Allow arbitrary class_ template option ordering
The current pybind11::class_<Type, Holder, Trampoline> fixed template
ordering results in a requirement to repeat the Holder with its default
value (std::unique_ptr<Type>) argument, which is a little bit annoying:
it needs to be specified not because we want to override the default,
but rather because we need to specify the third argument.
This commit removes this limitation by making the class_ template take
the type name plus a parameter pack of options. It then extracts the
first valid holder type and the first subclass type for holder_type and
trampoline type_alias, respectively. (If unfound, both fall back to
their current defaults, `std::unique_ptr<type>` and `type`,
respectively). If any unmatched template arguments are provided, a
static assertion fails.
What this means is that you can specify or omit the arguments in any
order:
py::class_<A, PyA> c1(m, "A");
py::class_<B, PyB, std::shared_ptr<B>> c2(m, "B");
py::class_<C, std::shared_ptr<C>, PyB> c3(m, "C");
It also allows future class attributes (such as base types in the next
commit) to be passed as class template types rather than needing to use
a py::base<> wrapper.
2016-09-06 16:17:06 +00:00
|
|
|
/*
|
2017-06-08 22:44:49 +00:00
|
|
|
tests/test_class.cpp -- test py::class_ definitions and basic functionality
|
Allow arbitrary class_ template option ordering
The current pybind11::class_<Type, Holder, Trampoline> fixed template
ordering results in a requirement to repeat the Holder with its default
value (std::unique_ptr<Type>) argument, which is a little bit annoying:
it needs to be specified not because we want to override the default,
but rather because we need to specify the third argument.
This commit removes this limitation by making the class_ template take
the type name plus a parameter pack of options. It then extracts the
first valid holder type and the first subclass type for holder_type and
trampoline type_alias, respectively. (If unfound, both fall back to
their current defaults, `std::unique_ptr<type>` and `type`,
respectively). If any unmatched template arguments are provided, a
static assertion fails.
What this means is that you can specify or omit the arguments in any
order:
py::class_<A, PyA> c1(m, "A");
py::class_<B, PyB, std::shared_ptr<B>> c2(m, "B");
py::class_<C, std::shared_ptr<C>, PyB> c3(m, "C");
It also allows future class attributes (such as base types in the next
commit) to be passed as class template types rather than needing to use
a py::base<> wrapper.
2016-09-06 16:17:06 +00:00
|
|
|
|
|
|
|
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
|
|
|
|
|
|
|
All rights reserved. Use of this source code is governed by a
|
|
|
|
BSD-style license that can be found in the LICENSE file.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "pybind11_tests.h"
|
2017-06-08 22:44:49 +00:00
|
|
|
#include "constructor_stats.h"
|
2017-07-29 02:03:44 +00:00
|
|
|
#include "local_bindings.h"
|
2018-01-11 17:22:13 +00:00
|
|
|
#include <pybind11/stl.h>
|
|
|
|
|
|
|
|
// test_brace_initialization
|
|
|
|
struct NoBraceInitialization {
|
|
|
|
NoBraceInitialization(std::vector<int> v) : vec{std::move(v)} {}
|
|
|
|
template <typename T>
|
|
|
|
NoBraceInitialization(std::initializer_list<T> l) : vec(l) {}
|
|
|
|
|
|
|
|
std::vector<int> vec;
|
|
|
|
};
|
Allow arbitrary class_ template option ordering
The current pybind11::class_<Type, Holder, Trampoline> fixed template
ordering results in a requirement to repeat the Holder with its default
value (std::unique_ptr<Type>) argument, which is a little bit annoying:
it needs to be specified not because we want to override the default,
but rather because we need to specify the third argument.
This commit removes this limitation by making the class_ template take
the type name plus a parameter pack of options. It then extracts the
first valid holder type and the first subclass type for holder_type and
trampoline type_alias, respectively. (If unfound, both fall back to
their current defaults, `std::unique_ptr<type>` and `type`,
respectively). If any unmatched template arguments are provided, a
static assertion fails.
