pybind11/tests/test_virtual_functions.cpp

577 lines
21 KiB
C++
Raw Normal View History

/*
tests/test_virtual_functions.cpp -- overriding virtual functions from Python
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
#include "constructor_stats.h"
#include <pybind11/functional.h>
#include <thread>
/* This is an example class that we'll want to be able to extend from Python */
class ExampleVirt {
public:
explicit ExampleVirt(int state) : state(state) { print_created(this, state); }
Improve constructor/destructor tracking This commit rewrites the examples that look for constructor/destructor calls to do so via static variable tracking rather than output parsing. The added ConstructorStats class provides methods to keep track of constructors and destructors, number of default/copy/move constructors, and number of copy/move assignments. It also provides a mechanism for storing values (e.g. for value construction), and then allows all of this to be checked at the end of a test by getting the statistics for a C++ (or python mapping) class. By not relying on the precise pattern of constructions/destructions, but rather simply ensuring that every construction is matched with a destruction on the same object, we ensure that everything that gets created also gets destroyed as expected. This replaces all of the various "std::cout << whatever" code in constructors/destructors with `print_created(this)`/`print_destroyed(this)`/etc. functions which provide similar output, but now has a unified format across the different examples, including a new ### prefix that makes mixed example output and lifecycle events easier to distinguish. With this change, relaxed mode is no longer needed, which enables testing for proper destruction under MSVC, and under any other compiler that generates code calling extra constructors, or optimizes away any constructors. GCC/clang are used as the baseline for move constructors; the tests are adapted to allow more move constructors to be evoked (but other types are constructors much have matching counts). This commit also disables output buffering of tests, as the buffering sometimes results in C++ output ending up in the middle of python output (or vice versa), depending on the OS/python version.
2016-08-07 17:05:26 +00:00
ExampleVirt(const ExampleVirt &e) : state(e.state) { print_copy_created(this); }
ExampleVirt(ExampleVirt &&e) noexcept : state(e.state) {
print_move_created(this);
e.state = 0;
}
virtual ~ExampleVirt() { print_destroyed(this); }
virtual int run(int value) {
py::print("Original implementation of "
"ExampleVirt::run(state={}, value={}, str1={}, str2={})"_s.format(state, value, get_string1(), *get_string2()));
return state + value;
}
virtual bool run_bool() = 0;
virtual void pure_virtual() = 0;
// Returning a reference/pointer to a type converted from python (numbers, strings, etc.) is a
// bit trickier, because the actual int& or std::string& or whatever only exists temporarily, so
// we have to handle it specially in the trampoline class (see below).
virtual const std::string &get_string1() { return str1; }
virtual const std::string *get_string2() { return &str2; }
private:
int state;
const std::string str1{"default1"}, str2{"default2"};
};
/* This is a wrapper class that must be generated */
class PyExampleVirt : public ExampleVirt {
public:
using ExampleVirt::ExampleVirt; /* Inherit constructors */
int run(int value) override {
/* Generate wrapping code that enables native function overloading */
PYBIND11_OVERRIDE(
int, /* Return type */
ExampleVirt, /* Parent class */
run, /* Name of function */
value /* Argument(s) */
);
}
bool run_bool() override {
PYBIND11_OVERRIDE_PURE(
bool, /* Return type */
ExampleVirt, /* Parent class */
run_bool, /* Name of function */
/* This function has no arguments. The trailing comma
in the previous line is needed for some compilers */
);
}
void pure_virtual() override {
PYBIND11_OVERRIDE_PURE(
void, /* Return type */
ExampleVirt, /* Parent class */
pure_virtual, /* Name of function */
/* This function has no arguments. The trailing comma
in the previous line is needed for some compilers */
);
}
// We can return reference types for compatibility with C++ virtual interfaces that do so, but
// note they have some significant limitations (see the documentation).
