make arithmetic operators of enum_ optional (#508)

Following commit 90d278, the object code generated by the python
bindings of nanogui (github.com/wjakob/nanogui) went up by a whopping
12%. It turns out that that project has quite a few enums where we don't
really care about arithmetic operators.

This commit thus partially reverts the effects of #503 by introducing
an additional attribute py::arithmetic() that must be specified if the
arithmetic operators are desired.
This commit is contained in:
Wenzel Jakob 2016-11-17 23:24:47 +01:00 committed by GitHub
parent 99ddc9ac1a
commit 405f6d1dfd
5 changed files with 71 additions and 40 deletions

View File

@ -77,7 +77,7 @@ as arguments and return values, refer to the section on binding :ref:`classes`.
+------------------------------------+---------------------------+-------------------------------+
| Data type | Description | Header file |
+=---================================+===========================+===============================+
+====================================+===========================+===============================+
| ``int8_t``, ``uint8_t`` | 8-bit integers | :file:`pybind11/pybind11.h` |
+------------------------------------+---------------------------+-------------------------------+
| ``int16_t``, ``uint16_t`` | 16-bit integers | :file:`pybind11/pybind11.h` |

View File

@ -393,4 +393,18 @@ typed enums.
1L
.. note::
When the special tag ``py::arithmetic()`` is specified to the ``enum_``
constructor, pybind11 creates an enumeration that also supports rudimentary
arithmetic and bit-level operations like comparisons, and, or, xor, negation,
etc.
.. code-block:: cpp
py::enum_<Pet::Kind>(pet, "Kind", py::arithmetic())
...
By default, these are omitted to conserve space.
.. [#f1] Stateless closures are those with an empty pair of brackets ``[]`` as the capture object.

View File

@ -47,6 +47,9 @@ struct multiple_inheritance { };
/// Annotation which enables dynamic attributes, i.e. adds `__dict__` to a class
struct dynamic_attr { };
/// Annotation to mark enums as an arithmetic type
struct arithmetic { };
NAMESPACE_BEGIN(detail)
/* Forward declarations */
enum op_id : int;
@ -306,6 +309,11 @@ struct process_attribute<dynamic_attr> : process_attribute_default<dynamic_attr>
static void init(const dynamic_attr &, type_record *r) { r->dynamic_attr = true; }
};
/// Process an 'arithmetic' attribute for enums (does nothing here)
template <>
struct process_attribute<arithmetic> : process_attribute_default<arithmetic> {};
/***
* Process a keep_alive call policy -- invokes keep_alive_impl during the
* pre-call handler if both Nurse, Patient != 0 and use the post-call handler

