few minor adaptations
|
|
|
|
(highlighted):
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
:emphasize-lines: 4,6,7
|
|
|
|
|
2015-10-18 14:48:30 +00:00
|
|
|
PYBIND11_PLUGIN(example) {
|
2015-10-15 16:13:33 +00:00
|
|
|
py::module m("example", "pybind11 example plugin");
|
2015-10-13 21:21:54 +00:00
|
|
|
|
|
|
|
py::class_<PyAnimal> animal(m, "Animal");
|
|
|
|
animal
|
|
|
|
.alias<Animal>()
|
|
|
|
.def(py::init<>())
|
|
|
|
.def("go", &Animal::go);
|
|
|
|
|
|
|
|
py::class_<Dog>(m, "Dog", animal)
|
|
|
|
.def(py::init<>());
|
|
|
|
|
|
|
|
m.def("call_go", &call_go);
|
|
|
|
|
|
|
|
return m.ptr();
|
|
|
|
}
|
|
|
|
|
|
|
|
Importantly, the trampoline helper class is used as the template argument to
|
|
|
|
:class:`class_`, and a call to :func:`class_::alias` informs the binding
|
|
|
|
generator that this is merely an alias for the underlying type ``Animal``.
|
|
|
|
Following this, we are able to define a constructor as usual.
|
|
|
|
|
|
|
|
The Python session below shows how to override ``Animal::go`` and invoke it via
|
|
|
|
a virtual method call.
|
|
|
|
|
2016-02-02 10:38:21 +00:00
|
|
|
.. code-block:: python
|
2015-10-13 21:21:54 +00:00
|
|
|
|
|
|
|
>>> from example import *
|
|
|
|
>>> d = Dog()
|
|
|
|
>>> call_go(d)
|
|
|
|
u'woof! woof! woof! '
|
|
|
|
>>> class Cat(Animal):
|
|
|
|
... def go(self, n_times):
|
|
|
|
... return "meow! " * n_times
|
|
|
|
...
|
|
|
|
>>> c = Cat()
|
|
|
|
>>> call_go(c)
|
|
|
|
u'meow! meow! meow! '
|
|
|
|
|
|
|
|
.. seealso::
|
|
|
|
|
|
|
|
The file :file:`example/example12.cpp` contains a complete example that
|
|
|
|
demonstrates how to override virtual functions using pybind11 in more
|
|
|
|
detail.
|
|
|
|
|
2015-12-07 17:17:58 +00:00
|
|
|
|
|
|
|
Global Interpreter Lock (GIL)
|
|
|
|
=============================
|
|
|
|
|
|
|
|
The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
|
|
|
|
used to acquire and release the global interpreter lock in the body of a C++
|
|
|
|
function call. In this way, long-running C++ code can be parallelized using
|
|
|
|
multiple Python threads. Taking the previous section as an example, this could
|
|
|
|
be realized as follows (important changes highlighted):
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
:emphasize-lines: 8,9,33,34
|
|
|
|
|
|
|
|
class PyAnimal : public Animal {
|
|
|
|
public:
|
|
|
|
/* Inherit the constructors */
|
|
|
|
using Animal::Animal;
|
|
|
|
|
|
|
|
/* Trampoline (need one for each virtual function) */
|
|
|
|
std::string go(int n_times) {
|
|
|
|
/* Acquire GIL before calling Python code */
|
2015-12-14 11:39:02 +00:00
|
|
|
py::gil_scoped_acquire acquire;
|
2015-12-07 17:17:58 +00:00
|
|
|
|
|
|
|
PYBIND11_OVERLOAD_PURE(
|
|
|
|
std::string, /* Return type */
|
|
|
|
Animal, /* Parent class */
|
|
|
|
go, /* Name of function */
|
|
|
|
n_times /* Argument(s) */
|
|
|
|
);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
PYBIND11_PLUGIN(example) {
|
|
|
|
py::module m("example", "pybind11 example plugin");
|
|
|
|
|
|
|
|
py::class_<PyAnimal> animal(m, "Animal");
|
|
|
|
animal
|
|
|
|
.alias<Animal>()
|
|
|
|
.def(py::init<>())
|
|
|
|
.def("go", &Animal::go);
|
|
|
|
|
|
|
|
py::class_<Dog>(m, "Dog", animal)
|
|
|
|
.def(py::init<>());
|
|
|
|
|
|
|
|
m.def("call_go", [](Animal *animal) -> std::string {
|
|
|
|
/* Release GIL before calling into (potentially long-running) C++ code */
|
2015-12-14 11:39:02 +00:00
|
|
|
py::gil_scoped_release release;
|
2015-12-07 17:17:58 +00:00
|
|
|
return call_go(animal);
|
|
|
|
});
|
|
|
|
|
|
|
|
return m.ptr();
|
|
|
|
}
|
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
Passing STL data structures
|
2015-10-13 00:57:16 +00:00
|
|
|
===========================
|
|
|
|
|
2015-10-15 16:13:33 +00:00
|
|
|
When including the additional header file :file:`pybind11/stl.h`, conversions
|
2015-12-15 23:56:14 +00:00
|
|
|
between ``std::vector<>``, ``std::set<>``, and ``std::map<>`` and the Python
|
2015-12-14 11:40:45 +00:00
|
|
|
``list``, ``set`` and ``dict`` data structures are automatically enabled. The
|
|
|
|
types ``std::pair<>`` and ``std::tuple<>`` are already supported out of the box
|
|
|
|
with just the core :file:`pybind11/pybind11.h` header.