What this means is that you can specify or omit the arguments in any
order:
py::class_<A, PyA> c1(m, "A");
py::class_<B, PyB, std::shared_ptr<B>> c2(m, "B");
py::class_<C, std::shared_ptr<C>, PyB> c3(m, "C");
It also allows future class attributes (such as base types in the next
commit) to be passed as class template types rather than needing to use
a py::base<> wrapper.
2016-09-06 16:17:06 +00:00
|
|
|
|
2017-06-08 22:44:49 +00:00
|
|
|
TEST_SUBMODULE(class_, m) {
|
|
|
|
// test_instance
|
|
|
|
struct NoConstructor {
|
2017-11-20 13:19:53 +00:00
|
|
|
NoConstructor() = default;
|
|
|
|
NoConstructor(const NoConstructor &) = default;
|
|
|
|
NoConstructor(NoConstructor &&) = default;
|
2017-06-08 22:44:49 +00:00
|
|
|
static NoConstructor *new_instance() {
|
|
|
|
auto *ptr = new NoConstructor();
|
|
|
|
print_created(ptr, "via new_instance");
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
~NoConstructor() { print_destroyed(this); }
|
|
|
|
};
|
|
|
|
|
|
|
|
py::class_<NoConstructor>(m, "NoConstructor")
|
|
|
|
.def_static("new_instance", &NoConstructor::new_instance, "Return an instance");
|
2017-06-22 21:42:11 +00:00
|
|
|
|
|
|
|
// test_inheritance
|
|
|
|
class Pet {
|
|
|
|
public:
|
|
|
|
Pet(const std::string &name, const std::string &species)
|
|
|
|
: m_name(name), m_species(species) {}
|
|
|
|
std::string name() const { return m_name; }
|
|
|
|
std::string species() const { return m_species; }
|
|
|
|
private:
|
|
|
|
std::string m_name;
|
|
|
|
std::string m_species;
|
|
|
|
};
|
|
|
|
|
|
|
|
class Dog : public Pet {
|
|
|
|
public:
|
|
|
|
Dog(const std::string &name) : Pet(name, "dog") {}
|
|
|
|
std::string bark() const { return "Woof!"; }
|
|
|
|
};
|
|
|
|
|
|
|
|
class Rabbit : public Pet {
|
|
|
|
public:
|
|
|
|
Rabbit(const std::string &name) : Pet(name, "parrot") {}
|
|
|
|
};
|
|
|
|
|
|
|
|
class Hamster : public Pet {
|
|
|
|
public:
|
|
|
|
Hamster(const std::string &name) : Pet(name, "rodent") {}
|
|
|
|
};
|
|
|
|
|
|
|
|
class Chimera : public Pet {
|
|
|
|
Chimera() : Pet("Kimmy", "chimera") {}
|
|
|
|
};
|
|
|
|
|
|
|
|
py::class_<Pet> pet_class(m, "Pet");
|
|
|
|
pet_class
|
|
|
|
.def(py::init<std::string, std::string>())
|
|
|
|
.def("name", &Pet::name)
|
|
|
|
.def("species", &Pet::species);
|
|
|
|
|
|
|
|
/* One way of declaring a subclass relationship: reference parent's class_ object */
|
|
|
|
py::class_<Dog>(m, "Dog", pet_class)
|
|
|
|
.def(py::init<std::string>());
|
|
|
|
|
|
|
|
/* Another way of declaring a subclass relationship: reference parent's C++ type */
|
|
|
|
py::class_<Rabbit, Pet>(m, "Rabbit")
|
|
|
|
.def(py::init<std::string>());
|
|
|
|
|
|
|
|
/* And another: list parent in class template arguments */
|
|
|
|
py::class_<Hamster, Pet>(m, "Hamster")
|
|
|
|
.def(py::init<std::string>());
|
|
|
|
|
|
|
|
/* Constructors are not inherited by default */
|
|