const std::string &get_string1() override {
PYBIND11_OVERRIDE(
const std::string &, /* Return type */
ExampleVirt, /* Parent class */
get_string1, /* Name of function */
/* (no arguments) */
);
}
const std::string *get_string2() override {
PYBIND11_OVERRIDE(
const std::string *, /* Return type */
ExampleVirt, /* Parent class */
get_string2, /* Name of function */
/* (no arguments) */
);
}
};
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
class NonCopyable {
public:
Improve constructor/destructor tracking This commit rewrites the examples that look for constructor/destructor calls to do so via static variable tracking rather than output parsing. The added ConstructorStats class provides methods to keep track of constructors and destructors, number of default/copy/move constructors, and number of copy/move assignments. It also provides a mechanism for storing values (e.g. for value construction), and then allows all of this to be checked at the end of a test by getting the statistics for a C++ (or python mapping) class. By not relying on the precise pattern of constructions/destructions, but rather simply ensuring that every construction is matched with a destruction on the same object, we ensure that everything that gets created also gets destroyed as expected. This replaces all of the various "std::cout << whatever" code in constructors/destructors with `print_created(this)`/`print_destroyed(this)`/etc. functions which provide similar output, but now has a unified format across the different examples, including a new ### prefix that makes mixed example output and lifecycle events easier to distinguish. With this change, relaxed mode is no longer needed, which enables testing for proper destruction under MSVC, and under any other compiler that generates code calling extra constructors, or optimizes away any constructors. GCC/clang are used as the baseline for move constructors; the tests are adapted to allow more move constructors to be evoked (but other types are constructors much have matching counts). This commit also disables output buffering of tests, as the buffering sometimes results in C++ output ending up in the middle of python output (or vice versa), depending on the OS/python version.
2016-08-07 17:05:26 +00:00
NonCopyable(int a, int b) : value{new int(a*b)} { print_created(this, a, b); }
NonCopyable(NonCopyable &&o) noexcept {
value = std::move(o.value);
print_move_created(this);
}
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
NonCopyable(const NonCopyable &) = delete;
NonCopyable() = delete;
void operator=(const NonCopyable &) = delete;
void operator=(NonCopyable &&) = delete;
std::string get_value() const {
if (value) {
return std::to_string(*value);
}
return "(null)";
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
}
Improve constructor/destructor tracking This commit rewrites the examples that look for constructor/destructor calls to do so via static variable tracking rather than output parsing. The added ConstructorStats class provides methods to keep track of constructors and destructors, number of default/copy/move constructors, and number of copy/move assignments. It also provides a mechanism for storing values (e.g. for value construction), and then allows all of this to be checked at the end of a test by getting the statistics for a C++ (or python mapping) class. By not relying on the precise pattern of constructions/destructions, but rather simply ensuring that every construction is matched with a destruction on the same object, we ensure that everything that gets created also gets destroyed as expected. This replaces all of the various "std::cout << whatever" code in constructors/destructors with `print_created(this)`/`print_destroyed(this)`/etc. functions which provide similar output, but now has a unified format across the different examples, including a new ### prefix that makes mixed example output and lifecycle events easier to distinguish. With this change, relaxed mode is no longer needed, which enables testing for proper destruction under MSVC, and under any other compiler that generates code calling extra constructors, or optimizes away any constructors. GCC/clang are used as the baseline for move constructors; the tests are adapted to allow more move constructors to be evoked (but other types are constructors much have matching counts). This commit also disables output buffering of tests, as the buffering sometimes results in C++ output ending up in the middle of python output (or vice versa), depending on the OS/python version.
2016-08-07 17:05:26 +00:00
~NonCopyable() { print_destroyed(this); }
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
private:
std::unique_ptr<int> value;
};
// This is like the above, but is both copy and movable. In effect this means it should get moved
// when it is not referenced elsewhere, but copied if it is still referenced.
class Movable {
public:
Improve constructor/destructor tracking This commit rewrites the examples that look for constructor/destructor calls to do so via static variable tracking rather than output parsing. The added ConstructorStats class provides methods to keep track of constructors and destructors, number of default/copy/move constructors, and number of copy/move assignments. It also provides a mechanism for storing values (e.g. for value construction), and then allows all of this to be checked at the end of a test by getting the statistics for a C++ (or python mapping) class. By not relying on the precise pattern of constructions/destructions, but rather simply ensuring that every construction is matched with a destruction on the same object, we ensure that everything that gets created also gets destroyed as expected. This replaces all of the various "std::cout << whatever" code in constructors/destructors with `print_created(this)`/`print_destroyed(this)`/etc. functions which provide similar output, but now has a unified format across the different examples, including a new ### prefix that makes mixed example output and lifecycle events easier to distinguish. With this change, relaxed mode is no longer needed, which enables testing for proper destruction under MSVC, and under any other compiler that generates code calling extra constructors, or optimizes away any constructors. GCC/clang are used as the baseline for move constructors; the tests are adapted to allow more move constructors to be evoked (but other types are constructors much have matching counts). This commit also disables output buffering of tests, as the buffering sometimes results in C++ output ending up in the middle of python output (or vice versa), depending on the OS/python version.
