mirror of
https://github.com/pybind/pybind11.git
synced 2024-11-22 13:15:12 +00:00
tests passing
This commit is contained in:
parent
51c2aa16de
commit
4d8b37688c
@ -740,6 +740,12 @@ class type_caster<std::pair<T1, T2>> : public tuple_caster<std::pair, T1, T2> {}
|
||||
template <typename... Ts>
|
||||
class type_caster<std::tuple<Ts...>> : public tuple_caster<std::tuple, Ts...> {};
|
||||
|
||||
template <>
|
||||
class type_caster<std::tuple<>> : public tuple_caster<std::tuple> {
|
||||
public:
|
||||
static constexpr auto name = const_name("tuple[()]");
|
||||
};
|
||||
|
||||
/// Helper class which abstracts away certain actions. Users can provide specializations for
|
||||
/// custom holders, but it's only necessary if the type has a non-standard interface.
|
||||
template <typename T>
|
||||
|
@ -224,7 +224,7 @@ struct EigenProps {
|
||||
= !show_c_contiguous && show_order && requires_col_major;
|
||||
|
||||
static constexpr auto descriptor
|
||||
= const_name("numpy.ndarray[") + npy_format_descriptor<Scalar>::name + const_name("[")
|
||||
= const_name("numpy.typing.NDArray[") + npy_format_descriptor<Scalar>::name + const_name("[")
|
||||
+ const_name<fixed_rows>(const_name<(size_t) rows>(), const_name("m")) + const_name(", ")
|
||||
+ const_name<fixed_cols>(const_name<(size_t) cols>(), const_name("n")) + const_name("]")
|
||||
+
|
||||
@ -232,7 +232,7 @@ struct EigenProps {
|
||||
// be satisfied: writeable=True (for a mutable reference), and, depending on the map's
|
||||
// stride options, possibly f_contiguous or c_contiguous. We include them in the
|
||||
// descriptor output to provide some hint as to why a TypeError is occurring (otherwise
|
||||
// it can be confusing to see that a function accepts a 'numpy.ndarray[float64[3,2]]' and
|
||||
// it can be confusing to see that a function accepts a 'numpy.typing.NDArray[float64[3,2]]' and
|
||||
// an error message that you *gave* a numpy.ndarray of the right type and dimensions.
|
||||
const_name<show_writeable>(", flags.writeable", "")
|
||||
+ const_name<show_c_contiguous>(", flags.c_contiguous", "")
|
||||
|
@ -127,7 +127,7 @@ struct get_tensor_descriptor {
|
||||
+ const_name<static_cast<int>(Type::Layout) == static_cast<int>(Eigen::RowMajor)>(
|
||||
", flags.c_contiguous", ", flags.f_contiguous");
|
||||
static constexpr auto value
|
||||
= const_name("numpy.ndarray[") + npy_format_descriptor<typename Type::Scalar>::name
|
||||
= const_name("numpy.typing.NDArray[") + npy_format_descriptor<typename Type::Scalar>::name
|
||||
+ const_name("[") + eigen_tensor_helper<remove_cv_t<Type>>::dimensions_descriptor
|
||||
+ const_name("]") + const_name<ShowDetails>(details, const_name("")) + const_name("]");
|
||||
};
|
||||
|
@ -2086,7 +2086,7 @@ vectorize_helper<Func, Return, Args...> vectorize_extractor(const Func &f, Retur
|
||||
template <typename T, int Flags>
|
||||
struct handle_type_name<array_t<T, Flags>> {
|
||||
static constexpr auto name
|
||||
= const_name("numpy.ndarray[") + npy_format_descriptor<T>::name + const_name("]");
|
||||
= const_name("numpy.typing.NDArray[") + npy_format_descriptor<T>::name + const_name("]");
|
||||
};
|
||||
|
||||
PYBIND11_NAMESPACE_END(detail)
|
||||
|
@ -94,18 +94,18 @@ def test_mutator_descriptors():
|
||||
with pytest.raises(TypeError) as excinfo:
|
||||
m.fixed_mutator_r(zc)
|