|
2015-10-13 21:21:54 +00:00
|
|
|
|
|
|
|
.. note::
|
|
|
|
|
2015-12-14 11:40:45 +00:00
|
|
|
Arbitrary nesting of any of these types is supported.
|
2015-10-13 21:21:54 +00:00
|
|
|
|
|
|
|
.. seealso::
|
|
|
|
|
|
|
|
The file :file:`example/example2.cpp` contains a complete example that
|
|
|
|
demonstrates how to pass STL data types in more detail.
|
|
|
|
|
|
|
|
Binding sequence data types, the slicing protocol, etc.
|
|
|
|
=======================================================
|
|
|
|
|
|
|
|
Please refer to the supplemental example for details.
|
|
|
|
|
|
|
|
.. seealso::
|
|
|
|
|
|
|
|
The file :file:`example/example6.cpp` contains a complete example that
|
|
|
|
shows how to bind a sequence data type, including length queries
|
|
|
|
(``__len__``), iterators (``__iter__``), the slicing protocol and other
|
|
|
|
kinds of useful operations.
|
|
|
|
|
2015-10-13 00:57:16 +00:00
|
|
|
Return value policies
|
|
|
|
=====================
|
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
Python and C++ use wildly different ways of managing the memory and lifetime of
|
|
|
|
objects managed by them. This can lead to issues when creating bindings for
|
|
|
|
functions that return a non-trivial type. Just by looking at the type
|
|
|
|
information, it is not clear whether Python should take charge of the returned
|
|
|
|
value and eventually free its resources, or if this is handled on the C++ side.
|
|
|
|
For this reason, pybind11 provides a several `return value policy` annotations
|
|
|
|
that can be passed to the :func:`module::def` and :func:`class_::def`
|
2015-12-14 11:53:06 +00:00
|
|
|
functions. The default policy is :enum:`return_value_policy::automatic`.
|
2015-10-13 21:21:54 +00:00
|
|
|
|
|
|
|
|
|
|
|
+--------------------------------------------------+---------------------------------------------------------------------------+
|
|
|
|
| Return value policy | Description |
|
|
|
|
+==================================================+===========================================================================+
|
|
|
|
| :enum:`return_value_policy::automatic` | Automatic: copy objects returned as values and take ownership of |
|
|
|
|
| | objects returned as pointers |
|
|
|
|
+--------------------------------------------------+---------------------------------------------------------------------------+
|
|
|
|
| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python |
|
|
|
|
+--------------------------------------------------+---------------------------------------------------------------------------+
|
|
|
|
| :enum:`return_value_policy::take_ownership` | Reference the existing object and take ownership. Python will call |
|
|
|
|
| | the destructor and delete operator when the reference count reaches zero |
|
|
|
|
+--------------------------------------------------+---------------------------------------------------------------------------+
|
|
|
|
| :enum:`return_value_policy::reference` | Reference the object, but do not take ownership and defer responsibility |
|
|
|
|
| | for deleting it to C++ (dangerous when C++ code at some point decides to |
|
|
|
|
| | delete it while Python still has a nonzero reference count) |
|
|
|
|
+--------------------------------------------------+---------------------------------------------------------------------------+
|
|
|
|
| :enum:`return_value_policy::reference_internal` | Reference the object, but do not take ownership. The object is considered |
|
|
|
|
| | be owned by the C++ instance whose method or property returned it. The |
|
|
|
|
| | Python object will increase the reference count of this 'parent' by 1 |
|
|
|
|
| | to ensure that it won't be deallocated while Python is using the 'child' |
|
|
|
|
+--------------------------------------------------+---------------------------------------------------------------------------+
|
|
|
|
|
|
|
|
.. warning::
|
|
|
|
|
|
|
|
Code with invalid call policies might access unitialized memory and free
|
|
|
|
data structures multiple times, which can lead to hard-to-debug
|
|
|
|
non-determinism and segmentation faults, hence it is worth spending the
|
|
|
|
time to understand all the different options above.
|
|
|
|
|
|
|
|
See below for an example that uses the
|
|
|
|
:enum:`return_value_policy::reference_internal` policy.
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
class Example {
|
|
|
|
public:
|
|
|
|
Internal &get_internal() { return internal; }
|
|
|
|
private:
|
|
|
|
Internal internal;
|
|
|
|
};
|
|
|
|
|
2015-10-18 14:48:30 +00:00
|
|
|
PYBIND11_PLUGIN(example) {
|
2015-10-15 16:13:33 +00:00
|
|
|
py::module m("example", "pybind11 example plugin");
|
2015-10-13 21:21:54 +00:00
|
|
|
|
|
|
|
py::class_<Example>(m, "Example")
|
|
|
|
.def(py::init<>())
|
|
|
|
.def("get_internal", &Example::get_internal, "Return the internal data", py::return_value_policy::reference_internal)
|
|
|
|
|
|
|
|
return m.ptr();
|
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:39 +00:00
|
|
|
|
|
|
|
Additional call policies
|
|
|
|
========================
|
|
|
|
|
|
|
|
In addition to the above return value policies, further `call policies` can be
|
|
|
|
specified to indicate dependencies between parameters. There is currently just
|
|
|
|
one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
|
|
|
|
argument with index ``Patient`` should be kept alive at least until the
|
|
|
|
argument with index ``Nurse`` is freed by the garbage collector; argument
|
|
|
|
indices start at one, while zero refers to the return value. Arbitrarily many
|
|
|
|
call policies can be specified.