2016-08-07 17:05:26 +00:00
Movable(int a, int b) : value{a+b} { print_created(this, a, b); }
Movable(const Movable &m) { value = m.value; print_copy_created(this); }
Movable(Movable &&m) noexcept {
value = m.value;
print_move_created(this);
}
std::string get_value() const { return std::to_string(value); }
Improve constructor/destructor tracking This commit rewrites the examples that look for constructor/destructor calls to do so via static variable tracking rather than output parsing. The added ConstructorStats class provides methods to keep track of constructors and destructors, number of default/copy/move constructors, and number of copy/move assignments. It also provides a mechanism for storing values (e.g. for value construction), and then allows all of this to be checked at the end of a test by getting the statistics for a C++ (or python mapping) class. By not relying on the precise pattern of constructions/destructions, but rather simply ensuring that every construction is matched with a destruction on the same object, we ensure that everything that gets created also gets destroyed as expected. This replaces all of the various "std::cout << whatever" code in constructors/destructors with `print_created(this)`/`print_destroyed(this)`/etc. functions which provide similar output, but now has a unified format across the different examples, including a new ### prefix that makes mixed example output and lifecycle events easier to distinguish. With this change, relaxed mode is no longer needed, which enables testing for proper destruction under MSVC, and under any other compiler that generates code calling extra constructors, or optimizes away any constructors. GCC/clang are used as the baseline for move constructors; the tests are adapted to allow more move constructors to be evoked (but other types are constructors much have matching counts). This commit also disables output buffering of tests, as the buffering sometimes results in C++ output ending up in the middle of python output (or vice versa), depending on the OS/python version.
2016-08-07 17:05:26 +00:00
~Movable() { print_destroyed(this); }
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
private:
int value;
};
class NCVirt {
public:
virtual ~NCVirt() = default;
2020-07-24 01:16:54 +00:00
NCVirt() = default;
NCVirt(const NCVirt&) = delete;
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
virtual NonCopyable get_noncopyable(int a, int b) { return NonCopyable(a, b); }
virtual Movable get_movable(int a, int b) = 0;
std::string print_nc(int a, int b) { return get_noncopyable(a, b).get_value(); }
std::string print_movable(int a, int b) { return get_movable(a, b).get_value(); }
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
};
class NCVirtTrampoline : public NCVirt {
#if !defined(__INTEL_COMPILER) && !defined(__CUDACC__) && !defined(__PGIC__)
NonCopyable get_noncopyable(int a, int b) override {
PYBIND11_OVERRIDE(NonCopyable, NCVirt, get_noncopyable, a, b);
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
}
#endif
Movable get_movable(int a, int b) override {
PYBIND11_OVERRIDE_PURE(Movable, NCVirt, get_movable, a, b);
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
}
};
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
struct Base {
/* for some reason MSVC2015 can't compile this if the function is pure virtual */
virtual std::string dispatch() const { return {}; };
virtual ~Base() = default;
2020-07-24 01:16:54 +00:00
Base() = default;
Base(const Base&) = delete;
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
};
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
struct DispatchIssue : Base {
std::string dispatch() const override {
PYBIND11_OVERRIDE_PURE(std::string, Base, dispatch, /* no arguments */);
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
}
};
// An abstract adder class that uses visitor pattern to add two data
// objects and send the result to the visitor functor
struct AdderBase {
struct Data {};
using DataVisitor = std::function<void (const Data&)>;
virtual void operator()(const Data& first, const Data& second, const DataVisitor& visitor) const = 0;
virtual ~AdderBase() = default;
AdderBase() = default;
AdderBase(const AdderBase&) = delete;
};
struct Adder : AdderBase {
void operator()(const Data& first, const Data& second, const DataVisitor& visitor) const override {
PYBIND11_OVERRIDE_PURE_NAME(void, AdderBase, "__call__", operator(), first, second, visitor);
}
};
static void test_gil() {
{
py::gil_scoped_acquire lock;
py::print("1st lock acquired");
}
{
py::gil_scoped_acquire lock;
py::print("2nd lock acquired");
}
}
static void test_gil_from_thread() {
py::gil_scoped_release release;
std::thread t(test_gil);
t.join();
}
class test_override_cache_helper {
public:
virtual int func() { return 0; }
test_override_cache_helper() = default;
virtual ~test_override_cache_helper() = default;
// Non-copyable
test_override_cache_helper &operator=(test_override_cache_helper const &Right) = delete;
test_override_cache_helper(test_override_cache_helper const &Copy) = delete;
};
class test_override_cache_helper_trampoline : public test_override_cache_helper {
int func() override { PYBIND11_OVERRIDE(int, test_override_cache_helper, func); }
};
inline int test_override_cache(std::shared_ptr<test_override_cache_helper> const &instance) { return instance->func(); }
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
// Forward declaration (so that we can put the main tests here; the inherited virtual approaches are
// rather long).
