mirror of
https://github.com/pybind/pybind11.git
synced 2024-11-22 21:25:13 +00:00
commit
4f30446164
2276
docs/advanced.rst
2276
docs/advanced.rst
File diff suppressed because it is too large
Load Diff
81
docs/advanced/cast/chrono.rst
Normal file
81
docs/advanced/cast/chrono.rst
Normal file
@ -0,0 +1,81 @@
|
||||
Chrono
|
||||
======
|
||||
|
||||
When including the additional header file :file:`pybind11/chrono.h` conversions
|
||||
from C++11 chrono datatypes to python datetime objects are automatically enabled.
|
||||
This header also enables conversions of python floats (often from sources such
|
||||
as `time.monotonic()`, `time.perf_counter()` and `time.process_time()`) into
|
||||
durations.
|
||||
|
||||
An overview of clocks in C++11
|
||||
------------------------------
|
||||
|
||||
A point of confusion when using these conversions is the differences between
|
||||
clocks provided in C++11. There are three clock types defined by the C++11
|
||||
standard and users can define their own if needed. Each of these clocks have
|
||||
different properties and when converting to and from python will give different
|
||||
results.
|
||||
|
||||
The first clock defined by the standard is ``std::chrono::system_clock``. This
|
||||
clock measures the current date and time. However, this clock changes with to
|
||||
updates to the operating system time. For example, if your time is synchronised
|
||||
with a time server this clock will change. This makes this clock a poor choice
|
||||
for timing purposes but good for measuring the wall time.
|
||||
|
||||
The second clock defined in the standard is ``std::chrono::steady_clock``.
|
||||
This clock ticks at a steady rate and is never adjusted. This makes it excellent
|
||||
for timing purposes, however the value in this clock does not correspond to the
|
||||
current date and time. Often this clock will be the amount of time your system
|
||||
has been on, although it does not have to be. This clock will never be the same
|
||||
clock as the system clock as the system clock can change but steady clocks
|
||||
cannot.
|
||||
|
||||
The third clock defined in the standard is ``std::chrono::high_resolution_clock``.
|
||||
This clock is the clock that has the highest resolution out of the clocks in the
|
||||
system. It is normally a typedef to either the system clock or the steady clock
|
||||
but can be its own independent clock. This is important as when using these
|
||||
conversions as the types you get in python for this clock might be different
|
||||
depending on the system.
|
||||
If it is a typedef of the system clock, python will get datetime objects, but if
|
||||
it is a different clock they will be timedelta objects.
|
||||
|
||||
Conversions Provided
|
||||
--------------------
|
||||
|
||||
.. rubric:: C++ to Python
|
||||
|
||||
- ``std::chrono::system_clock::time_point`` → ``datetime.datetime``
|
||||
System clock times are converted to python datetime instances. They are
|
||||
in the local timezone, but do not have any timezone information attached
|
||||
to them (they are naive datetime objects).
|
||||
|
||||
- ``std::chrono::duration`` → ``datetime.timedelta``
|
||||
Durations are converted to timedeltas, any precision in the duration
|
||||
greater than microseconds is lost by rounding towards zero.
|
||||
|
||||
- ``std::chrono::[other_clocks]::time_point`` → ``datetime.timedelta``
|
||||
Any clock time that is not the system clock is converted to a time delta.
|
||||
This timedelta measures the time from the clocks epoch to now.
|
||||
|
||||
.. rubric:: Python to C++
|
||||
|
||||
- ``datetime.datetime`` → ``std::chrono::system_clock::time_point``
|
||||
Date/time objects are converted into system clock timepoints. Any
|
||||
timezone information is ignored and the type is treated as a naive
|
||||
object.
|
||||
|
||||
- ``datetime.timedelta`` → ``std::chrono::duration``
|
||||
Time delta are converted into durations with microsecond precision.
|
||||
|
||||
- ``datetime.timedelta`` → ``std::chrono::[other_clocks]::time_point``
|
||||
Time deltas that are converted into clock timepoints are treated as
|
||||
the amount of time from the start of the clocks epoch.
|
||||
|
||||
- ``float`` → ``std::chrono::duration``
|
||||
Floats that are passed to C++ as durations be interpreted as a number of
|
||||
seconds. These will be converted to the duration using ``duration_cast``
|
||||
from the float.
|
||||
|
||||
- ``float`` → ``std::chrono::[other_clocks]::time_point``
|
||||
Floats that are passed to C++ as time points will be interpreted as the
|
||||
number of seconds from the start of the clocks epoch.