|
|
py::class_<Chimera, Pet>(m, "Chimera");
|
|
|
|
|
|
|
|
m.def("pet_name_species", [](const Pet &pet) { return pet.name() + " is a " + pet.species(); });
|
|
|
|
m.def("dog_bark", [](const Dog &dog) { return dog.bark(); });
|
|
|
|
|
|
|
|
// test_automatic_upcasting
|
2017-11-20 13:19:53 +00:00
|
|
|
struct BaseClass {
|
|
|
|
BaseClass() = default;
|
|
|
|
BaseClass(const BaseClass &) = default;
|
|
|
|
BaseClass(BaseClass &&) = default;
|
|
|
|
virtual ~BaseClass() {}
|
|
|
|
};
|
2017-06-22 21:42:11 +00:00
|
|
|
struct DerivedClass1 : BaseClass { };
|
|
|
|
struct DerivedClass2 : BaseClass { };
|
|
|
|
|
|
|
|
py::class_<BaseClass>(m, "BaseClass").def(py::init<>());
|
|
|
|
py::class_<DerivedClass1>(m, "DerivedClass1").def(py::init<>());
|
|
|
|
py::class_<DerivedClass2>(m, "DerivedClass2").def(py::init<>());
|
|
|
|
|
|
|
|
m.def("return_class_1", []() -> BaseClass* { return new DerivedClass1(); });
|
|
|
|
m.def("return_class_2", []() -> BaseClass* { return new DerivedClass2(); });
|
|
|
|
m.def("return_class_n", [](int n) -> BaseClass* {
|
|
|
|
if (n == 1) return new DerivedClass1();
|
|
|
|
if (n == 2) return new DerivedClass2();
|
|
|
|
return new BaseClass();
|
|
|
|
});
|
|
|
|
m.def("return_none", []() -> BaseClass* { return nullptr; });
|
|
|
|
|
|
|
|
// test_isinstance
|
|
|
|
m.def("check_instances", [](py::list l) {
|
|
|
|
return py::make_tuple(
|
|
|
|
py::isinstance<py::tuple>(l[0]),
|
|
|
|
py::isinstance<py::dict>(l[1]),
|
|
|
|
py::isinstance<Pet>(l[2]),
|
|
|
|
py::isinstance<Pet>(l[3]),
|
|
|
|
py::isinstance<Dog>(l[4]),
|
|
|
|
py::isinstance<Rabbit>(l[5]),
|
|
|
|
py::isinstance<UnregisteredType>(l[6])
|
|
|
|
);
|
|
|
|
});
|
|
|
|
|
|
|
|
// test_mismatched_holder
|
|
|
|
struct MismatchBase1 { };
|
|
|
|
struct MismatchDerived1 : MismatchBase1 { };
|
|
|
|
|
|
|
|
struct MismatchBase2 { };
|
|
|
|
struct MismatchDerived2 : MismatchBase2 { };
|
|
|
|
|
|
|
|
m.def("mismatched_holder_1", []() {
|
|
|
|
auto mod = py::module::import("__main__");
|
|
|
|
py::class_<MismatchBase1, std::shared_ptr<MismatchBase1>>(mod, "MismatchBase1");
|
|
|
|
py::class_<MismatchDerived1, MismatchBase1>(mod, "MismatchDerived1");
|
|
|
|
});
|
|
|
|
m.def("mismatched_holder_2", []() {
|
|
|
|
auto mod = py::module::import("__main__");
|
|
|
|
py::class_<MismatchBase2>(mod, "MismatchBase2");
|
|
|
|
py::class_<MismatchDerived2, std::shared_ptr<MismatchDerived2>,
|
|
|
|
MismatchBase2>(mod, "MismatchDerived2");
|
|
|
|
});
|
|
|
|
|
|
|
|
// test_override_static
|
|
|
|
// #511: problem with inheritance + overwritten def_static
|
|
|
|
struct MyBase {
|
|
|
|
static std::unique_ptr<MyBase> make() {
|
|
|
|
return std::unique_ptr<MyBase>(new MyBase());
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct MyDerived : MyBase {
|
|
|
|
static std::unique_ptr<MyDerived> make() {
|
|
|
|
return std::unique_ptr<MyDerived>(new MyDerived());