|
|
|
|
|
|
|
|
For instance, binding code for a a list append operation that ties the lifetime
|
|
|
|
of the newly added element to the underlying container might be declared as
|
|
|
|
follows:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
py::class_<List>(m, "List")
|
|
|
|
.def("append", &List::append, py::keep_alive<1, 2>());
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
|
|
|
|
``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
|
|
|
|
Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
|
|
|
|
0) policies from Boost.Python.
|
|
|
|
|
2016-01-18 21:38:52 +00:00
|
|
|
.. seealso::
|
|
|
|
|
|
|
|
The file :file:`example/example13.cpp` contains a complete example that
|
|
|
|
demonstrates using :class:`keep_alive` in more detail.
|
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
Implicit type conversions
|
|
|
|
=========================
|
|
|
|
|
|
|
|
Suppose that instances of two types ``A`` and ``B`` are used in a project, and
|
|
|
|
that an ``A`` can easily be converted into a an instance of type ``B`` (examples of this
|
|
|
|
could be a fixed and an arbitrary precision number type).
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
py::class_<A>(m, "A")
|
|
|
|
/// ... members ...
|
|
|
|
|
|
|
|
py::class_<B>(m, "B")
|
|
|
|
.def(py::init<A>())
|
|
|
|
/// ... members ...
|
|
|
|
|
|
|
|
m.def("func",
|
|
|
|
[](const B &) { /* .... */ }
|
|
|
|
);
|
|
|
|
|
|
|
|
To invoke the function ``func`` using a variable ``a`` containing an ``A``
|
|
|
|
instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
|
|
|
|
will automatically apply an implicit type conversion, which makes it possible
|
|
|
|
to directly write ``func(a)``.
|
2015-10-13 00:57:16 +00:00
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
In this situation (i.e. where ``B`` has a constructor that converts from
|
|
|
|
``A``), the following statement enables similar implicit conversions on the
|
|
|
|
Python side:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
py::implicitly_convertible<A, B>();
|
|
|
|
|
|
|
|
Smart pointers
|
|
|
|
==============
|
|
|
|
|
|
|
|
The binding generator for classes (:class:`class_`) takes an optional second
|
|
|
|
template type, which denotes a special *holder* type that is used to manage
|
|
|
|
references to the object. When wrapping a type named ``Type``, the default
|
|
|
|
value of this template parameter is ``std::unique_ptr<Type>``, which means that
|
|
|
|
the object is deallocated when Python's reference count goes to zero.
|
|
|
|
|
2015-10-18 13:38:50 +00:00
|
|
|
It is possible to switch to other types of reference counting wrappers or smart
|
|
|
|
pointers, which is useful in codebases that rely on them. For instance, the
|
|
|
|
following snippet causes ``std::shared_ptr`` to be used instead.
|
2015-10-13 21:21:54 +00:00
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
2016-01-17 21:36:40 +00:00
|
|
|
py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
|
2015-12-15 16:07:35 +00:00
|
|
|
|
2016-01-17 21:36:40 +00:00
|
|
|
Note that any particular class can only be associated with a single holder type.
|
2015-10-13 21:21:54 +00:00
|
|
|
|
2015-10-18 13:38:50 +00:00
|
|
|
To enable transparent conversions for functions that take shared pointers as an
|
2015-12-15 16:07:35 +00:00
|
|
|
argument or that return them, a macro invocation similar to the following must
|
2015-10-18 13:38:50 +00:00
|
|
|
be declared at the top level before any binding code:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
2015-10-18 14:48:30 +00:00
|
|
|
PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
|
2015-10-18 13:38:50 +00:00
|
|
|
|
2016-01-17 21:36:40 +00:00
|
|
|
.. note::
|
2015-12-14 11:53:06 +00:00
|
|
|
|
|
|
|
The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
|
|
|
|
placeholder name that is used as a template parameter of the second
|
|
|
|
argument. Thus, feel free to use any identifier, but use it consistently on
|
|
|
|
both sides; also, don't use the name of a type that already exists in your
|
|
|
|
codebase.
|
|
|
|
|
2016-01-17 21:36:40 +00:00
|
|
|
One potential stumbling block when using holder types is that they need to be
|
|
|
|
applied consistently. Can you guess what's broken about the following binding
|
|
|
|
code?