|
79
docs/advanced/cast/custom.rst
Normal file
79
docs/advanced/cast/custom.rst
Normal file
@ -0,0 +1,79 @@
|
||||
Custom type casters
|
||||
===================
|
||||
|
||||
In very rare cases, applications may require custom type casters that cannot be
|
||||
expressed using the abstractions provided by pybind11, thus requiring raw
|
||||
Python C API calls. This is fairly advanced usage and should only be pursued by
|
||||
experts who are familiar with the intricacies of Python reference counting.
|
||||
|
||||
The following snippets demonstrate how this works for a very simple ``inty``
|
||||
type that that should be convertible from Python types that provide a
|
||||
``__int__(self)`` method.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
struct inty { long long_value; };
|
||||
|
||||
void print(inty s) {
|
||||
std::cout << s.long_value << std::endl;
|
||||
}
|
||||
|
||||
The following Python snippet demonstrates the intended usage from the Python side:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class A:
|
||||
def __int__(self):
|
||||
return 123
|
||||
|
||||
from example import print
|
||||
print(A())
|
||||
|
||||
To register the necessary conversion routines, it is necessary to add
|
||||
a partial overload to the ``pybind11::detail::type_caster<T>`` template.
|
||||
Although this is an implementation detail, adding partial overloads to this
|
||||
type is explicitly allowed.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
namespace pybind11 { namespace detail {
|
||||
template <> struct type_caster<inty> {
|
||||
public:
|
||||
/**
|
||||
* This macro establishes the name 'inty' in
|
||||
* function signatures and declares a local variable
|
||||
* 'value' of type inty
|
||||
*/
|
||||
PYBIND11_TYPE_CASTER(inty, _("inty"));
|
||||
|
||||
/**
|
||||
* Conversion part 1 (Python->C++): convert a PyObject into a inty
|
||||
* instance or return false upon failure. The second argument
|
||||
* indicates whether implicit conversions should be applied.
|
||||
*/
|
||||
bool load(handle src, bool) {
|
||||
/* Extract PyObject from handle */
|
||||
PyObject *source = src.ptr();
|
||||
/* Try converting into a Python integer value */
|
||||
PyObject *tmp = PyNumber_Long(source);
|
||||
if (!tmp)
|
||||
return false;
|
||||
/* Now try to convert into a C++ int */
|
||||
value.long_value = PyLong_AsLong(tmp);
|
||||
Py_DECREF(tmp);
|
||||
/* Ensure return code was OK (to avoid out-of-range errors etc) */
|
||||
return !(value.long_value == -1 && !PyErr_Occurred());
|
||||
}
|
||||
|
||||
/**
|
||||
* Conversion part 2 (C++ -> Python): convert an inty instance into
|
||||
* a Python object. The second and third arguments are used to
|
||||
* indicate the return value policy and parent object (for
|
||||
* ``return_value_policy::reference_internal``) and are generally
|
||||
* ignored by implicit casters.
|
||||
*/
|
||||
static handle cast(inty src, return_value_policy /* policy */, handle /* parent */) {
|
||||
return PyLong_FromLong(src.long_value);
|
||||
}
|
||||
};
|
||||
}} // namespace pybind11::detail
|
50
docs/advanced/cast/eigen.rst
Normal file
50
docs/advanced/cast/eigen.rst
Normal file
@ -0,0 +1,50 @@
|
||||
Eigen
|
||||
=====
|
||||
|
||||
`Eigen <http://eigen.tuxfamily.org>`_ is C++ header-based library for dense and
|
||||
sparse linear algebra. Due to its popularity and widespread adoption, pybind11
|
||||
provides transparent conversion support between Eigen and Scientific Python linear
|
||||
algebra data types.
|
||||
|
||||
Specifically, when including the optional header file :file:`pybind11/eigen.h`,
|
||||
pybind11 will automatically and transparently convert
|
||||
|
||||
1. Static and dynamic Eigen dense vectors and matrices to instances of
|
||||
``numpy.ndarray`` (and vice versa).
|
||||
|
||||
2. Returned matrix expressions such as blocks (including columns or rows) and
|
||||
diagonals will be converted to ``numpy.ndarray`` of the expression
|
||||
values.
|
||||
|
||||
3. Returned matrix-like objects such as Eigen::DiagonalMatrix or
|
||||
Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the
|
||||
expressed value.
|
||||
|
||||
4. Eigen sparse vectors and matrices to instances of
|
||||
``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
|
||||
|
||||
This makes it possible to bind most kinds of functions that rely on these types.