||||
assert (
|
||||
"(arg0: numpy.ndarray[numpy.float32[5, 6],"
|
||||
"(arg0: numpy.typing.NDArray[numpy.float32[5, 6],"
|
||||
" flags.writeable, flags.c_contiguous]) -> None" in str(excinfo.value)
|
||||
)
|
||||
with pytest.raises(TypeError) as excinfo:
|
||||
m.fixed_mutator_c(zr)
|
||||
assert (
|
||||
"(arg0: numpy.ndarray[numpy.float32[5, 6],"
|
||||
"(arg0: numpy.typing.NDArray[numpy.float32[5, 6],"
|
||||
" flags.writeable, flags.f_contiguous]) -> None" in str(excinfo.value)
|
||||
)
|
||||
with pytest.raises(TypeError) as excinfo:
|
||||
m.fixed_mutator_a(np.array([[1, 2], [3, 4]], dtype="float32"))
|
||||
assert "(arg0: numpy.ndarray[numpy.float32[5, 6], flags.writeable]) -> None" in str(
|
||||
assert "(arg0: numpy.typing.NDArray[numpy.float32[5, 6], flags.writeable]) -> None" in str(
|
||||
excinfo.value
|
||||
)
|
||||
zr.flags.writeable = False
|
||||
@ -200,7 +200,7 @@ def test_negative_stride_from_python(msg):
|
||||
msg(excinfo.value)
|
||||
== """
|
||||
double_threer(): incompatible function arguments. The following argument types are supported:
|
||||
1. (arg0: numpy.ndarray[numpy.float32[1, 3], flags.writeable]) -> None
|
||||
1. (arg0: numpy.typing.NDArray[numpy.float32[1, 3], flags.writeable]) -> None
|
||||
|
||||
Invoked with: """
|
||||
+ repr(np.array([5.0, 4.0, 3.0], dtype="float32"))
|
||||
@ -212,7 +212,7 @@ def test_negative_stride_from_python(msg):
|
||||
msg(excinfo.value)
|
||||
== """
|
||||
double_threec(): incompatible function arguments. The following argument types are supported:
|
||||
1. (arg0: numpy.ndarray[numpy.float32[3, 1], flags.writeable]) -> None
|
||||
1. (arg0: numpy.typing.NDArray[numpy.float32[3, 1], flags.writeable]) -> None
|
||||
|
||||
Invoked with: """
|
||||
+ repr(np.array([7.0, 4.0, 1.0], dtype="float32"))
|
||||
@ -697,25 +697,25 @@ def test_dense_signature(doc):
|
||||
assert (
|
||||
doc(m.double_col)
|
||||
== """
|
||||
double_col(arg0: numpy.ndarray[numpy.float32[m, 1]]) -> numpy.ndarray[numpy.float32[m, 1]]
|
||||
double_col(arg0: numpy.typing.NDArray[numpy.float32[m, 1]]) -> numpy.typing.NDArray[numpy.float32[m, 1]]
|
||||
"""
|
||||
)
|
||||
assert (
|
||||
doc(m.double_row)
|
||||
== """
|
||||
double_row(arg0: numpy.ndarray[numpy.float32[1, n]]) -> numpy.ndarray[numpy.float32[1, n]]
|
||||
double_row(arg0: numpy.typing.NDArray[numpy.float32[1, n]]) -> numpy.typing.NDArray[numpy.float32[1, n]]
|
||||
"""
|
||||
)
|
||||
assert doc(m.double_complex) == (
|
||||
"""
|
||||
double_complex(arg0: numpy.ndarray[numpy.complex64[m, 1]])"""
|
||||
""" -> numpy.ndarray[numpy.complex64[m, 1]]
|
||||
double_complex(arg0: numpy.typing.NDArray[numpy.complex64[m, 1]])"""
|
||||
""" -> numpy.typing.NDArray[numpy.complex64[m, 1]]
|
||||
"""
|
||||
)
|
||||
assert doc(m.double_mat_rm) == (
|
||||
"""
|
||||
double_mat_rm(arg0: numpy.ndarray[numpy.float32[m, n]])"""
|
||||
""" -> numpy.ndarray[numpy.float32[m, n]]
|
||||
double_mat_rm(arg0: numpy.typing.NDArray[numpy.float32[m, n]])"""
|
||||
""" -> numpy.typing.NDArray[numpy.float32[m, n]]
|
||||
"""
|
||||
)
|
||||
|
||||
|
@ -268,23 +268,23 @@ def test_round_trip_references_actually_refer(m):
|
||||
@pytest.mark.parametrize("m", submodules)
|
||||
def test_doc_string(m, doc):
|
||||
assert (
|
||||
doc(m.copy_tensor) == "copy_tensor() -> numpy.ndarray[numpy.float64[?, ?, ?]]"