void initialize_inherited_virtuals(py::module_ &m);
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
TEST_SUBMODULE(virtual_functions, m) {
// test_override
py::class_<ExampleVirt, PyExampleVirt>(m, "ExampleVirt")
.def(py::init<int>())
/* Reference original class in function definitions */
.def("run", &ExampleVirt::run)
.def("run_bool", &ExampleVirt::run_bool)
.def("pure_virtual", &ExampleVirt::pure_virtual);
py::class_<NonCopyable>(m, "NonCopyable")
.def(py::init<int, int>());
py::class_<Movable>(m, "Movable")
.def(py::init<int, int>());
// test_move_support
#if !defined(__INTEL_COMPILER) && !defined(__CUDACC__) && !defined(__PGIC__)
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
py::class_<NCVirt, NCVirtTrampoline>(m, "NCVirt")
.def(py::init<>())
.def("get_noncopyable", &NCVirt::get_noncopyable)
.def("get_movable", &NCVirt::get_movable)
.def("print_nc", &NCVirt::print_nc)
.def("print_movable", &NCVirt::print_movable);
#endif
m.def("runExampleVirt", [](ExampleVirt *ex, int value) { return ex->run(value); });
m.def("runExampleVirtBool", [](ExampleVirt* ex) { return ex->run_bool(); });
m.def("runExampleVirtVirtual", [](ExampleVirt *ex) { ex->pure_virtual(); });
m.def("cstats_debug", &ConstructorStats::get<ExampleVirt>);
initialize_inherited_virtuals(m);
// test_alias_delay_initialization1
// don't invoke Python dispatch classes by default when instantiating C++ classes
// that were not extended on the Python side
struct A {
2020-07-24 01:16:54 +00:00
A() = default;
A(const A&) = delete;
virtual ~A() = default;
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
virtual void f() { py::print("A.f()"); }
};
struct PyA : A {
PyA() { py::print("PyA.PyA()"); }
2020-07-24 01:16:54 +00:00
PyA(const PyA&) = delete;
~PyA() override { py::print("PyA.~PyA()"); }
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
void f() override {
py::print("PyA.f()");
// This convolution just gives a `void`, but tests that PYBIND11_TYPE() works to protect
// a type containing a ,
PYBIND11_OVERRIDE(PYBIND11_TYPE(typename std::enable_if<true, void>::type), A, f);
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
}
};
py::class_<A, PyA>(m, "A")
.def(py::init<>())
.def("f", &A::f);
m.def("call_f", [](A *a) { a->f(); });
// test_alias_delay_initialization2
// ... unless we explicitly request it, as in this example:
struct A2 {
2020-07-24 01:16:54 +00:00
A2() = default;
A2(const A2&) = delete;
virtual ~A2() = default;
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
virtual void f() { py::print("A2.f()"); }
};
struct PyA2 : A2 {
PyA2() { py::print("PyA2.PyA2()"); }
2020-07-24 01:16:54 +00:00
PyA2(const PyA2&) = delete;
~PyA2() override { py::print("PyA2.~PyA2()"); }
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
void f() override {
py::print("PyA2.f()");
PYBIND11_OVERRIDE(void, A2, f);
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
}
};
py::class_<A2, PyA2>(m, "A2")
.def(py::init_alias<>())
Allow binding factory functions as constructors This allows you to use: cls.def(py::init(&factory_function)); where `factory_function` returns a pointer, holder, or value of the class type (or a derived type). Various compile-time checks (static_asserts) are performed to ensure the function is valid, and various run-time type checks where necessary. Some other details of this feature: - The `py::init` name doesn't conflict with the templated no-argument `py::init<...>()`, but keeps the naming consistent: the existing templated, no-argument one wraps constructors, the no-template, function-argument one wraps factory functions. - If returning a CppClass (whether by value or pointer) when an CppAlias is required (i.e. python-side inheritance and a declared alias), a dynamic_cast to the alias is attempted (for the pointer version); if it fails, or if returned by value, an Alias(Class &&) constructor is invoked. If this constructor doesn't exist, a runtime error occurs. - for holder returns when an alias is required, we try a dynamic_cast of the wrapped pointer to the alias to see if it is already an alias instance; if it isn't, we raise an error. - `py::init(class_factory, alias_factory)` is also available that takes two factories: the first is called when an alias is not needed, the second when it is. - Reimplement factory instance clearing. The previous implementation failed under python-side multiple inheritance: *each* inherited type's factory init would clear the instance instead of only setting its own type value. The new implementation here clears just the relevant value pointer. - dealloc is updated to explicitly set the leftover value pointer to nullptr and the `holder_constructed` flag to false so that it can be used to clear preallocated value without needing to rebuild the instance internals data. - Added various tests to test out new allocation/deallocation code. - With preallocation now done lazily, init factory holders can completely avoid the extra overhead of needing an extra allocation/deallocation. - Updated documentation to make factory constructors the default advanced constructor style. - If an `__init__` is called a second time, we have two choices: we can throw away the first instance, replacing it with the second; or we can ignore the second call. The latter is slightly easier, so do that.