|
||||
One major caveat are functions that take Eigen matrices *by reference* and modify
|
||||
them somehow, in which case the information won't be propagated to the caller.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
/* The Python bindings of these functions won't replicate
|
||||
the intended effect of modifying the function arguments */
|
||||
void scale_by_2(Eigen::Vector3f &v) {
|
||||
v *= 2;
|
||||
}
|
||||
void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) {
|
||||
v *= 2;
|
||||
}
|
||||
|
||||
To see why this is, refer to the section on :ref:`opaque` (although that
|
||||
section specifically covers STL data types, the underlying issue is the same).
|
||||
The :ref:`numpy` sections discuss an efficient alternative for exposing the
|
||||
underlying native Eigen types as opaque objects in a way that still integrates
|
||||
with NumPy and SciPy.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_eigen.cpp` contains a complete example that
|
||||
shows how to pass Eigen sparse and dense data types in more detail.
|
113
docs/advanced/cast/functional.rst
Normal file
113
docs/advanced/cast/functional.rst
Normal file
@ -0,0 +1,113 @@
|
||||
Functional
|
||||
##########
|
||||
|
||||
The following features must be enabled by including :file:`pybind11/functional.h`.
|
||||
|
||||
|
||||
Callbacks and passing anonymous functions
|
||||
=========================================
|
||||
|
||||
The C++11 standard brought lambda functions and the generic polymorphic
|
||||
function wrapper ``std::function<>`` to the C++ programming language, which
|
||||
enable powerful new ways of working with functions. Lambda functions come in
|
||||
two flavors: stateless lambda function resemble classic function pointers that
|
||||
link to an anonymous piece of code, while stateful lambda functions
|
||||
additionally depend on captured variables that are stored in an anonymous
|
||||
*lambda closure object*.
|
||||
|
||||
Here is a simple example of a C++ function that takes an arbitrary function
|
||||
(stateful or stateless) with signature ``int -> int`` as an argument and runs
|
||||
it with the value 10.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
int func_arg(const std::function<int(int)> &f) {
|
||||
return f(10);
|
||||
}
|
||||
|
||||
The example below is more involved: it takes a function of signature ``int -> int``
|
||||
and returns another function of the same kind. The return value is a stateful
|
||||
lambda function, which stores the value ``f`` in the capture object and adds 1 to
|
||||
its return value upon execution.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
std::function<int(int)> func_ret(const std::function<int(int)> &f) {
|
||||
return [f](int i) {
|
||||
return f(i) + 1;
|
||||
};
|
||||
}
|
||||
|
||||
This example demonstrates using python named parameters in C++ callbacks which
|
||||
requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
|
||||
methods of classes:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::cpp_function func_cpp() {
|
||||
return py::cpp_function([](int i) { return i+1; },
|
||||
py::arg("number"));
|
||||
}
|
||||
|
||||
After including the extra header file :file:`pybind11/functional.h`, it is almost
|
||||
trivial to generate binding code for all of these functions.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/functional.h>
|
||||
|
||||
PYBIND11_PLUGIN(example) {
|
||||
py::module m("example", "pybind11 example plugin");
|
||||
|
||||
m.def("func_arg", &func_arg);
|
||||
m.def("func_ret", &func_ret);
|
||||
m.def("func_cpp", &func_cpp);
|
||||
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
The following interactive session shows how to call them from Python.
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
$ python
|
||||
>>> import example
|
||||
>>> def square(i):
|
||||
... return i * i
|
||||
...
|
||||
>>> example.func_arg(square)
|
||||
100L
|
||||
>>> square_plus_1 = example.func_ret(square)
|
||||
>>> square_plus_1(4)
|
||||
17L
|
||||
>>> plus_1 = func_cpp()
|
||||
>>> plus_1(number=43)
|
||||
44L
|
||||
|
||||
.. warning::
|
||||
|
||||
Keep in mind that passing a function from C++ to Python (or vice versa)
|
||||
will instantiate a piece of wrapper code that translates function
|
||||
invocations between the two languages. Naturally, this translation
|
||||
increases the computational cost of each function call somewhat. A
|
||||
problematic situation can arise when a function is copied back and forth
|
||||
between Python and C++ many times in a row, in which case the underlying
|
||||
wrappers will accumulate correspondingly. The resulting long sequence of
|
||||
C++ -> Python -> C++ -> ... roundtrips can significantly decrease
|
||||
performance.