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
py::class_<MyBase>(m, "MyBase")
|
|
|
|
.def_static("make", &MyBase::make);
|
|
|
|
|
|
|
|
py::class_<MyDerived, MyBase>(m, "MyDerived")
|
|
|
|
.def_static("make", &MyDerived::make)
|
|
|
|
.def_static("make2", &MyDerived::make);
|
2017-06-26 18:34:06 +00:00
|
|
|
|
|
|
|
// test_implicit_conversion_life_support
|
|
|
|
struct ConvertibleFromUserType {
|
|
|
|
int i;
|
|
|
|
|
|
|
|
ConvertibleFromUserType(UserType u) : i(u.value()) { }
|
|
|
|
};
|
|
|
|
|
|
|
|
py::class_<ConvertibleFromUserType>(m, "AcceptsUserType")
|
|
|
|
.def(py::init<UserType>());
|
|
|
|
py::implicitly_convertible<UserType, ConvertibleFromUserType>();
|
|
|
|
|
|
|
|
m.def("implicitly_convert_argument", [](const ConvertibleFromUserType &r) { return r.i; });
|
|
|
|
m.def("implicitly_convert_variable", [](py::object o) {
|
|
|
|
// `o` is `UserType` and `r` is a reference to a temporary created by implicit
|
|
|
|
// conversion. This is valid when called inside a bound function because the temp
|
|
|
|
// object is attached to the same life support system as the arguments.
|
|
|
|
const auto &r = o.cast<const ConvertibleFromUserType &>();
|
|
|
|
return r.i;
|
|
|
|
});
|
|
|
|
m.add_object("implicitly_convert_variable_fail", [&] {
|
|
|
|
auto f = [](PyObject *, PyObject *args) -> PyObject * {
|
|
|
|
auto o = py::reinterpret_borrow<py::tuple>(args)[0];
|
|
|
|
try { // It should fail here because there is no life support.
|
|
|
|
o.cast<const ConvertibleFromUserType &>();
|
|
|
|
} catch (const py::cast_error &e) {
|
|
|
|
return py::str(e.what()).release().ptr();
|
|
|
|
}
|
|
|
|
return py::str().release().ptr();
|
|
|
|
};
|
|
|
|
|
|
|
|
auto def = new PyMethodDef{"f", f, METH_VARARGS, nullptr};
|
|
|
|
return py::reinterpret_steal<py::object>(PyCFunction_NewEx(def, nullptr, m.ptr()));
|
|
|
|
}());
|
2017-07-23 04:32:58 +00:00
|
|
|
|
|
|
|
// test_operator_new_delete
|
|
|
|
struct HasOpNewDel {
|
|
|
|
std::uint64_t i;
|
|
|
|
static void *operator new(size_t s) { py::print("A new", s); return ::operator new(s); }
|
|
|
|
static void *operator new(size_t s, void *ptr) { py::print("A placement-new", s); return ptr; }
|
|
|
|
static void operator delete(void *p) { py::print("A delete"); return ::operator delete(p); }
|
|
|
|
};
|
|
|
|
struct HasOpNewDelSize {
|
|
|
|
std::uint32_t i;
|
|
|
|
static void *operator new(size_t s) { py::print("B new", s); return ::operator new(s); }
|
|
|
|
static void *operator new(size_t s, void *ptr) { py::print("B placement-new", s); return ptr; }
|
|
|
|
static void operator delete(void *p, size_t s) { py::print("B delete", s); return ::operator delete(p); }
|
|
|
|
};
|
|
|
|
struct AliasedHasOpNewDelSize {
|
|
|
|
std::uint64_t i;
|
|
|
|
static void *operator new(size_t s) { py::print("C new", s); return ::operator new(s); }
|