|
||||
doc(m.copy_tensor) == "copy_tensor() -> numpy.typing.NDArray[numpy.float64[?, ?, ?]]"
|
||||
)
|
||||
assert (
|
||||
doc(m.copy_fixed_tensor)
|
||||
== "copy_fixed_tensor() -> numpy.ndarray[numpy.float64[3, 5, 2]]"
|
||||
== "copy_fixed_tensor() -> numpy.typing.NDArray[numpy.float64[3, 5, 2]]"
|
||||
)
|
||||
assert (
|
||||
doc(m.reference_const_tensor)
|
||||
== "reference_const_tensor() -> numpy.ndarray[numpy.float64[?, ?, ?]]"
|
||||
== "reference_const_tensor() -> numpy.typing.NDArray[numpy.float64[?, ?, ?]]"
|
||||
)
|
||||
|
||||
order_flag = f"flags.{m.needed_options.lower()}_contiguous"
|
||||
assert doc(m.round_trip_view_tensor) == (
|
||||
f"round_trip_view_tensor(arg0: numpy.ndarray[numpy.float64[?, ?, ?], flags.writeable, {order_flag}])"
|
||||
f" -> numpy.ndarray[numpy.float64[?, ?, ?], flags.writeable, {order_flag}]"
|
||||
f"round_trip_view_tensor(arg0: numpy.typing.NDArray[numpy.float64[?, ?, ?], flags.writeable, {order_flag}])"
|
||||
f" -> numpy.typing.NDArray[numpy.float64[?, ?, ?], flags.writeable, {order_flag}]"
|
||||
)
|
||||
assert doc(m.round_trip_const_view_tensor) == (
|
||||
f"round_trip_const_view_tensor(arg0: numpy.ndarray[numpy.float64[?, ?, ?], {order_flag}])"
|
||||
" -> numpy.ndarray[numpy.float64[?, ?, ?]]"
|
||||
f"round_trip_const_view_tensor(arg0: numpy.typing.NDArray[numpy.float64[?, ?, ?], {order_flag}])"
|
||||
" -> numpy.typing.NDArray[numpy.float64[?, ?, ?]]"