|
||||
|
||||
There is one exception: pybind11 detects case where a stateless function
|
||||
(i.e. a function pointer or a lambda function without captured variables)
|
||||
is passed as an argument to another C++ function exposed in Python. In this
|
||||
case, there is no overhead. Pybind11 will extract the underlying C++
|
||||
function pointer from the wrapped function to sidestep a potential C++ ->
|
||||
Python -> C++ roundtrip. This is demonstrated in :file:`tests/test_callbacks.cpp`.
|
||||
|
||||
.. note::
|
||||
|
||||
This functionality is very useful when generating bindings for callbacks in
|
||||
C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
|
||||
|
||||
The file :file:`tests/test_callbacks.cpp` contains a complete example
|
||||
that demonstrates how to work with callbacks and anonymous functions in
|
||||
more detail.
|
148
docs/advanced/cast/index.rst
Normal file
148
docs/advanced/cast/index.rst
Normal file
@ -0,0 +1,148 @@
|
||||
Type conversions
|
||||
################
|
||||
|
||||
There are 3 mechanisms that pybind11 uses to move data between C++ and Python.
|
||||
We'll take a quick look at each one to get an overview of what's happening.
|
||||
|
||||
.. rubric:: 1. Native type in C++, wrapper in Python
|
||||
|
||||
Exposing a custom C++ type using :class:`py::class_` was covered in detail in
|
||||
the :doc:`/classes` section. There, the underlying data structure is always the
|
||||
original C++ class while the :class:`py::class_` wrapper provides a Python
|
||||
interface. Internally, when an object like this is sent from C++ to Python,
|
||||
pybind11 will just add the outer wrapper layer over the native C++ object.
|
||||
Getting it back from Python is just a matter of peeling off the wrapper.
|
||||
|
||||
.. rubric:: 2. Wrapper in C++, native type in Python
|
||||
|
||||
This is the exact opposite situation. Now, we have a type which is native to
|
||||
Python, like a ``tuple`` or a ``list``. One way to get this data into C++ is
|
||||
with the :class:`py::object` family of wrappers. These are explained in more
|
||||
detail in the :doc:`/advanced/pycpp/object` section. We'll just give a quick
|
||||
example here:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void print_list(py::list my_list) {
|
||||
for (auto item : my_list)
|
||||
std::cout << item << " ";
|
||||
}
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> print_list([1, 2, 3])
|
||||
1 2 3
|
||||
|
||||
The Python ``list`` is not converted in any way -- it's just wrapped in a C++
|
||||
:class:`py::list` class. At its core it's still a Python object. Copying a
|
||||
:class:`py::list` will do the usual reference-counting like in Python.
|
||||
Returning the object to Python will just remove the thin wrapper.
|
||||
|
||||
.. rubric:: 3. Converting between native C++ and Python types
|
||||
|
||||
In the previous two cases we had a native type in one language and a wrapper in
|
||||
the other. Now, we have native types on both sides and we convert between them.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void print_vector(const std::vector<int> &v) {
|
||||
for (auto item : v)
|
||||
std::cout << item << "\n";
|
||||
}
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> print_vector([1, 2, 3])
|
||||
1 2 3
|
||||
|
||||
In this case, pybind11 will construct a new ``std::vector<int>`` and copy each
|
||||
element from the Python ``list``. The newly constructed object will be passed
|
||||
to ``print_vector``. The same thing happens in the other direction: a new
|
||||
``list`` is made to match the value returned from C++.
|
||||
|
||||
Lots of these conversions are supported out of the box, as shown in the table
|
||||
below. They are very convenient, but keep in mind that these conversions are
|
||||
fundamentally based on copying data. This is perfectly fine for small immutable
|
||||
types but it may become quite expensive for large data structures. This can be
|
||||
avoided by overriding the automatic conversion with a custom wrapper (i.e. the
|
||||
above-mentioned approach 1). This requires some manual effort and more details
|
||||
are available in the :ref:`opaque` section.
|
||||
|
||||
.. rubric:: Supported automatic conversions
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
stl
|
||||
functional
|
||||
chrono
|
||||
eigen
|
||||
custom
|
||||
|
||||
The following basic data types are supported out of the box (some may require
|
||||
an additional extension header to be included). To pass other data structures
|
||||
as arguments and return values, refer to the section on binding :ref:`classes`.