|
|
|
static void *operator new(size_t s, void *ptr) { py::print("C placement-new", s); return ptr; }
|
|
|
|
static void operator delete(void *p, size_t s) { py::print("C delete", s); return ::operator delete(p); }
|
|
|
|
virtual ~AliasedHasOpNewDelSize() = default;
|
|
|
|
};
|
|
|
|
struct PyAliasedHasOpNewDelSize : AliasedHasOpNewDelSize {
|
|
|
|
PyAliasedHasOpNewDelSize() = default;
|
|
|
|
PyAliasedHasOpNewDelSize(int) { }
|
|
|
|
std::uint64_t j;
|
|
|
|
};
|
|
|
|
struct HasOpNewDelBoth {
|
|
|
|
std::uint32_t i[8];
|
|
|
|
static void *operator new(size_t s) { py::print("D new", s); return ::operator new(s); }
|
|
|
|
static void *operator new(size_t s, void *ptr) { py::print("D placement-new", s); return ptr; }
|
|
|
|
static void operator delete(void *p) { py::print("D delete"); return ::operator delete(p); }
|
|
|
|
static void operator delete(void *p, size_t s) { py::print("D wrong delete", s); return ::operator delete(p); }
|
|
|
|
};
|
|
|
|
py::class_<HasOpNewDel>(m, "HasOpNewDel").def(py::init<>());
|
|
|
|
py::class_<HasOpNewDelSize>(m, "HasOpNewDelSize").def(py::init<>());
|
|
|
|
py::class_<HasOpNewDelBoth>(m, "HasOpNewDelBoth").def(py::init<>());
|
|
|
|
py::class_<AliasedHasOpNewDelSize, PyAliasedHasOpNewDelSize> aliased(m, "AliasedHasOpNewDelSize");
|
|
|
|
aliased.def(py::init<>());
|
|
|
|
aliased.attr("size_noalias") = py::int_(sizeof(AliasedHasOpNewDelSize));
|
|
|
|
aliased.attr("size_alias") = py::int_(sizeof(PyAliasedHasOpNewDelSize));
|
2017-07-29 02:03:44 +00:00
|
|
|
|
|
|
|
// This test is actually part of test_local_bindings (test_duplicate_local), but we need a
|
|
|
|
// definition in a different compilation unit within the same module:
|
|
|
|
bind_local<LocalExternal, 17>(m, "LocalExternal", py::module_local());
|
2017-08-17 15:03:46 +00:00
|
|
|
|
|
|
|
// test_bind_protected_functions
|
|
|
|
class ProtectedA {
|
|
|
|
protected:
|
|
|
|
int foo() const { return value; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
int value = 42;
|
|
|
|
};
|
|
|
|
|
|
|
|
class PublicistA : public ProtectedA {
|
|
|
|
public:
|
|
|
|
using ProtectedA::foo;
|
|
|
|
};
|
|
|
|
|
|
|
|
py::class_<ProtectedA>(m, "ProtectedA")
|
|
|
|
.def(py::init<>())
|
|
|
|
#if !defined(_MSC_VER) || _MSC_VER >= 1910
|
|
|
|
.def("foo", &PublicistA::foo);
|
|
|
|
#else
|
|
|
|
.def("foo", static_cast<int (ProtectedA::*)() const>(&PublicistA::foo));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
class ProtectedB {
|
|
|
|
public:
|
|
|
|
virtual ~ProtectedB() = default;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
virtual int foo() const { return value; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
int value = 42;
|
|
|
|
};
|
|
|
|
|
|
|
|
class TrampolineB : public ProtectedB {
|
|
|
|
public:
|
|
|
|
int foo() const override { PYBIND11_OVERLOAD(int, ProtectedB, foo, ); }
|
|
|
|
};
|
|