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
class Child { };
|
2015-11-24 22:05:58 +00:00
|
|
|
|
2016-01-17 21:36:40 +00:00
|
|
|
class Parent {
|
|
|
|
public:
|
|
|
|
Parent() : child(std::make_shared<Child>()) { }
|
|
|
|
Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
|
|
|
|
private:
|
|
|
|
std::shared_ptr<Child> child;
|
|
|
|
};
|
2015-11-24 22:05:58 +00:00
|
|
|
|
2016-01-17 21:36:40 +00:00
|
|
|
PYBIND11_PLUGIN(example) {
|
|
|
|
py::module m("example");
|
2015-12-15 16:07:35 +00:00
|
|
|
|
2016-01-17 21:36:40 +00:00
|
|
|
py::class_<Child, std::shared_ptr<Child>>(m, "Child");
|
2015-12-15 16:07:35 +00:00
|
|
|
|
2016-01-17 21:36:40 +00:00
|
|
|
py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
|
|
|
|
.def(py::init<>())
|
|
|
|
.def("get_child", &Parent::get_child);
|
|
|
|
|
|
|
|
return m.ptr();
|
|
|
|
}
|
2015-12-15 16:07:35 +00:00
|
|
|
|
2016-01-17 21:36:40 +00:00
|
|
|
The following Python code will cause undefined behavior (and likely a
|
|
|
|
segmentation fault).
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from example import Parent
|
|
|
|
print(Parent().get_child())
|
|
|
|
|
|
|
|
The problem is that ``Parent::get_child()`` returns a pointer to an instance of
|
|
|
|
``Child``, but the fact that this instance is already managed by
|
|
|
|
``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
|
|
|
|
pybind11 will create a second independent ``std::shared_ptr<...>`` that also
|
|
|
|
claims ownership of the pointer. In the end, the object will be freed **twice**
|
|
|
|
since these shared pointers have no way of knowing about each other.
|
|
|
|
|
|
|
|
There are two ways to resolve this issue:
|
|
|
|
|
|
|
|
1. For types that are managed by a smart pointer class, never use raw pointers
|
|
|
|
in function arguments or return values. In other words: always consistently
|
|
|
|
wrap pointers into their designated holder types (such as
|
|
|
|
``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
|
|
|
|
should be modified as follows:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
std::shared_ptr<Child> get_child() { return child; }
|
|
|
|
|
|
|
|
2. Adjust the definition of ``Child`` by specifying
|
|
|
|
``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
|
|
|
|
base class. This adds a small bit of information to ``Child`` that allows
|
|
|
|
pybind11 to realize that there is already an existing
|
|
|
|
``std::shared_ptr<...>`` and communicate with it. In this case, the
|
|
|
|
declaration of ``Child`` should look as follows:
|
2015-12-15 16:07:35 +00:00
|
|
|
|
2015-11-24 22:05:58 +00:00
|
|
|
.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
|
|
|
|
|
2016-01-17 21:36:40 +00:00
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
class Child : public std::enable_shared_from_this<Child> { };
|
|
|
|
|
2015-12-15 16:07:35 +00:00
|
|
|
.. seealso::
|
|
|
|
|
|
|
|
The file :file:`example/example8.cpp` contains a complete example that
|
|
|
|
demonstrates how to work with custom reference-counting holder types in
|
|
|
|
more detail.
|
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
.. _custom_constructors:
|
|
|
|
|
|
|
|
Custom constructors
|
|
|
|
===================
|
|
|
|
|
|
|
|
The syntax for binding constructors was previously introduced, but it only
|
|
|
|
works when a constructor with the given parameters actually exists on the C++
|
|
|
|
side. To extend this to more general cases, let's take a look at what actually
|
|
|
|
happens under the hood: the following statement
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
py::class_<Example>(m, "Example")
|
|
|
|
.def(py::init<int>());
|
|
|
|
|
|
|
|
is short hand notation for
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
py::class_<Example>(m, "Example")
|
|
|
|
.def("__init__",
|
|
|
|
[](Example &instance, int arg) {
|
|
|
|
new (&instance) Example(arg);
|
|
|
|
}
|
|
|
|
);
|
|
|
|
|
|
|
|
In other words, :func:`init` creates an anonymous function that invokes an
|
|
|
|
in-place constructor. Memory allocation etc. is already take care of beforehand
|
|
|
|
within pybind11.
|
|
|
|
|
|
|
|
Catching and throwing exceptions
|
|
|
|
================================
|
|
|
|
|
|
|
|
When C++ code invoked from Python throws an ``std::exception``, it is
|
|
|
|
automatically converted into a Python ``Exception``. pybind11 defines multiple
|
|
|
|
special exception classes that will map to different types of Python
|
|
|
|
exceptions:
|
|
|
|
|
|
|
|
+----------------------------+------------------------------+
|
|
|
|
| C++ exception type | Python exception type |
|
|
|
|
+============================+==============================+
|
|
|
|
| :class:`std::exception` | ``Exception`` |
|
|
|
|
+----------------------------+------------------------------+
|
|
|
|
| :class:`stop_iteration` | ``StopIteration`` (used to |
|
|
|
|
| | implement custom iterators) |
|
|
|
|
+----------------------------+------------------------------+
|
|
|
|
| :class:`index_error` | ``IndexError`` (used to |
|
|
|
|
| | indicate out of bounds |
|
|
|
|
| | accesses in ``__getitem__``, |
|
|
|
|
| | ``__setitem__``, etc.) |
|
|
|
|
+----------------------------+------------------------------+
|
|
|
|
| :class:`error_already_set` | Indicates that the Python |
|
|
|
|
| | exception flag has already |
|
|
|
|
| | been initialized. |
|
|
|
|
+----------------------------+------------------------------+
|
|
|
|
|
|
|
|
When a Python function invoked from C++ throws an exception, it is converted
|
|
|
|
into a C++ exception of type :class:`error_already_set` whose string payload
|
|
|
|
contains a textual summary.