|
||||
)
|
||||
|
@ -320,13 +320,13 @@ def test_overload_resolution(msg):
|
||||
msg(excinfo.value)
|
||||
== """
|
||||
overloaded(): incompatible function arguments. The following argument types are supported:
|
||||
1. (arg0: numpy.ndarray[numpy.float64]) -> str
|
||||
2. (arg0: numpy.ndarray[numpy.float32]) -> str
|
||||
3. (arg0: numpy.ndarray[numpy.int32]) -> str
|
||||
4. (arg0: numpy.ndarray[numpy.uint16]) -> str
|
||||
5. (arg0: numpy.ndarray[numpy.int64]) -> str
|
||||
6. (arg0: numpy.ndarray[numpy.complex128]) -> str
|
||||
7. (arg0: numpy.ndarray[numpy.complex64]) -> str
|
||||
1. (arg0: numpy.typing.NDArray[numpy.float64]) -> str
|
||||
2. (arg0: numpy.typing.NDArray[numpy.float32]) -> str
|
||||
3. (arg0: numpy.typing.NDArray[numpy.int32]) -> str
|
||||
4. (arg0: numpy.typing.NDArray[numpy.uint16]) -> str
|
||||
5. (arg0: numpy.typing.NDArray[numpy.int64]) -> str
|
||||
6. (arg0: numpy.typing.NDArray[numpy.complex128]) -> str
|
||||
7. (arg0: numpy.typing.NDArray[numpy.complex64]) -> str
|
||||
|
||||
Invoked with: 'not an array'
|
||||
"""
|
||||
@ -342,8 +342,8 @@ def test_overload_resolution(msg):
|
||||
assert m.overloaded3(np.array([1], dtype="intc")) == "int"
|
||||
expected_exc = """
|
||||
overloaded3(): incompatible function arguments. The following argument types are supported:
|
||||
1. (arg0: numpy.ndarray[numpy.int32]) -> str
|
||||
2. (arg0: numpy.ndarray[numpy.float64]) -> str
|
||||
1. (arg0: numpy.typing.NDArray[numpy.int32]) -> str
|
||||
2. (arg0: numpy.typing.NDArray[numpy.float64]) -> str
|
||||
|
||||
Invoked with: """
|
||||
|
||||
@ -527,7 +527,7 @@ def test_index_using_ellipsis():
|
||||
],
|
||||
)
|
||||
def test_format_descriptors_for_floating_point_types(test_func):
|
||||
assert "numpy.ndarray[numpy.float" in test_func.__doc__
|
||||
assert "numpy.typing.NDArray[numpy.float" in test_func.__doc__
|
||||
|
||||
|
||||
@pytest.mark.parametrize("forcecast", [False, True])
|
||||
|
@ -351,7 +351,7 @@ def test_complex_array():
|
||||
def test_signature(doc):
|
||||
assert (
|
||||
doc(m.create_rec_nested)
|
||||
== "create_rec_nested(arg0: int) -> numpy.ndarray[NestedStruct]"
|
||||
== "create_rec_nested(arg0: int) -> numpy.typing.NDArray[NestedStruct]"
|
||||
)
|
||||
|
||||
|
||||
|
@ -150,7 +150,7 @@ def test_docs(doc):
|
||||
assert (
|
||||
doc(m.vectorized_func)
|
||||
== """
|
||||
vectorized_func(arg0: numpy.ndarray[numpy.int32], arg1: numpy.ndarray[numpy.float32], arg2: numpy.ndarray[numpy.float64]) -> object
|
||||
vectorized_func(arg0: numpy.typing.NDArray[numpy.int32], arg1: numpy.typing.NDArray[numpy.float32], arg2: numpy.typing.NDArray[numpy.float64]) -> object
|
||||
"""
|
||||
)
|
||||
|
||||
@ -212,12 +212,12 @@ def test_passthrough_arguments(doc):
|
||||
+ ", ".join(
|
||||
[
|
||||
"arg0: float",
|
||||
"arg1: numpy.ndarray[numpy.float64]",
|
||||
"arg2: numpy.ndarray[numpy.float64]",
|
||||
"arg3: numpy.ndarray[numpy.int32]",
|
||||
"arg1: numpy.typing.NDArray[numpy.float64]",
|
||||
"arg2: numpy.typing.NDArray[numpy.float64]",
|
||||
"arg3: numpy.typing.NDArray[numpy.int32]",
|
||||
"arg4: int",
|
||||
"arg5: m.numpy_vectorize.NonPODClass",
|
||||
"arg6: numpy.ndarray[numpy.float64]",
|
||||
"arg6: numpy.typing.NDArray[numpy.float64]",
|
||||
]
|
||||
)
|
||||
+ ") -> object"
|
||||
|
Loading…
Reference in New Issue
Block a user