|
|
|
|
|
|
class PublicistB : public ProtectedB {
|
|
|
|
public:
|
|
|
|
using ProtectedB::foo;
|
|
|
|
};
|
|
|
|
|
|
|
|
py::class_<ProtectedB, TrampolineB>(m, "ProtectedB")
|
|
|
|
.def(py::init<>())
|
|
|
|
#if !defined(_MSC_VER) || _MSC_VER >= 1910
|
|
|
|
.def("foo", &PublicistB::foo);
|
|
|
|
#else
|
|
|
|
.def("foo", static_cast<int (ProtectedB::*)() const>(&PublicistB::foo));
|
|
|
|
#endif
|
2017-08-21 20:48:28 +00:00
|
|
|
|
|
|
|
// test_brace_initialization
|
|
|
|
struct BraceInitialization {
|
|
|
|
int field1;
|
|
|
|
std::string field2;
|
|
|
|
};
|
|
|
|
|
|
|
|
py::class_<BraceInitialization>(m, "BraceInitialization")
|
|
|
|
.def(py::init<int, const std::string &>())
|
|
|
|
.def_readwrite("field1", &BraceInitialization::field1)
|
|
|
|
.def_readwrite("field2", &BraceInitialization::field2);
|
2018-01-11 17:22:13 +00:00
|
|
|
// We *don't* want to construct using braces when the given constructor argument maps to a
|
|
|
|
// constructor, because brace initialization could go to the wrong place (in particular when
|
|
|
|
// there is also an `initializer_list<T>`-accept constructor):
|
|
|
|
py::class_<NoBraceInitialization>(m, "NoBraceInitialization")
|
|
|
|
.def(py::init<std::vector<int>>())
|
|
|
|
.def_readonly("vec", &NoBraceInitialization::vec);
|
2017-08-28 14:34:06 +00:00
|
|
|
|
|
|
|
// test_reentrant_implicit_conversion_failure
|
|
|
|
// #1035: issue with runaway reentrant implicit conversion
|
|
|
|
struct BogusImplicitConversion {
|
|
|
|
BogusImplicitConversion(const BogusImplicitConversion &) { }
|
|
|
|
};
|
|
|
|
|
|
|
|
py::class_<BogusImplicitConversion>(m, "BogusImplicitConversion")
|
|
|
|
.def(py::init<const BogusImplicitConversion &>());
|
|
|
|
|
|
|
|
py::implicitly_convertible<int, BogusImplicitConversion>();
|
2017-11-07 16:33:05 +00:00
|
|
|
|
|
|
|
// test_qualname
|
|
|
|
// #1166: nested class docstring doesn't show nested name
|
|
|
|
// Also related: tests that __qualname__ is set properly
|
|
|
|
struct NestBase {};
|
|
|
|
struct Nested {};
|
|
|
|
py::class_<NestBase> base(m, "NestBase");
|
|
|
|
base.def(py::init<>());
|
|
|
|
py::class_<Nested>(base, "Nested")
|
|
|
|
.def(py::init<>())
|
|
|
|
.def("fn", [](Nested &, int, NestBase &, Nested &) {})
|
|
|
|
.def("fa", [](Nested &, int, NestBase &, Nested &) {},
|
|
|
|
"a"_a, "b"_a, "c"_a);
|
|
|
|
base.def("g", [](NestBase &, Nested &) {});
|
|
|
|
base.def("h", []() { return NestBase(); });
|
2017-06-08 22:44:49 +00:00
|
|
|
}
|
Allow arbitrary class_ template option ordering
The current pybind11::class_<Type, Holder, Trampoline> fixed template
ordering results in a requirement to repeat the Holder with its default
value (std::unique_ptr<Type>) argument, which is a little bit annoying:
it needs to be specified not because we want to override the default,
but rather because we need to specify the third argument.