|
|
|
|
|
|
|
|
There is also a special exception :class:`cast_error` that is thrown by
|
|
|
|
:func:`handle::call` when the input arguments cannot be converted to Python
|
|
|
|
objects.
|
2015-10-13 00:57:16 +00:00
|
|
|
|
|
|
|
Buffer protocol
|
|
|
|
===============
|
|
|
|
|
|
|
|
Python supports an extremely general and convenient approach for exchanging
|
|
|
|
data between plugin libraries. Types can expose a buffer view which provides
|
|
|
|
fast direct access to the raw internal representation. Suppose we want to bind
|
|
|
|
the following simplistic Matrix class:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
class Matrix {
|
|
|
|
public:
|
|
|
|
Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
|
|
|
|
m_data = new float[rows*cols];
|
|
|
|
}
|
|
|
|
float *data() { return m_data; }
|
|
|
|
size_t rows() const { return m_rows; }
|
|
|
|
size_t cols() const { return m_cols; }
|
|
|
|
private:
|
|
|
|
size_t m_rows, m_cols;
|
|
|
|
float *m_data;
|
|
|
|
};
|
|
|
|
|
|
|
|
The following binding code exposes the ``Matrix`` contents as a buffer object,
|
|
|
|
making it possible to cast Matrixes into NumPy arrays. It is even possible to
|
|
|
|
completely avoid copy operations with Python expressions like
|
|
|
|
``np.array(matrix_instance, copy = False)``.
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
py::class_<Matrix>(m, "Matrix")
|
|
|
|
.def_buffer([](Matrix &m) -> py::buffer_info {
|
|
|
|
return py::buffer_info(
|
|
|
|
m.data(), /* Pointer to buffer */
|
|
|
|
sizeof(float), /* Size of one scalar */
|
|
|
|
py::format_descriptor<float>::value(), /* Python struct-style format descriptor */
|
|
|
|
2, /* Number of dimensions */
|
|
|
|
{ m.rows(), m.cols() }, /* Buffer dimensions */
|
|
|
|
{ sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
|
|
|
|
sizeof(float) }
|
|
|
|
);
|
|
|
|
});
|
|
|
|
|
|
|
|
The snippet above binds a lambda function, which can create ``py::buffer_info``
|
|
|
|
description records on demand describing a given matrix. The contents of
|
|
|
|
``py::buffer_info`` mirror the Python buffer protocol specification.
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
struct buffer_info {
|
|
|
|
void *ptr;
|
|
|
|
size_t itemsize;
|
|
|
|
std::string format;
|
|
|
|
int ndim;
|
|
|
|
std::vector<size_t> shape;
|
|
|
|
std::vector<size_t> strides;
|
|
|
|
};
|
|
|
|
|
|
|
|
To create a C++ function that can take a Python buffer object as an argument,
|
|
|
|
simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
|
|
|
|
in a great variety of configurations, hence some safety checks are usually
|
|
|
|
necessary in the function body. Below, you can see an basic example on how to
|
|
|
|
define a custom constructor for the Eigen double precision matrix
|
|
|
|
(``Eigen::MatrixXd``) type, which supports initialization from compatible
|
|
|
|
buffer
|
|
|
|
objects (e.g. a NumPy matrix).
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
py::class_<Eigen::MatrixXd>(m, "MatrixXd")
|
|
|
|
.def("__init__", [](Eigen::MatrixXd &m, py::buffer b) {
|
|
|
|
/* Request a buffer descriptor from Python */
|
|
|
|
py::buffer_info info = b.request();
|
|
|
|
|
|
|
|
/* Some sanity checks ... */
|
|
|
|
if (info.format != py::format_descriptor<double>::value())
|
|
|
|
throw std::runtime_error("Incompatible format: expected a double array!");
|
|
|
|
|
|
|
|
if (info.ndim != 2)
|
|
|
|
throw std::runtime_error("Incompatible buffer dimension!");
|
|
|
|
|
|
|
|
if (info.strides[0] == sizeof(double)) {
|
|
|
|
/* Buffer has the right layout -- directly copy. */
|
|
|
|
new (&m) Eigen::MatrixXd(info.shape[0], info.shape[1]);
|
|
|
|
memcpy(m.data(), info.ptr, sizeof(double) * m.size());
|
|
|
|
} else {
|
|
|
|
/* Oops -- the buffer is transposed */
|
|
|
|
new (&m) Eigen::MatrixXd(info.shape[1], info.shape[0]);
|
|
|
|
memcpy(m.data(), info.ptr, sizeof(double) * m.size());
|
|
|
|
m.transposeInPlace();
|
|
|
|
}
|
|
|
|
});
|
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
.. seealso::
|
|
|
|
|
|
|
|
The file :file:`example/example7.cpp` contains a complete example that
|
|
|
|
demonstrates using the buffer protocol with pybind11 in more detail.
|
|
|
|
|
2015-10-13 00:57:16 +00:00
|
|
|
NumPy support
|
|
|
|
=============
|
|
|
|
|
|
|
|
By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
|
|
|
|
restrict the function so that it only accepts NumPy arrays (rather than any
|
|
|
|
type of Python object satisfying the buffer object protocol).
|
|
|
|
|
|
|
|
In many situations, we want to define a function which only accepts a NumPy
|
2015-10-13 21:21:54 +00:00
|
|
|
array of a certain data type. This is possible via the ``py::array_t<T>``
|
2015-10-13 00:57:16 +00:00
|
|
|
template. For instance, the following function requires the argument to be a
|
|
|
|
dense array of doubles in C-style ordering.