2017-06-13 01:52:48 +00:00
.def(py::init([](int) { return new PyA2(); }))
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
.def("f", &A2::f);
m.def("call_f", [](A2 *a2) { a2->f(); });
// test_dispatch_issue
// #159: virtual function dispatch has problems with similar-named functions
py::class_<Base, DispatchIssue>(m, "DispatchIssue")
.def(py::init<>())
.def("dispatch", &Base::dispatch);
m.def("dispatch_issue_go", [](const Base * b) { return b->dispatch(); });
// test_recursive_dispatch_issue
// #3357: Recursive dispatch fails to find python function override
pybind11::class_<AdderBase, Adder>(m, "Adder")
.def(pybind11::init<>())
.def("__call__", &AdderBase::operator());
pybind11::class_<AdderBase::Data>(m, "Data")
.def(pybind11::init<>());
m.def("add2", [](const AdderBase::Data& first, const AdderBase::Data& second,
const AdderBase& adder, const AdderBase::DataVisitor& visitor) {
adder(first, second, visitor);
});
m.def("add3", [](const AdderBase::Data& first, const AdderBase::Data& second, const AdderBase::Data& third,
const AdderBase& adder, const AdderBase::DataVisitor& visitor) {
adder(first, second, [&] (const AdderBase::Data& first_plus_second) {
adder(first_plus_second, third, visitor); // NOLINT(readability-suspicious-call-argument)
});
});
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
// test_override_ref
// #392/397: overriding reference-returning functions
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
class OverrideTest {
public:
struct A { std::string value = "hi"; };
std::string v;
A a;
explicit OverrideTest(const std::string &v) : v{v} {}
2020-07-24 01:16:54 +00:00
OverrideTest() = default;
OverrideTest(const OverrideTest&) = delete;
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
virtual std::string str_value() { return v; }
virtual std::string &str_ref() { return v; }
virtual A A_value() { return a; }
virtual A &A_ref() { return a; }
virtual ~OverrideTest() = default;
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
};
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
class PyOverrideTest : public OverrideTest {
public:
using OverrideTest::OverrideTest;
std::string str_value() override { PYBIND11_OVERRIDE(std::string, OverrideTest, str_value); }
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
// Not allowed (uncommenting should hit a static_assert failure): we can't get a reference
// to a python numeric value, since we only copy values in the numeric type caster:
// std::string &str_ref() override { PYBIND11_OVERRIDE(std::string &, OverrideTest, str_ref); }
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
// But we can work around it like this:
private:
std::string _tmp;
std::string str_ref_helper() { PYBIND11_OVERRIDE(std::string, OverrideTest, str_ref); }
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
public:
std::string &str_ref() override { return _tmp = str_ref_helper(); }
A A_value() override { PYBIND11_OVERRIDE(A, OverrideTest, A_value); }
A &A_ref() override { PYBIND11_OVERRIDE(A &, OverrideTest, A_ref); }
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
};
py::class_<OverrideTest::A>(m, "OverrideTest_A")
.def_readwrite("value", &OverrideTest::A::value);
py::class_<OverrideTest, PyOverrideTest>(m, "OverrideTest")
.def(py::init<const std::string &>())
.def("str_value", &OverrideTest::str_value)
// .def("str_ref", &OverrideTest::str_ref)
.def("A_value", &OverrideTest::A_value)
.def("A_ref", &OverrideTest::A_ref);
py::class_<test_override_cache_helper, test_override_cache_helper_trampoline, std::shared_ptr<test_override_cache_helper>>(m, "test_override_cache_helper")
.def(py::init_alias<>())
.def("func", &test_override_cache_helper::func);
m.def("test_override_cache", test_override_cache);
}
// Inheriting virtual methods. We do two versions here: the repeat-everything version and the
// templated trampoline versions mentioned in docs/advanced.rst.