|
||||
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| Data type | Description | Header file |
|
||||
+=================================+==========================+===============================+
|
||||
| ``int8_t``, ``uint8_t`` | 8-bit integers | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``int16_t``, ``uint16_t`` | 16-bit integers | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``int32_t``, ``uint32_t`` | 32-bit integers | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``int64_t``, ``uint64_t`` | 64-bit integers | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``ssize_t``, ``size_t`` | Platform-dependent size | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``float``, ``double`` | Floating point types | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``bool`` | Two-state Boolean type | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``char`` | Character literal | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``wchar_t`` | Wide character literal | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``const char *`` | UTF-8 string literal | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``const wchar_t *`` | Wide string literal | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::string`` | STL dynamic UTF-8 string | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::wstring`` | STL dynamic wide string | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::pair<T1, T2>`` | Pair of two custom types | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::tuple<...>`` | Arbitrary tuple of types | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::reference_wrapper<...>`` | Reference type wrapper | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::complex<T>`` | Complex numbers | :file:`pybind11/complex.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::array<T, Size>`` | STL static array | :file:`pybind11/stl.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::vector<T>`` | STL dynamic array | :file:`pybind11/stl.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::list<T>`` | STL linked list | :file:`pybind11/stl.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::map<T1, T2>`` | STL ordered map | :file:`pybind11/stl.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::unordered_map<T1, T2>`` | STL unordered map | :file:`pybind11/stl.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::set<T>`` | STL ordered set | :file:`pybind11/stl.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::unordered_set<T>`` | STL unordered set | :file:`pybind11/stl.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::function<...>`` | STL polymorphic function | :file:`pybind11/functional.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::chrono::duration<...>`` | STL time duration | :file:`pybind11/chrono.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::chrono::time_point<...>``| STL date/time | :file:`pybind11/chrono.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``Eigen::Matrix<...>`` | Eigen: dense matrix | :file:`pybind11/eigen.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``Eigen::Map<...>`` | Eigen: mapped memory | :file:`pybind11/eigen.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``Eigen::SparseMatrix<...>`` | Eigen: sparse matrix | :file:`pybind11/eigen.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
154
docs/advanced/cast/stl.rst
Normal file
154
docs/advanced/cast/stl.rst
Normal file
@ -0,0 +1,154 @@
|
||||
STL containers
|
||||
##############
|
||||
|
||||
Automatic conversion
|
||||
====================
|
||||
|
||||
When including the additional header file :file:`pybind11/stl.h`, conversions
|
||||
between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
|
||||
and the Python ``list``, ``set`` and ``dict`` data structures are automatically
|
||||
enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
|
||||
out of the box with just the core :file:`pybind11/pybind11.h` header.
|
||||
|
||||
The major downside of these implicit conversions is that containers must be
|
||||
converted (i.e. copied) on every Python->C++ and C++->Python transition, which
|
||||
can have implications on the program semantics and performance. Please read the
|
||||
next sections for more details and alternative approaches that avoid this.
|
||||
|
||||
.. note::
|
||||
|
||||
Arbitrary nesting of any of these types is possible.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_python_types.cpp` contains a complete
|
||||
example that demonstrates how to pass STL data types in more detail.
|
||||
|
||||
.. _opaque:
|
||||
|
||||
Making opaque types
|
||||
===================
|
||||
|
||||
pybind11 heavily relies on a template matching mechanism to convert parameters
|
||||
and return values that are constructed from STL data types such as vectors,
|
||||
linked lists, hash tables, etc. This even works in a recursive manner, for
|
||||
instance to deal with lists of hash maps of pairs of elementary and custom
|
||||
types, etc.
|
||||
|
||||
However, a fundamental limitation of this approach is that internal conversions
|
||||
between Python and C++ types involve a copy operation that prevents
|
||||
pass-by-reference semantics. What does this mean?