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
void f(py::array_t<double> array);
|
2015-10-13 00:57:16 +00:00
|
|
|
|
|
|
|
When it is invoked with a different type (e.g. an integer), the binding code
|
|
|
|
will attempt to cast the input into a NumPy array of the requested type.
|
2015-10-15 16:13:33 +00:00
|
|
|
Note that this feature requires the ``pybind11/numpy.h`` header to be included.
|
2015-10-13 00:57:16 +00:00
|
|
|
|
|
|
|
Vectorizing functions
|
|
|
|
=====================
|
|
|
|
|
|
|
|
Suppose we want to bind a function with the following signature to Python so
|
|
|
|
that it can process arbitrary NumPy array arguments (vectors, matrices, general
|
|
|
|
N-D arrays) in addition to its normal arguments:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
double my_func(int x, float y, double z);
|
|
|
|
|
2015-10-15 16:13:33 +00:00
|
|
|
After including the ``pybind11/numpy.h`` header, this is extremely simple:
|
2015-10-13 00:57:16 +00:00
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
m.def("vectorized_func", py::vectorize(my_func));
|
|
|
|
|
|
|
|
Invoking the function like below causes 4 calls to be made to ``my_func`` with
|
|
|
|
each of the the array elements. The result is returned as a NumPy array of type
|
|
|
|
``numpy.dtype.float64``.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
>>> x = np.array([[1, 3],[5, 7]])
|
|
|
|
>>> y = np.array([[2, 4],[6, 8]])
|
|
|
|
>>> z = 3
|
|
|
|
>>> result = vectorized_func(x, y, z)
|
|
|
|
|
|
|
|
The scalar argument ``z`` is transparently replicated 4 times. The input
|
|
|
|
arrays ``x`` and ``y`` are automatically converted into the right types (they
|
|
|
|
are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
|
|
|
|
``numpy.dtype.float32``, respectively)
|
|
|
|
|
|
|
|
Sometimes we might want to explitly exclude an argument from the vectorization
|
|
|
|
because it makes little sense to wrap it in a NumPy array. For instance,
|
|
|
|
suppose the function signature was
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
double my_func(int x, float y, my_custom_type *z);
|
|
|
|
|
|
|
|
This can be done with a stateful Lambda closure:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
// Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
|
|
|
|
m.def("vectorized_func",
|
2015-10-13 21:21:54 +00:00
|
|
|
[](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
|
2015-10-13 00:57:16 +00:00
|
|
|
auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
|
|
|
|
return py::vectorize(stateful_closure)(x, y);
|
|
|
|
}
|
|
|
|
);
|
|
|
|
|
2016-01-18 21:38:52 +00:00
|
|
|
In cases where the computation is too complicated to be reduced to
|
|
|
|
``vectorize``, it will be necessary to create and access the buffer contents
|
|
|
|
manually. The following snippet contains a complete example that shows how this
|
|
|
|
works (the code is somewhat contrived, since it could have been done more
|
|
|
|
simply using ``vectorize``).
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
#include <pybind11/pybind11.h>
|
|
|
|
#include <pybind11/numpy.h>
|
|
|
|
|
|
|
|
namespace py = pybind11;
|
|
|
|
|
|
|
|
py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
|
|
|
|
auto buf1 = input1.request(), buf2 = input2.request();
|
|
|
|
|
|
|
|
if (buf1.ndim != 1 || buf2.ndim != 1)
|
|
|
|
throw std::runtime_error("Number of dimensions must be one");
|
|
|
|
|
|
|
|
if (buf1.shape[0] != buf2.shape[0])
|
|
|
|
throw std::runtime_error("Input shapes must match");
|
|
|
|
|
|
|
|
auto result = py::array(py::buffer_info(
|
|
|
|
nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
|
|
|
|
sizeof(double), /* Size of one item */
|
|
|
|
py::format_descriptor<double>::value(), /* Buffer format */
|
|
|
|
buf1.ndim, /* How many dimensions? */
|
|
|
|
{ buf1.shape[0] }, /* Number of elements for each dimension */
|
|
|
|
{ sizeof(double) } /* Strides for each dimension */
|
|
|
|
));
|
|
|
|
|
|
|
|
auto buf3 = result.request();
|
|
|
|
|
|
|
|
double *ptr1 = (double *) buf1.ptr,
|
|
|
|
*ptr2 = (double *) buf2.ptr,
|
|
|
|
*ptr3 = (double *) buf3.ptr;
|
|
|
|
|
|
|
|
for (size_t idx = 0; idx < buf1.shape[0]; idx++)
|
|
|
|
ptr3[idx] = ptr1[idx] + ptr2[idx];
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
PYBIND11_PLUGIN(test) {
|
|
|
|
py::module m("test");
|
|
|
|
m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
|
|
|
|
return m.ptr();
|
|
|
|
}
|
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
.. seealso::
|
2015-10-13 00:57:16 +00:00
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
The file :file:`example/example10.cpp` contains a complete example that
|
|
|
|
demonstrates using :func:`vectorize` in more detail.