View File

@ -1187,51 +1187,62 @@ private:
template <typename Type> class enum_ : public class_<Type> {
public:
using class_<Type>::def;
using UnderlyingType = typename std::underlying_type<Type>::type;
using Scalar = typename std::underlying_type<Type>::type;
template <typename T> using arithmetic_tag = std::is_same<T, arithmetic>;
template <typename... Extra>
enum_(const handle &scope, const char *name, const Extra&... extra)
: class_<Type>(scope, name, extra...), m_parent(scope) {
auto entries = new std::unordered_map<UnderlyingType, const char *>();
constexpr bool is_arithmetic =
!std::is_same<detail::first_of_t<arithmetic_tag, void, Extra...>,
void>::value;
auto entries = new std::unordered_map<Scalar, const char *>();
def("__repr__", [name, entries](Type value) -> std::string {
auto it = entries->find((UnderlyingType) value);
auto it = entries->find((Scalar) value);
return std::string(name) + "." +
((it == entries->end()) ? std::string("???")
: std::string(it->second));
});
def("__init__", [](Type& value, UnderlyingType i) { value = (Type)i; });
def("__init__", [](Type& value, UnderlyingType i) { new (&value) Type((Type) i); });
def("__int__", [](Type value) { return (UnderlyingType) value; });
def("__init__", [](Type& value, Scalar i) { value = (Type)i; });
def("__init__", [](Type& value, Scalar i) { new (&value) Type((Type) i); });
def("__int__", [](Type value) { return (Scalar) value; });
def("__eq__", [](const Type &value, Type *value2) { return value2 && value == *value2; });
def("__ne__", [](const Type &value, Type *value2) { return !value2 || value != *value2; });
if (is_arithmetic) {
def("__lt__", [](const Type &value, Type *value2) { return value2 && value < *value2; });
def("__gt__", [](const Type &value, Type *value2) { return value2 && value > *value2; });
def("__le__", [](const Type &value, Type *value2) { return value2 && value <= *value2; });
def("__ge__", [](const Type &value, Type *value2) { return value2 && value >= *value2; });
if (std::is_convertible<Type, UnderlyingType>::value) {
}
if (std::is_convertible<Type, Scalar>::value) {
// Don't provide comparison with the underlying type if the enum isn't convertible,
// i.e. if Type is a scoped enum, mirroring the C++ behaviour. (NB: we explicitly
// convert Type to UnderlyingType below anyway because this needs to compile).
def("__eq__", [](const Type &value, UnderlyingType value2) { return (UnderlyingType) value == value2; });
def("__ne__", [](const Type &value, UnderlyingType value2) { return (UnderlyingType) value != value2; });
def("__lt__", [](const Type &value, UnderlyingType value2) { return (UnderlyingType) value < value2; });
def("__gt__", [](const Type &value, UnderlyingType value2) { return (UnderlyingType) value > value2; });
def("__le__", [](const Type &value, UnderlyingType value2) { return (UnderlyingType) value <= value2; });
def("__ge__", [](const Type &value, UnderlyingType value2) { return (UnderlyingType) value >= value2; });
def("__invert__", [](const Type &value) { return ~((UnderlyingType) value); });
def("__and__", [](const Type &value, UnderlyingType value2) { return (UnderlyingType) value & value2; });
def("__or__", [](const Type &value, UnderlyingType value2) { return (UnderlyingType) value | value2; });
def("__xor__", [](const Type &value, UnderlyingType value2) { return (UnderlyingType) value ^ value2; });
def("__rand__", [](const Type &value, UnderlyingType value2) { return (UnderlyingType) value & value2; });
def("__ror__", [](const Type &value, UnderlyingType value2) { return (UnderlyingType) value | value2; });
def("__rxor__", [](const Type &value, UnderlyingType value2) { return (UnderlyingType) value ^ value2; });
def("__and__", [](const Type &value, const Type &value2) { return (UnderlyingType) value & (UnderlyingType) value2; });
def("__or__", [](const Type &value, const Type &value2) { return (UnderlyingType) value | (UnderlyingType) value2; });
def("__xor__", [](const Type &value, const Type &value2) { return (UnderlyingType) value ^ (UnderlyingType) value2; });
// convert Type to Scalar below anyway because this needs to compile).
def("__eq__", [](const Type &value, Scalar value2) { return (Scalar) value == value2; });
def("__ne__", [](const Type &value, Scalar value2) { return (Scalar) value != value2; });
if (is_arithmetic) {
def("__lt__", [](const Type &value, Scalar value2) { return (Scalar) value < value2; });
def("__gt__", [](const Type &value, Scalar value2) { return (Scalar) value > value2; });
def("__le__", [](const Type &value, Scalar value2) { return (Scalar) value <= value2; });
def("__ge__", [](const Type &value, Scalar value2) { return (Scalar) value >= value2; });
def("__invert__", [](const Type &value) { return ~((Scalar) value); });
def("__and__", [](const Type &value, Scalar value2) { return (Scalar) value & value2; });
def("__or__", [](const Type &value, Scalar value2) { return (Scalar) value | value2; });
def("__xor__", [](const Type &value, Scalar value2) { return (Scalar) value ^ value2; });
def("__rand__", [](const Type &value, Scalar value2) { return (Scalar) value & value2; });
def("__ror__", [](const Type &value, Scalar value2) { return (Scalar) value | value2; });
def("__rxor__", [](const Type &value, Scalar value2) { return (Scalar) value ^ value2; });
def("__and__", [](const Type &value, const Type &value2) { return (Scalar) value & (Scalar) value2; });
def("__or__", [](const Type &value, const Type &value2) { return (Scalar) value | (Scalar) value2; });
def("__xor__", [](const Type &value, const Type &value2) { return (Scalar) value ^ (Scalar) value2; });
}
def("__hash__", [](const Type &value) { return (UnderlyingType) value; });
}
def("__hash__", [](const Type &value) { return (Scalar) value; });
// Pickling and unpickling -- needed for use with the 'multiprocessing' module
def("__getstate__", [](const Type &value) { return pybind11::make_tuple((UnderlyingType) value); });
def("__setstate__", [](Type &p, tuple t) { new (&p) Type((Type) t[0].cast<UnderlyingType>()); });
def("__getstate__", [](const Type &value) { return pybind11::make_tuple((Scalar) value); });
def("__setstate__", [](Type &p, tuple t) { new (&p) Type((Type) t[0].cast<Scalar>()); });
m_entries = entries;
}
@ -1249,11 +1260,11 @@ public:
/// Add an enumeration entry
enum_& value(char const* name, Type value) {
this->attr(name) = pybind11::cast(value, return_value_policy::copy);
(*m_entries)[(UnderlyingType) value] = name;
(*m_entries)[(Scalar) value] = name;
return *this;
}
private:
std::unordered_map<UnderlyingType, const char *> *m_entries;
std::unordered_map<Scalar, const char *> *m_entries;
handle m_parent;
};

View File

@ -44,22 +44,20 @@ std::string test_scoped_enum(ScopedEnum z) {
test_initializer enums([](py::module &m) {
m.def("test_scoped_enum", &test_scoped_enum);
py::enum_<UnscopedEnum>(m, "UnscopedEnum")
py::enum_<UnscopedEnum>(m, "UnscopedEnum", py::arithmetic())
.value("EOne", EOne)
.value("ETwo", ETwo)
.export_values();
py::enum_<ScopedEnum>(m, "ScopedEnum")
py::enum_<ScopedEnum>(m, "ScopedEnum", py::arithmetic())
.value("Two", ScopedEnum::Two)
.value("Three", ScopedEnum::Three)
;
.value("Three", ScopedEnum::Three);
py::enum_<Flags>(m, "Flags")
py::enum_<Flags>(m, "Flags", py::arithmetic())
.value("Read", Flags::Read)
.value("Write", Flags::Write)
.value("Execute", Flags::Execute)
.export_values();
;
py::class_<ClassWithUnscopedEnum> exenum_class(m, "ClassWithUnscopedEnum");
exenum_class.def_static("test_function", &ClassWithUnscopedEnum::test_function);