mirror of
https://github.com/pybind/pybind11.git
synced 2024-11-11 08:03:55 +00:00
Changed non system clocks to be time deltas
Allowed durations and non system clocks to be set from floats.
This commit is contained in:
parent
207d0da31c
commit
2f597687e7
@ -764,19 +764,25 @@ When including the additional header file :file:`pybind11/chrono.h` conversions
|
||||
to corresponding python datetime objects are automatically enabled.
|
||||
The following rules describe how the conversions are applied.
|
||||
|
||||
Objects of type ``std::chrono::system_clock::time_point`` are converted into datetime.datetime objects.
|
||||
When passed to python objects of type ``std::chrono::system_clock::time_point`` are converted into datetime.datetime objects.
|
||||
These objects are those that specifically come from the system_clock as this is the only clock that measures wall time.
|
||||
|
||||
Objects of type ``std::chrono::[other_clock]::time_point`` are converted into datetime.time objects.
|
||||
When passed to python of type ``std::chrono::[other_clock]::time_point`` are converted into datetime.timedelta objects.
|
||||
These objects are those that come from all clocks that are not the system_clock (e.g. steady_clock).
|
||||
Clocks other than the system_clock are not measured from wall date/time and instead have any start time
|
||||
(often when the computer was turned on).
|
||||
Therefore as these clocks can only measure time from an arbitrary start point they are represented as time without date.
|
||||
Therefore as these clocks can only measure time from an arbitrary start point they are represented as timedelta from this start point.
|
||||
|
||||
Objects of type ``std::chrono::duration`` are converted into datetime.timedelta objects.
|
||||
When passed to python of type ``std::chrono::duration`` are converted into datetime.timedelta objects.
|
||||
|
||||
When python objects are passed to c++ for the case of non system clocks and durations instances of both datetime.timedelta
|
||||
and float are accepted. The float arguments are interpreted as a number of seconds since the epoch.
|
||||
|
||||
.. note::
|
||||
|
||||
Other clocks may be the same as system_clock. For example on many platforms std::high_resolution_clock is the same as system_clock.
|
||||
Because of this if you are converting a timepoint from one of these clocks they may appear to python as a datetime.datetime object.
|
||||
|
||||
Pythons datetime implementation is limited to microsecond precision.
|
||||
The extra precision that c++11 clocks can have have (nanoseconds) will be lost upon conversion.
|
||||
The rounding policy from c++ to python is via ``std::chrono::duration_cast<>`` (rounding towards 0 in microseconds).
|
||||
|
@ -24,9 +24,12 @@ public:
|
||||
|
||||
bool load(handle src, bool) {
|
||||
using namespace std::chrono;
|
||||
|
||||
// Lazy initialise the PyDateTime import
|
||||
if(!PyDateTimeAPI) { PyDateTime_IMPORT; }
|
||||
|
||||
if (!src) return false;
|
||||
// If they have passed us a datetime.delta object
|
||||
if (PyDelta_Check(src.ptr())) {
|
||||
// The accessor macros for timedelta exist in some versions of python but not others (e.g. Mac OSX default python)
|
||||
// Therefore we are just doing what the macros do explicitly
|
||||
@ -37,6 +40,13 @@ public:
|
||||
+ microseconds(delta->microseconds));
|
||||
return true;
|
||||
}
|
||||
// If they have passed us a float we can assume it is seconds and convert
|
||||
else if (PyFloat_Check(src.ptr())) {
|
||||
double val = PyFloat_AsDouble(src.ptr());
|
||||
// Multiply by the reciprocal of the ratio and round
|
||||
value = type(std::lround(val * type::period::den / type::period::num));