|
||||
|
||||
Suppose we bind the following function
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void append_1(std::vector<int> &v) {
|
||||
v.push_back(1);
|
||||
}
|
||||
|
||||
and call it from Python, the following happens:
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> v = [5, 6]
|
||||
>>> append_1(v)
|
||||
>>> print(v)
|
||||
[5, 6]
|
||||
|
||||
As you can see, when passing STL data structures by reference, modifications
|
||||
are not propagated back the Python side. A similar situation arises when
|
||||
exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
|
||||
functions:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
/* ... definition ... */
|
||||
|
||||
class MyClass {
|
||||
std::vector<int> contents;
|
||||
};
|
||||
|
||||
/* ... binding code ... */
|
||||
|
||||
py::class_<MyClass>(m, "MyClass")
|
||||
.def(py::init<>)
|
||||
.def_readwrite("contents", &MyClass::contents);
|
||||
|
||||
In this case, properties can be read and written in their entirety. However, an
|
||||
``append`` operation involving such a list type has no effect:
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> m = MyClass()
|
||||
>>> m.contents = [5, 6]
|
||||
>>> print(m.contents)
|
||||
[5, 6]
|
||||
>>> m.contents.append(7)
|
||||
>>> print(m.contents)
|
||||
[5, 6]
|
||||
|
||||
Finally, the involved copy operations can be costly when dealing with very
|
||||
large lists. To deal with all of the above situations, pybind11 provides a
|
||||
macro named ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based
|
||||
conversion machinery of types, thus rendering them *opaque*. The contents of
|
||||
opaque objects are never inspected or extracted, hence they *can* be passed by
|
||||
reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
|
||||
the declaration
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND11_MAKE_OPAQUE(std::vector<int>);
|
||||
|
||||
before any binding code (e.g. invocations to ``class_::def()``, etc.). This
|
||||
macro must be specified at the top level (and outside of any namespaces), since
|
||||
it instantiates a partial template overload. If your binding code consists of
|
||||
multiple compilation units, it must be present in every file preceding any
|
||||
usage of ``std::vector<int>``. Opaque types must also have a corresponding
|
||||
``class_`` declaration to associate them with a name in Python, and to define a
|
||||
set of available operations, e.g.:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<std::vector<int>>(m, "IntVector")
|
||||
.def(py::init<>())
|
||||
.def("clear", &std::vector<int>::clear)
|
||||
.def("pop_back", &std::vector<int>::pop_back)
|
||||
.def("__len__", [](const std::vector<int> &v) { return v.size(); })
|
||||
.def("__iter__", [](std::vector<int> &v) {
|
||||
return py::make_iterator(v.begin(), v.end());
|
||||
}, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
|
||||
// ....
|
||||
|
||||
The ability to expose STL containers as native Python objects is a fairly
|
||||
common request, hence pybind11 also provides an optional header file named
|
||||
:file:`pybind11/stl_bind.h` that does exactly this. The mapped containers try
|
||||
to match the behavior of their native Python counterparts as much as possible.
|
||||
|
||||
The following example showcases usage of :file:`pybind11/stl_bind.h`:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Don't forget this
|
||||
#include <pybind11/stl_bind.h>
|
||||
|
||||
PYBIND11_MAKE_OPAQUE(std::vector<int>);
|
||||
PYBIND11_MAKE_OPAQUE(std::map<std::string, double>);
|
||||
|
||||
// ...
|
||||
|
||||
// later in binding code:
|
||||
py::bind_vector<std::vector<int>>(m, "VectorInt");
|
||||
py::bind_map<std::map<std::string, double>>(m, "MapStringDouble");
|
||||
|
||||
Please take a look at the :ref:`macro_notes` before using the
|
||||
``PYBIND11_MAKE_OPAQUE`` macro.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_opaque_types.cpp` contains a complete
|
||||
example that demonstrates how to create and expose opaque types using
|
||||
pybind11 in more detail.
|
||||
|
||||
The file :file:`tests/test_stl_binders.cpp` shows how to use the
|
||||
convenience STL container wrappers.
|
634
docs/advanced/classes.rst
Normal file
634
docs/advanced/classes.rst
Normal file
@ -0,0 +1,634 @@
|
||||
Classes
|
||||
#######
|
||||
|
||||
This section presents advanced binding code for classes and it is assumed
|
||||
that you are already familiar with the basics from :doc:`/classes`.
|
||||
|
||||
.. _overriding_virtuals:
|
||||
|
||||
Overriding virtual functions in Python
|
||||
======================================
|
||||
|
||||
Suppose that a C++ class or interface has a virtual function that we'd like to
|
||||
to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
|
||||
given as a specific example of how one would do this with traditional C++
|
||||
code).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Animal {
|
||||
public:
|
||||
virtual ~Animal() { }
|
||||
virtual std::string go(int n_times) = 0;
|
||||
};
|
||||
|
||||
class Dog : public Animal {
|
||||
public:
|
||||
std::string go(int n_times) override {
|
||||
std::string result;
|
||||
for (int i=0; i<n_times; ++i)
|
||||
result += "woof! ";
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
Let's also suppose that we are given a plain function which calls the
|
||||
function ``go()`` on an arbitrary ``Animal`` instance.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
std::string call_go(Animal *animal) {
|
||||
return animal->go(3);
|
||||
}
|
||||
|
||||
Normally, the binding code for these classes would look as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND11_PLUGIN(example) {
|
||||
py::module m("example", "pybind11 example plugin");
|
||||
|
||||
py::class_<Animal> animal(m, "Animal");
|
||||
animal
|
||||
.def("go", &Animal::go);
|
||||
|
||||
py::class_<Dog>(m, "Dog", animal)
|
||||
.def(py::init<>());
|
||||
|
||||
m.def("call_go", &call_go);
|
||||
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
However, these bindings are impossible to extend: ``Animal`` is not
|
||||
constructible, and we clearly require some kind of "trampoline" that
|
||||
redirects virtual calls back to Python.