//
// These base classes are exactly the same, but we technically need distinct
// classes for this example code because we need to be able to bind them
// properly (pybind11, sensibly, doesn't allow us to bind the same C++ class to
// multiple python classes).
class A_Repeat {
#define A_METHODS \
public: \
virtual int unlucky_number() = 0; \
virtual std::string say_something(unsigned times) { \
std::string s = ""; \
for (unsigned i = 0; i < times; ++i) \
s += "hi"; \
return s; \
Fix template trampoline overload lookup failure Problem ======= The template trampoline pattern documented in PR #322 has a problem with virtual method overloads in intermediate classes in the inheritance chain between the trampoline class and the base class. For example, consider the following inheritance structure, where `B` is the actual class, `PyB<B>` is the trampoline class, and `PyA<B>` is an intermediate class adding A's methods into the trampoline: PyB<B> -> PyA<B> -> B -> A Suppose PyA<B> has a method `some_method()` with a PYBIND11_OVERLOAD in it to overload the virtual `A::some_method()`. If a Python class `C` is defined that inherits from the pybind11-registered `B` and tries to provide an overriding `some_method()`, the PYBIND11_OVERLOADs declared in PyA<B> fails to find this overloaded method, and thus never invoke it (or, if pure virtual and not overridden in PyB<B>, raises an exception). This happens because the base (internal) `PYBIND11_OVERLOAD_INT` macro simply calls `get_overload(this, name)`; `get_overload()` then uses the inferred type of `this` to do a type lookup in `registered_types_cpp`. This is where it fails: `this` will be a `PyA<B> *`, but `PyA<B>` is neither the base type (`B`) nor the trampoline type (`PyB<B>`). As a result, the overload fails and we get a failed overload lookup. The fix ======= The fix is relatively simple: we can cast `this` passed to `get_overload()` to a `const B *`, which lets get_overload look up the correct class. Since trampoline classes should be derived from `B` classes anyway, this cast should be perfectly safe. This does require adding the class name as an argument to the PYBIND11_OVERLOAD_INT macro, but leaves the public macro signatures unchanged.
2016-08-29 22:16:46 +00:00
} \
std::string say_everything() { \
return say_something(1) + " " + std::to_string(unlucky_number()); \
}
A_METHODS
2020-07-24 01:16:54 +00:00
A_Repeat() = default;
A_Repeat(const A_Repeat&) = delete;
virtual ~A_Repeat() = default;
};
class B_Repeat : public A_Repeat {
#define B_METHODS \
public: \
int unlucky_number() override { return 13; } \
std::string say_something(unsigned times) override { \
return "B says hi " + std::to_string(times) + " times"; \
} \
virtual double lucky_number() { return 7.0; }
B_METHODS
};
class C_Repeat : public B_Repeat {
#define C_METHODS \
public: \
int unlucky_number() override { return 4444; } \
double lucky_number() override { return 888; }
C_METHODS
};
class D_Repeat : public C_Repeat {
#define D_METHODS // Nothing overridden.
D_METHODS
};
// Base classes for templated inheritance trampolines. Identical to the repeat-everything version:
2020-07-24 01:16:54 +00:00
class A_Tpl {
A_METHODS;
A_Tpl() = default;
A_Tpl(const A_Tpl&) = delete;
virtual ~A_Tpl() = default;
};
class B_Tpl : public A_Tpl { B_METHODS };
class C_Tpl : public B_Tpl { C_METHODS };
class D_Tpl : public C_Tpl { D_METHODS };
// Inheritance approach 1: each trampoline gets every virtual method (11 in total)
class PyA_Repeat : public A_Repeat {
public:
using A_Repeat::A_Repeat;
int unlucky_number() override { PYBIND11_OVERRIDE_PURE(int, A_Repeat, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERRIDE(std::string, A_Repeat, say_something, times); }
};
class PyB_Repeat : public B_Repeat {
public:
using B_Repeat::B_Repeat;
int unlucky_number() override { PYBIND11_OVERRIDE(int, B_Repeat, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERRIDE(std::string, B_Repeat, say_something, times); }
double lucky_number() override { PYBIND11_OVERRIDE(double, B_Repeat, lucky_number, ); }
};
class PyC_Repeat : public C_Repeat {
public:
using C_Repeat::C_Repeat;
int unlucky_number() override { PYBIND11_OVERRIDE(int, C_Repeat, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERRIDE(std::string, C_Repeat, say_something, times); }
double lucky_number() override { PYBIND11_OVERRIDE(double, C_Repeat, lucky_number, ); }
};
class PyD_Repeat : public D_Repeat {
public:
using D_Repeat::D_Repeat;
int unlucky_number() override { PYBIND11_OVERRIDE(int, D_Repeat, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERRIDE(std::string, D_Repeat, say_something, times); }
double lucky_number() override { PYBIND11_OVERRIDE(double, D_Repeat, lucky_number, ); }
};
// Inheritance approach 2: templated trampoline classes.