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
@ -45,9 +55,9 @@ public:
|
||||
if(!PyDateTimeAPI) { PyDateTime_IMPORT; }
|
||||
|
||||
// Declare these special duration types so the conversions happen with the correct primitive types (int)
|
||||
typedef duration<int, std::ratio<86400>> dd_t;
|
||||
typedef duration<int, std::ratio<1>> ss_t;
|
||||
typedef duration<int, std::micro> us_t;
|
||||
using dd_t = duration<int, std::ratio<86400>>;
|
||||
using ss_t = duration<int, std::ratio<1>>;
|
||||
using us_t = duration<int, std::micro>;
|
||||
|
||||
return PyDelta_FromDSU(
|
||||
duration_cast<dd_t>(src).count()
|
||||
@ -57,11 +67,14 @@ public:
|
||||
PYBIND11_TYPE_CASTER(type, _("datetime.timedelta"));
|
||||
};
|
||||
|
||||
// This is for casting times on the system clock into datetime.datetime instances
|
||||
template <typename Duration> class type_caster<std::chrono::time_point<std::chrono::system_clock, Duration>> {
|
||||
public:
|
||||
typedef std::chrono::time_point<std::chrono::system_clock, Duration> type;
|
||||
bool load(handle src, bool) {
|
||||
using namespace std::chrono;
|
||||
|
||||
// Lazy initialise the PyDateTime import
|
||||
if(!PyDateTimeAPI) { PyDateTime_IMPORT; }
|
||||
|
||||
if (!src) return false;
|
||||
@ -83,6 +96,8 @@ public:
|
||||
|
||||
static handle cast(const std::chrono::time_point<std::chrono::system_clock, Duration> &src, return_value_policy /* policy */, handle /* parent */) {
|
||||
using namespace std::chrono;
|
||||
|
||||
// Lazy initialise the PyDateTime import
|
||||
if(!PyDateTimeAPI) { PyDateTime_IMPORT; }
|
||||
|
||||
time_t tt = system_clock::to_time_t(src);
|
||||
@ -104,21 +119,33 @@ public:
|
||||
PYBIND11_TYPE_CASTER(type, _("datetime.datetime"));
|
||||
};
|
||||
|
||||
// Other clocks that are not the system clock are not measured as datetime.datetime objects
|
||||
// since they are not measured on calendar time. So instead we just make them timedeltas
|
||||
// Or if they have passed us a time as a float we convert that
|
||||
template <typename Clock, typename Duration> class type_caster<std::chrono::time_point<Clock, Duration>> {
|
||||
public:
|
||||
typedef std::chrono::time_point<Clock, Duration> type;
|
||||
typedef std::chrono::duration<std::chrono::hours::rep, std::ratio<86400>> days;
|
||||
|
||||
bool load(handle src, bool) {
|
||||
using namespace std::chrono;
|
||||
if(!PyDateTimeAPI) { PyDateTime_IMPORT; }
|
||||
|
||||
if (!src) return false;
|
||||
if (PyTime_Check(src.ptr())) {
|
||||
value = type(duration_cast<Duration>(
|
||||
hours(PyDateTime_TIME_GET_HOUR(src.ptr()))
|
||||
+ minutes(PyDateTime_TIME_GET_MINUTE(src.ptr()))
|
||||
+ seconds(PyDateTime_TIME_GET_SECOND(src.ptr()))
|
||||
+ microseconds(PyDateTime_TIME_GET_MICROSECOND(src.ptr()))
|
||||
));
|
||||
// If they have passed us a datetime.delta object
|
||||
if (PyDelta_Check(src.ptr())) {
|
||||
// The accessor macros for timedelta exist in some versions of python but not others (e.g. Mac OSX default python)
|
||||
// Therefore we are just doing what the macros do explicitly
|
||||
const PyDateTime_Delta* delta = reinterpret_cast<PyDateTime_Delta*>(src.ptr());
|
||||
value = time_point<Clock, Duration>(
|
||||
days(delta->days)
|
||||
+ seconds(delta->seconds)
|
||||
+ microseconds(delta->microseconds));
|
||||
return true;
|
||||
}
|
||||
// If they have passed us a float we can assume it is seconds and convert
|
||||
else if (PyFloat_Check(src.ptr())) {
|
||||
double val = PyFloat_AsDouble(src.ptr());
|
||||
value = time_point<Clock, Duration>(Duration(std::lround((val / Clock::period::num) * Clock::period::den)));
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