|
||||
|
||||
Defining a new type of ``Animal`` from within Python is possible but requires a
|
||||
helper class that is defined as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class PyAnimal : public Animal {
|
||||
public:
|
||||
/* Inherit the constructors */
|
||||
using Animal::Animal;
|
||||
|
||||
/* Trampoline (need one for each virtual function) */
|
||||
std::string go(int n_times) override {
|
||||
PYBIND11_OVERLOAD_PURE(
|
||||
std::string, /* Return type */
|
||||
Animal, /* Parent class */
|
||||
go, /* Name of function */
|
||||
n_times /* Argument(s) */
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
|
||||
functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
|
||||
a default implementation. There are also two alternate macros
|
||||
:func:`PYBIND11_OVERLOAD_PURE_NAME` and :func:`PYBIND11_OVERLOAD_NAME` which
|
||||
take a string-valued name argument between the *Parent class* and *Name of the
|
||||
function* slots. This is useful when the C++ and Python versions of the
|
||||
function have different names, e.g. ``operator()`` vs ``__call__``.
|
||||
|
||||
The binding code also needs a few minor adaptations (highlighted):
|
||||
|
||||
.. code-block:: cpp
|
||||
:emphasize-lines: 4,6,7
|
||||
|
||||
PYBIND11_PLUGIN(example) {
|
||||
py::module m("example", "pybind11 example plugin");
|
||||
|
||||
py::class_<Animal, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
|
||||
animal
|
||||
.def(py::init<>())
|
||||
.def("go", &Animal::go);
|
||||
|
||||
py::class_<Dog>(m, "Dog", animal)
|
||||
.def(py::init<>());
|
||||
|
||||
m.def("call_go", &call_go);
|
||||
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
Importantly, pybind11 is made aware of the trampoline helper class by
|
||||
specifying it as an extra template argument to :class:`class_`. (This can also
|
||||
be combined with other template arguments such as a custom holder type; the
|
||||
order of template types does not matter). Following this, we are able to
|
||||
define a constructor as usual.
|
||||
|
||||
Note, however, that the above is sufficient for allowing python classes to
|
||||
extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the
|
||||
necessary steps required to providing proper overload support for inherited
|
||||
classes.
|
||||
|
||||
The Python session below shows how to override ``Animal::go`` and invoke it via
|
||||
a virtual method call.
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> from example import *
|
||||
>>> d = Dog()
|
||||
>>> call_go(d)
|
||||
u'woof! woof! woof! '
|
||||
>>> class Cat(Animal):
|
||||
... def go(self, n_times):
|
||||
... return "meow! " * n_times
|
||||
...
|
||||
>>> c = Cat()
|
||||
>>> call_go(c)
|
||||
u'meow! meow! meow! '
|
||||
|
||||
Please take a look at the :ref:`macro_notes` before using this feature.
|
||||
|
||||
.. note::
|
||||
|
||||
When the overridden type returns a reference or pointer to a type that
|
||||
pybind11 converts from Python (for example, numeric values, std::string,
|
||||
and other built-in value-converting types), there are some limitations to
|
||||
be aware of:
|
||||
|
||||
- because in these cases there is no C++ variable to reference (the value
|
||||
is stored in the referenced Python variable), pybind11 provides one in
|
||||
the PYBIND11_OVERLOAD macros (when needed) with static storage duration.
|
||||
Note that this means that invoking the overloaded method on *any*
|
||||
instance will change the referenced value stored in *all* instances of
|
||||
that type.
|
||||
|
||||
- Attempts to modify a non-const reference will not have the desired
|
||||
effect: it will change only the static cache variable, but this change
|
||||
will not propagate to underlying Python instance, and the change will be
|
||||
replaced the next time the overload is invoked.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_virtual_functions.cpp` contains a complete
|
||||
example that demonstrates how to override virtual functions using pybind11
|
||||
in more detail.