//
// Advantages:
// - we have only 2 (template) class and 4 method declarations (one per virtual method, plus one for
// any override of a pure virtual method), versus 4 classes and 6 methods (MI) or 4 classes and 11
// methods (repeat).
// - Compared to MI, we also don't have to change the non-trampoline inheritance to virtual, and can
// properly inherit constructors.
//
// Disadvantage:
// - the compiler must still generate and compile 14 different methods (more, even, than the 11
// required for the repeat approach) instead of the 6 required for MI. (If there was no pure
// method (or no pure method override), the number would drop down to the same 11 as the repeat
// approach).
template <class Base = A_Tpl>
class PyA_Tpl : public Base {
public:
using Base::Base; // Inherit constructors
int unlucky_number() override { PYBIND11_OVERRIDE_PURE(int, Base, unlucky_number, ); }
std::string say_something(unsigned times) override { PYBIND11_OVERRIDE(std::string, Base, say_something, times); }
};
template <class Base = B_Tpl>
class PyB_Tpl : public PyA_Tpl<Base> {
public:
using PyA_Tpl<Base>::PyA_Tpl; // Inherit constructors (via PyA_Tpl's inherited constructors)
// NOLINTNEXTLINE(bugprone-parent-virtual-call)
int unlucky_number() override { PYBIND11_OVERRIDE(int, Base, unlucky_number, ); }
double lucky_number() override { PYBIND11_OVERRIDE(double, Base, lucky_number, ); }
};
// Since C_Tpl and D_Tpl don't declare any new virtual methods, we don't actually need these (we can
// use PyB_Tpl<C_Tpl> and PyB_Tpl<D_Tpl> for the trampoline classes instead):
/*
template <class Base = C_Tpl> class PyC_Tpl : public PyB_Tpl<Base> {
public:
using PyB_Tpl<Base>::PyB_Tpl;
};
template <class Base = D_Tpl> class PyD_Tpl : public PyC_Tpl<Base> {
public:
using PyC_Tpl<Base>::PyC_Tpl;
};
*/
void initialize_inherited_virtuals(py::module_ &m) {
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
// test_inherited_virtuals
// Method 1: repeat
py::class_<A_Repeat, PyA_Repeat>(m, "A_Repeat")
.def(py::init<>())
.def("unlucky_number", &A_Repeat::unlucky_number)
Fix template trampoline overload lookup failure Problem ======= The template trampoline pattern documented in PR #322 has a problem with virtual method overloads in intermediate classes in the inheritance chain between the trampoline class and the base class. For example, consider the following inheritance structure, where `B` is the actual class, `PyB<B>` is the trampoline class, and `PyA<B>` is an intermediate class adding A's methods into the trampoline: PyB<B> -> PyA<B> -> B -> A Suppose PyA<B> has a method `some_method()` with a PYBIND11_OVERLOAD in it to overload the virtual `A::some_method()`. If a Python class `C` is defined that inherits from the pybind11-registered `B` and tries to provide an overriding `some_method()`, the PYBIND11_OVERLOADs declared in PyA<B> fails to find this overloaded method, and thus never invoke it (or, if pure virtual and not overridden in PyB<B>, raises an exception). This happens because the base (internal) `PYBIND11_OVERLOAD_INT` macro simply calls `get_overload(this, name)`; `get_overload()` then uses the inferred type of `this` to do a type lookup in `registered_types_cpp`. This is where it fails: `this` will be a `PyA<B> *`, but `PyA<B>` is neither the base type (`B`) nor the trampoline type (`PyB<B>`). As a result, the overload fails and we get a failed overload lookup. The fix ======= The fix is relatively simple: we can cast `this` passed to `get_overload()` to a `const B *`, which lets get_overload look up the correct class. Since trampoline classes should be derived from `B` classes anyway, this cast should be perfectly safe. This does require adding the class name as an argument to the PYBIND11_OVERLOAD_INT macro, but leaves the public macro signatures unchanged.