This commit removes this limitation by making the class_ template take
the type name plus a parameter pack of options. It then extracts the
first valid holder type and the first subclass type for holder_type and
trampoline type_alias, respectively. (If unfound, both fall back to
their current defaults, `std::unique_ptr<type>` and `type`,
respectively). If any unmatched template arguments are provided, a
static assertion fails.
What this means is that you can specify or omit the arguments in any
order:
py::class_<A, PyA> c1(m, "A");
py::class_<B, PyB, std::shared_ptr<B>> c2(m, "B");
py::class_<C, std::shared_ptr<C>, PyB> c3(m, "C");
It also allows future class attributes (such as base types in the next
commit) to be passed as class template types rather than needing to use
a py::base<> wrapper.
2016-09-06 16:17:06 +00:00
|
|
|
|
2017-06-13 01:48:36 +00:00
|
|
|
template <int N> class BreaksBase { public: virtual ~BreaksBase() = default; };
|
Allow arbitrary class_ template option ordering
The current pybind11::class_<Type, Holder, Trampoline> fixed template
ordering results in a requirement to repeat the Holder with its default
value (std::unique_ptr<Type>) argument, which is a little bit annoying:
it needs to be specified not because we want to override the default,
but rather because we need to specify the third argument.
This commit removes this limitation by making the class_ template take
the type name plus a parameter pack of options. It then extracts the
first valid holder type and the first subclass type for holder_type and
trampoline type_alias, respectively. (If unfound, both fall back to
their current defaults, `std::unique_ptr<type>` and `type`,
respectively). If any unmatched template arguments are provided, a
static assertion fails.
What this means is that you can specify or omit the arguments in any
order:
py::class_<A, PyA> c1(m, "A");
py::class_<B, PyB, std::shared_ptr<B>> c2(m, "B");
py::class_<C, std::shared_ptr<C>, PyB> c3(m, "C");
It also allows future class attributes (such as base types in the next
commit) to be passed as class template types rather than needing to use
a py::base<> wrapper.
2016-09-06 16:17:06 +00:00
|
|
|
template <int N> class BreaksTramp : public BreaksBase<N> {};
|
|
|
|
// These should all compile just fine:
|
|
|
|
typedef py::class_<BreaksBase<1>, std::unique_ptr<BreaksBase<1>>, BreaksTramp<1>> DoesntBreak1;
|
|
|
|
typedef py::class_<BreaksBase<2>, BreaksTramp<2>, std::unique_ptr<BreaksBase<2>>> DoesntBreak2;
|
|
|
|
typedef py::class_<BreaksBase<3>, std::unique_ptr<BreaksBase<3>>> DoesntBreak3;
|
|
|
|
typedef py::class_<BreaksBase<4>, BreaksTramp<4>> DoesntBreak4;
|
|
|
|
typedef py::class_<BreaksBase<5>> DoesntBreak5;
|
|
|
|
typedef py::class_<BreaksBase<6>, std::shared_ptr<BreaksBase<6>>, BreaksTramp<6>> DoesntBreak6;
|
|
|
|
typedef py::class_<BreaksBase<7>, BreaksTramp<7>, std::shared_ptr<BreaksBase<7>>> DoesntBreak7;
|
|
|
|
typedef py::class_<BreaksBase<8>, std::shared_ptr<BreaksBase<8>>> DoesntBreak8;
|
|
|
|
#define CHECK_BASE(N) static_assert(std::is_same<typename DoesntBreak##N::type, BreaksBase<N>>::value, \
|
|
|
|
"DoesntBreak" #N " has wrong type!")
|
|
|
|
CHECK_BASE(1); CHECK_BASE(2); CHECK_BASE(3); CHECK_BASE(4); CHECK_BASE(5); CHECK_BASE(6); CHECK_BASE(7); CHECK_BASE(8);
|
|
|
|
#define CHECK_ALIAS(N) static_assert(DoesntBreak##N::has_alias && std::is_same<typename DoesntBreak##N::type_alias, BreaksTramp<N>>::value, \
|
|
|
|
"DoesntBreak" #N " has wrong type_alias!")