|
2015-10-13 00:57:16 +00:00
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
Functions taking Python objects as arguments
|
|
|
|
============================================
|
2015-10-13 00:57:16 +00:00
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
pybind11 exposes all major Python types using thin C++ wrapper classes. These
|
|
|
|
wrapper classes can also be used as parameters of functions in bindings, which
|
|
|
|
makes it possible to directly work with native Python types on the C++ side.
|
|
|
|
For instance, the following statement iterates over a Python ``dict``:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
void print_dict(py::dict dict) {
|
|
|
|
/* Easily interact with Python types */
|
|
|
|
for (auto item : dict)
|
|
|
|
std::cout << "key=" << item.first << ", "
|
|
|
|
<< "value=" << item.second << std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
Available types include :class:`handle`, :class:`object`, :class:`bool_`,
|
2016-01-17 21:36:37 +00:00
|
|
|
:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
|
|
|
|
:class:`list`, :class:`dict`, :class:`slice`, :class:`capsule`,
|
|
|
|
:class:`function`, :class:`buffer`, :class:`array`, and :class:`array_t`.
|
2015-10-13 21:21:54 +00:00
|
|
|
|
2015-10-19 23:04:30 +00:00
|
|
|
In this kind of mixed code, it is often necessary to convert arbitrary C++
|
|
|
|
types to Python, which can be done using :func:`cast`:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
MyClass *cls = ..;
|
|
|
|
py::object obj = py::cast(cls);
|
|
|
|
|
|
|
|
The reverse direction uses the following syntax:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
py::object obj = ...;
|
|
|
|
MyClass *cls = obj.cast<MyClass *>();
|
|
|
|
|
|
|
|
When conversion fails, both directions throw the exception :class:`cast_error`.
|
|
|
|
|
2015-10-13 21:21:54 +00:00
|
|
|
.. seealso::
|
|
|
|
|
|
|
|
The file :file:`example/example2.cpp` contains a complete example that
|
|
|
|
demonstrates passing native Python types in more detail.
|
moved processing of cpp_function arguments out of dispatch code
The cpp_function class accepts a variadic argument, which was formerly
processed twice -- once at registration time, and once in the dispatch
lambda function. This is not only unnecessarily slow but also leads to
code bloat since it adds to the object code generated for every bound
function. This change removes the second pass at dispatch time.
One noteworthy change of this commit is that default arguments are now
constructed (and converted to Python objects) right at declaration time.
Consider the following example:
py::class_<MyClass>("MyClass")
.def("myFunction", py::arg("arg") = SomeType(123));
In this case, the change means that pybind11 must already be set up to
deal with values of the type 'SomeType', or an exception will be thrown.
Another change is that the "preview" of the default argument in the
function signature is generated using the __repr__ special method. If
it is not available in this type, the signature may not be very helpful,
i.e.:
| myFunction(...)
| Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> None
One workaround (other than defining SomeType.__repr__) is to specify the
human-readable preview of the default argument manually using the more
cumbersome arg_t notation:
py::class_<MyClass>("MyClass")
.def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
2016-01-17 21:36:35 +00:00
|
|
|
|
|
|
|
Default arguments revisited
|
|
|
|
===========================
|
|
|
|
|
|
|
|
The section on :ref:`default_args` previously discussed basic usage of default
|
|
|
|
arguments using pybind11. One noteworthy aspect of their implementation is that
|
|
|
|
default arguments are converted to Python objects right at declaration time.
|
|
|
|
Consider the following example:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
py::class_<MyClass>("MyClass")
|
|
|
|
.def("myFunction", py::arg("arg") = SomeType(123));
|
|
|
|
|
|
|
|
In this case, pybind11 must already be set up to deal with values of the type
|
|
|
|
``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
|
|
|
|
exception will be thrown.
|
|
|
|
|
|
|
|
Another aspect worth highlighting is that the "preview" of the default argument
|
|
|
|
in the function signature is generated using the object's ``__repr__`` method.
|
|
|
|
If not available, the signature may not be very helpful, e.g.:
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
FUNCTIONS
|
|
|
|
...
|
|
|
|
| myFunction(...)
|
2016-01-17 21:36:44 +00:00
|
|
|
| Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
|
moved processing of cpp_function arguments out of dispatch code
The cpp_function class accepts a variadic argument, which was formerly
processed twice -- once at registration time, and once in the dispatch
lambda function. This is not only unnecessarily slow but also leads to
code bloat since it adds to the object code generated for every bound
function. This change removes the second pass at dispatch time.
One noteworthy change of this commit is that default arguments are now
constructed (and converted to Python objects) right at declaration time.
Consider the following example:
py::class_<MyClass>("MyClass")
.def("myFunction", py::arg("arg") = SomeType(123));
In this case, the change means that pybind11 must already be set up to
deal with values of the type 'SomeType', or an exception will be thrown.