2016-08-29 22:16:46 +00:00
.def("say_something", &A_Repeat::say_something)
.def("say_everything", &A_Repeat::say_everything);
py::class_<B_Repeat, A_Repeat, PyB_Repeat>(m, "B_Repeat")
.def(py::init<>())
.def("lucky_number", &B_Repeat::lucky_number);
py::class_<C_Repeat, B_Repeat, PyC_Repeat>(m, "C_Repeat")
.def(py::init<>());
py::class_<D_Repeat, C_Repeat, PyD_Repeat>(m, "D_Repeat")
.def(py::init<>());
Update all remaining tests to new test styles This udpates all the remaining tests to the new test suite code and comment styles started in #898. For the most part, the test coverage here is unchanged, with a few minor exceptions as noted below. - test_constants_and_functions: this adds more overload tests with overloads with different number of arguments for more comprehensive overload_cast testing. The test style conversion broke the overload tests under MSVC 2015, prompting the additional tests while looking for a workaround. - test_eigen: this dropped the unused functions `get_cm_corners` and `get_cm_corners_const`--these same tests were duplicates of the same things provided (and used) via ReturnTester methods. - test_opaque_types: this test had a hidden dependence on ExampleMandA which is now fixed by using the global UserType which suffices for the relevant test. - test_methods_and_attributes: this required some additions to UserType to make it usable as a replacement for the test's previous SimpleType: UserType gained a value mutator, and the `value` property is not mutable (it was previously readonly). Some overload tests were also added to better test overload_cast (as described above). - test_numpy_array: removed the untemplated mutate_data/mutate_data_t: the templated versions with an empty parameter pack expand to the same thing. - test_stl: this was already mostly in the new style; this just tweaks things a bit, localizing a class, and adding some missing `// test_whatever` comments. - test_virtual_functions: like `test_stl`, this was mostly in the new test style already, but needed some `// test_whatever` comments. This commit also moves the inherited virtual example code to the end of the file, after the main set of tests (since it is less important than the other tests, and rather length); it also got renamed to `test_inherited_virtuals` (from `test_inheriting_repeat`) because it tests both inherited virtual approaches, not just the repeat approach.
2017-07-25 20:47:36 +00:00
// test_
// Method 2: Templated trampolines
py::class_<A_Tpl, PyA_Tpl<>>(m, "A_Tpl")
.def(py::init<>())
.def("unlucky_number", &A_Tpl::unlucky_number)
Fix template trampoline overload lookup failure Problem ======= The template trampoline pattern documented in PR #322 has a problem with virtual method overloads in intermediate classes in the inheritance chain between the trampoline class and the base class. For example, consider the following inheritance structure, where `B` is the actual class, `PyB<B>` is the trampoline class, and `PyA<B>` is an intermediate class adding A's methods into the trampoline: PyB<B> -> PyA<B> -> B -> A Suppose PyA<B> has a method `some_method()` with a PYBIND11_OVERLOAD in it to overload the virtual `A::some_method()`. If a Python class `C` is defined that inherits from the pybind11-registered `B` and tries to provide an overriding `some_method()`, the PYBIND11_OVERLOADs declared in PyA<B> fails to find this overloaded method, and thus never invoke it (or, if pure virtual and not overridden in PyB<B>, raises an exception). This happens because the base (internal) `PYBIND11_OVERLOAD_INT` macro simply calls `get_overload(this, name)`; `get_overload()` then uses the inferred type of `this` to do a type lookup in `registered_types_cpp`. This is where it fails: `this` will be a `PyA<B> *`, but `PyA<B>` is neither the base type (`B`) nor the trampoline type (`PyB<B>`). As a result, the overload fails and we get a failed overload lookup. The fix ======= The fix is relatively simple: we can cast `this` passed to `get_overload()` to a `const B *`, which lets get_overload look up the correct class. Since trampoline classes should be derived from `B` classes anyway, this cast should be perfectly safe. This does require adding the class name as an argument to the PYBIND11_OVERLOAD_INT macro, but leaves the public macro signatures unchanged.
2016-08-29 22:16:46 +00:00
.def("say_something", &A_Tpl::say_something)
.def("say_everything", &A_Tpl::say_everything);
py::class_<B_Tpl, A_Tpl, PyB_Tpl<>>(m, "B_Tpl")
.def(py::init<>())
.def("lucky_number", &B_Tpl::lucky_number);
py::class_<C_Tpl, B_Tpl, PyB_Tpl<C_Tpl>>(m, "C_Tpl")
.def(py::init<>());
py::class_<D_Tpl, C_Tpl, PyB_Tpl<D_Tpl>>(m, "D_Tpl")
.def(py::init<>());
// Fix issue #1454 (crash when acquiring/releasing GIL on another thread in Python 2.7)
m.def("test_gil", &test_gil);
m.def("test_gil_from_thread", &test_gil_from_thread);
};