|
|
|
|
#define CHECK_NOALIAS(N) static_assert(!DoesntBreak##N::has_alias && std::is_void<typename DoesntBreak##N::type_alias>::value, \
|
|
|
|
"DoesntBreak" #N " has type alias, but shouldn't!")
|
|
|
|
CHECK_ALIAS(1); CHECK_ALIAS(2); CHECK_NOALIAS(3); CHECK_ALIAS(4); CHECK_NOALIAS(5); CHECK_ALIAS(6); CHECK_ALIAS(7); CHECK_NOALIAS(8);
|
|
|
|
#define CHECK_HOLDER(N, TYPE) static_assert(std::is_same<typename DoesntBreak##N::holder_type, std::TYPE##_ptr<BreaksBase<N>>>::value, \
|
|
|
|
"DoesntBreak" #N " has wrong holder_type!")
|
|
|
|
CHECK_HOLDER(1, unique); CHECK_HOLDER(2, unique); CHECK_HOLDER(3, unique); CHECK_HOLDER(4, unique); CHECK_HOLDER(5, unique);
|
|
|
|
CHECK_HOLDER(6, shared); CHECK_HOLDER(7, shared); CHECK_HOLDER(8, shared);
|
|
|
|
|
|
|
|
// There's no nice way to test that these fail because they fail to compile; leave them here,
|
|
|
|
// though, so that they can be manually tested by uncommenting them (and seeing that compilation
|
|
|
|
// failures occurs).
|
|
|
|
|
|
|
|
// We have to actually look into the type: the typedef alone isn't enough to instantiate the type:
|
|
|
|
#define CHECK_BROKEN(N) static_assert(std::is_same<typename Breaks##N::type, BreaksBase<-N>>::value, \
|
|
|
|
"Breaks1 has wrong type!");
|
|
|
|
|
|
|
|
//// Two holder classes:
|
|
|
|
//typedef py::class_<BreaksBase<-1>, std::unique_ptr<BreaksBase<-1>>, std::unique_ptr<BreaksBase<-1>>> Breaks1;
|
|
|
|
//CHECK_BROKEN(1);
|
|
|
|
//// Two aliases:
|
|
|
|
//typedef py::class_<BreaksBase<-2>, BreaksTramp<-2>, BreaksTramp<-2>> Breaks2;
|
|
|
|
//CHECK_BROKEN(2);
|
|
|
|
//// Holder + 2 aliases
|
|
|
|
//typedef py::class_<BreaksBase<-3>, std::unique_ptr<BreaksBase<-3>>, BreaksTramp<-3>, BreaksTramp<-3>> Breaks3;
|
|
|
|
//CHECK_BROKEN(3);
|
|
|
|
//// Alias + 2 holders
|
|
|
|
//typedef py::class_<BreaksBase<-4>, std::unique_ptr<BreaksBase<-4>>, BreaksTramp<-4>, std::shared_ptr<BreaksBase<-4>>> Breaks4;
|
|
|
|
//CHECK_BROKEN(4);
|
|
|
|
//// Invalid option (not a subclass or holder)
|
|
|
|
//typedef py::class_<BreaksBase<-5>, BreaksTramp<-4>> Breaks5;
|
|
|
|
//CHECK_BROKEN(5);
|
|
|
|
//// Invalid option: multiple inheritance not supported:
|
|
|
|
//template <> struct BreaksBase<-8> : BreaksBase<-6>, BreaksBase<-7> {};
|
|
|
|
//typedef py::class_<BreaksBase<-8>, BreaksBase<-6>, BreaksBase<-7>> Breaks8;
|
|
|
|
//CHECK_BROKEN(8);
|