Another change is that the "preview" of the default argument in the
function signature is generated using the __repr__ special method. If
it is not available in this type, the signature may not be very helpful,
i.e.:
| myFunction(...)
| Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> None
One workaround (other than defining SomeType.__repr__) is to specify the
human-readable preview of the default argument manually using the more
cumbersome arg_t notation:
py::class_<MyClass>("MyClass")
.def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
2016-01-17 21:36:35 +00:00
|
|
|
...
|
|
|
|
|
|
|
|
The first way of addressing this is by defining ``SomeType.__repr__``.
|
|
|
|
Alternatively, it is possible to specify the human-readable preview of the
|
|
|
|
default argument manually using the ``arg_t`` notation:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
py::class_<MyClass>("MyClass")
|
|
|
|
.def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
|
|
|
|
|
2016-03-03 11:03:30 +00:00
|
|
|
Sometimes it may be necessary to pass a null pointer value as a default
|
|
|
|
argument. In this case, remember to cast it to the underlying type in question,
|
|
|
|
like so:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
py::class_<MyClass>("MyClass")
|
|
|
|
.def("myFunction", py::arg("arg") = (SomeType *) nullptr);
|
|
|
|
|
2016-01-17 21:36:37 +00:00
|
|
|
Partitioning code over multiple extension modules
|
|
|
|
=================================================
|
|
|
|
|
2016-03-06 12:37:22 +00:00
|
|
|
It's straightforward to split binding code over multiple extension modules, while
|
|
|
|
referencing types that are declared elsewhere. Everything "just" works without any special
|
2016-03-15 14:05:40 +00:00
|
|
|
precautions. One exception to this rule occurs when extending a type declared
|
2016-01-17 21:36:37 +00:00
|
|
|
in another extension module. Recall the basic example from Section
|
|
|
|
:ref:`inheritance`.
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
py::class_<Pet> pet(m, "Pet");
|
|
|
|
pet.def(py::init<const std::string &>())
|
|
|
|
.def_readwrite("name", &Pet::name);
|
|
|
|
|
|
|
|
py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
|
|
|
|
.def(py::init<const std::string &>())
|
|
|
|
.def("bark", &Dog::bark);
|
|
|
|
|
|
|
|
Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
|
|
|
|
whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
|
|
|
|
course that the variable ``pet`` is not available anymore though it is needed
|
|
|
|
to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
|
|
|
|
However, it can be acquired as follows:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
py::object pet = (py::object) py::module::import("basic").attr("Pet");
|
|
|
|
|
|
|
|
py::class_<Dog>(m, "Dog", pet)
|
|
|
|
.def(py::init<const std::string &>())
|
|
|
|
.def("bark", &Dog::bark);
|
|
|
|
|
2016-03-06 12:37:22 +00:00
|
|
|
Alternatively, we can rely on the ``base`` tag, which performs an automated
|
|
|
|
lookup of the corresponding Python type. However, this also requires invoking
|
|
|
|
the ``import`` function once to ensure that the pybind11 binding code of the
|
|
|
|
module ``basic`` has been executed.
|
|
|
|
|
|
|
|
Naturally, both methods will fail when there are cyclic dependencies.
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
py::module::import("basic");
|
|
|
|
|
|
|
|
py::class_<Dog>(m, "Dog", py::base<Pet>())
|
|
|
|
.def(py::init<const std::string &>())
|
|
|
|
.def("bark", &Dog::bark);
|
2016-03-15 14:05:40 +00:00
|
|
|
|
|
|
|
Treating STL data structures as opaque objects
|
|
|
|
==============================================
|
|
|
|
|
|
|
|
pybind11 heavily relies on a template matching mechanism to convert parameters
|
|
|
|
and return values that are constructed from STL data types such as vectors,
|
|
|
|
linked lists, hash tables, etc. This even works in a recursive manner, for
|
|
|
|
instance to deal with lists of hash maps of pairs of elementary and custom
|
|
|
|
types, etc.
|
|
|
|
|
|
|
|
The fundamental limitation of this approach is the internal conversion between
|
|
|
|
Python and C++ types involves a copy operation that prevents pass-by-reference
|
|
|
|
semantics. What does this mean?
|
|
|
|
|
|
|
|
Suppose we bind the following function
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
void append_1(std::vector<int> &v) {
|
|
|
|
v.push_back(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
and call it as follows from Python:
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
>>> v = [5, 6]
|
|
|
|
>>> append_1(v)
|
|
|
|
>>> print(v)
|
|
|
|
[5, 6]
|
|
|
|
|
|
|
|
As you can see, when passing STL data structures by reference, modifications
|
|
|
|
are not propagated back the Python side. To deal with situations where this
|
|
|
|
desirable, pybind11 contains a simple template wrapper class named ``opaque<T>``.
|
|
|
|
|
|
|
|
``opaque<T>`` disables the underlying template machinery for
|
|
|
|
``T`` and can be used to treat STL types as opaque objects, whose contents are
|
|
|
|
never inspected or extracted (thus, they can be passed by reference).
|
|
|
|
The downside of this approach is that it the binding code becomes a bit more
|
|
|
|
wordy. The above function can be bound using the following wrapper code:
|
|
|
|
|
|
|
|
.. code-block:: cpp
|
|
|
|
|
|
|
|
m.def("append_1", [](py::opaque<std::vector<int>> &v) { append_1(v); });
|
|
|
|
|
|
|
|
Opaque types must also have a dedicated ``class_`` declaration to define a
|
|
|
|
set of admissible operations.
|
|
|
|
|
|
|
|
.. seealso::
|
|
|
|
|
|
|
|
The file :file:`example/example14.cpp` contains a complete example that
|
|
|
|
demonstrates how to create opaque types using pybind11 in more detail.
|