@ -126,21 +153,23 @@ public:
|
||||
|
||||
static handle cast(const std::chrono::time_point<Clock, Duration> &src, return_value_policy /* policy */, handle /* parent */) {
|
||||
using namespace std::chrono;
|
||||
|
||||
// Lazy initialise the PyDateTime import
|
||||
if(!PyDateTimeAPI) { PyDateTime_IMPORT; }
|
||||
|
||||
// Declare these special duration types so the conversions happen with the correct primitive types (int)
|
||||
typedef duration<int, std::ratio<3600>> hh_t;
|
||||
typedef duration<int, std::ratio<60>> mm_t;
|
||||
typedef duration<int, std::ratio<1>> ss_t;
|
||||
typedef duration<int, std::micro> us_t;
|
||||
using dd_t = duration<int, std::ratio<86400>>;
|
||||
using ss_t = duration<int, std::ratio<1>>;
|
||||
using us_t = duration<int, std::micro>;
|
||||
|
||||
Duration d = src.time_since_epoch();
|
||||
return PyTime_FromTime(duration_cast<hh_t>(d).count()
|
||||
, duration_cast<mm_t>(d % hours(1)).count()
|
||||
, duration_cast<ss_t>(d % minutes(1)).count()
|
||||
|
||||
return PyDelta_FromDSU(
|
||||
duration_cast<dd_t>(d).count()
|
||||
, duration_cast<ss_t>(d % days(1)).count()
|
||||
, duration_cast<us_t>(d % seconds(1)).count());
|
||||
}
|
||||
PYBIND11_TYPE_CASTER(type, _("datetime.time"));
|
||||
PYBIND11_TYPE_CASTER(type, _("datetime.timedelta"));
|
||||
};
|
||||
|
||||
NAMESPACE_END(detail)
|
||||
|
@ -43,6 +43,11 @@ std::chrono::steady_clock::time_point test_chrono6(std::chrono::steady_clock::ti
|
||||
return t;
|
||||
}
|
||||
|
||||
// Roundtrip a duration in microseconds from a float argument
|
||||
std::chrono::microseconds test_chrono7(std::chrono::microseconds t) {
|
||||
return t;
|
||||
}
|
||||
|
||||
test_initializer chrono([] (py::module &m) {
|
||||
m.def("test_chrono1", &test_chrono1);
|
||||
m.def("test_chrono2", &test_chrono2);
|
||||
@ -50,4 +55,5 @@ test_initializer chrono([] (py::module &m) {
|
||||
m.def("test_chrono4", &test_chrono4);
|
||||
m.def("test_chrono5", &test_chrono5);
|
||||
m.def("test_chrono6", &test_chrono6);
|
||||
m.def("test_chrono7", &test_chrono7);
|
||||
});
|
||||
|
@ -82,21 +82,33 @@ def test_chrono_steady_clock():
|
||||
time1 = test_chrono5()
|
||||
time2 = test_chrono5()
|
||||
|
||||
assert isinstance(time1, datetime.time)
|
||||
assert isinstance(time2, datetime.time)
|
||||
assert isinstance(time1, datetime.timedelta)
|
||||
assert isinstance(time2, datetime.timedelta)
|
||||
|
||||
|
||||
def test_chrono_steady_clock_roundtrip():
|
||||
from pybind11_tests import test_chrono6
|
||||
import datetime
|
||||
|
||||
time1 = datetime.time(second=10, microsecond=100)
|
||||
time1 = datetime.timedelta(days=10, seconds=10, microseconds=100)
|
||||
time2 = test_chrono6(time1)
|
||||
|
||||
assert isinstance(time2, datetime.time)
|
||||
assert isinstance(time2, datetime.timedelta)
|
||||
|
||||
# They should be identical (no information lost on roundtrip)
|
||||
assert time1.hour == time2.hour
|
||||
assert time1.minute == time2.minute
|
||||
assert time1.second == time2.second
|
||||
assert time1.microsecond == time2.microsecond
|
||||
assert time1.days == time2.days
|
||||
assert time1.seconds == time2.seconds
|
||||
assert time1.microseconds == time2.microseconds
|
||||
|
||||
|
||||
def test_floating_point_duration():
|
||||
from pybind11_tests import test_chrono7
|
||||
import datetime
|
||||
|
||||
# Test using 35.525123 seconds as an example floating point number in seconds
|
||||
time = test_chrono7(35.525123)
|
||||
|
||||
assert isinstance(time, datetime.timedelta)
|
||||
|
||||
assert time.seconds == 35
|
||||
assert time.microseconds == 525123
|
||||
|
Loading…
Reference in New Issue
Block a user