|
||||
|
||||
.. _virtual_and_inheritance:
|
||||
|
||||
Combining virtual functions and inheritance
|
||||
===========================================
|
||||
|
||||
When combining virtual methods with inheritance, you need to be sure to provide
|
||||
an override for each method for which you want to allow overrides from derived
|
||||
python classes. For example, suppose we extend the above ``Animal``/``Dog``
|
||||
example as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Animal {
|
||||
public:
|
||||
virtual std::string go(int n_times) = 0;
|
||||
virtual std::string name() { return "unknown"; }
|
||||
};
|
||||
class Dog : public class Animal {
|
||||
public:
|
||||
std::string go(int n_times) override {
|
||||
std::string result;
|
||||
for (int i=0; i<n_times; ++i)
|
||||
result += bark() + " ";
|
||||
return result;
|
||||
}
|
||||
virtual std::string bark() { return "woof!"; }
|
||||
};
|
||||
|
||||
then the trampoline class for ``Animal`` must, as described in the previous
|
||||
section, override ``go()`` and ``name()``, but in order to allow python code to
|
||||
inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
|
||||
overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
|
||||
methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
|
||||
override the ``name()`` method):
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class PyAnimal : public Animal {
|
||||
public:
|
||||
using Animal::Animal; // Inherit constructors
|
||||
std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
|
||||
std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
|
||||
};
|
||||
class PyDog : public Dog {
|
||||
public:
|
||||
using Dog::Dog; // Inherit constructors
|
||||
std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); }
|
||||
std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
|
||||
std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
|
||||
};
|
||||
|
||||
A registered class derived from a pybind11-registered class with virtual
|
||||
methods requires a similar trampoline class, *even if* it doesn't explicitly
|
||||
declare or override any virtual methods itself:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Husky : public Dog {};
|
||||
class PyHusky : public Husky {
|
||||
using Dog::Dog; // Inherit constructors
|
||||
std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
|
||||
std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
|
||||
std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
|
||||
};
|
||||
|
||||
There is, however, a technique that can be used to avoid this duplication
|
||||
(which can be especially helpful for a base class with several virtual
|
||||
methods). The technique involves using template trampoline classes, as
|
||||
follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
|
||||
using AnimalBase::AnimalBase; // Inherit constructors
|
||||
std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
|
||||
std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
|
||||
};
|
||||
template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
|
||||
using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
|
||||
// Override PyAnimal's pure virtual go() with a non-pure one:
|
||||
std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
|
||||
std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
|
||||
};
|
||||
|
||||
This technique has the advantage of requiring just one trampoline method to be
|
||||
declared per virtual method and pure virtual method override. It does,
|
||||
however, require the compiler to generate at least as many methods (and
|
||||
possibly more, if both pure virtual and overridden pure virtual methods are
|
||||
exposed, as above).
|
||||
|
||||
The classes are then registered with pybind11 using:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Animal, PyAnimal<>> animal(m, "Animal");
|
||||
py::class_<Dog, PyDog<>> dog(m, "Dog");
|
||||
py::class_<Husky, PyDog<Husky>> husky(m, "Husky");
|
||||
// ... add animal, dog, husky definitions
|
||||
|
||||
Note that ``Husky`` did not require a dedicated trampoline template class at
|
||||
all, since it neither declares any new virtual methods nor provides any pure
|
||||
virtual method implementations.
|
||||
|
||||
With either the repeated-virtuals or templated trampoline methods in place, you
|
||||
can now create a python class that inherits from ``Dog``:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class ShihTzu(Dog):
|
||||
def bark(self):
|
||||
return "yip!"
|
||||
|
||||
.. seealso::
|
||||
|
||||
See the file :file:`tests/test_virtual_functions.cpp` for complete examples
|
||||
using both the duplication and templated trampoline approaches.
|
||||
|
||||
Extended trampoline class functionality
|
||||
=======================================
|
||||
|
||||
The trampoline classes described in the previous sections are, by default, only
|
||||
initialized when needed. More specifically, they are initialized when a python
|
||||
class actually inherits from a registered type (instead of merely creating an
|
||||
instance of the registered type), or when a registered constructor is only
|
||||
valid for the trampoline class but not the registered class. This is primarily
|
||||
for performance reasons: when the trampoline class is not needed for anything
|
||||
except virtual method dispatching, not initializing the trampoline class
|
||||
improves performance by avoiding needing to do a run-time check to see if the
|
||||
inheriting python instance has an overloaded method.
|
||||
|
||||
Sometimes, however, it is useful to always initialize a trampoline class as an
|
||||
intermediate class that does more than just handle virtual method dispatching.
|
||||
For example, such a class might perform extra class initialization, extra
|
||||
destruction operations, and might define new members and methods to enable a
|
||||
more python-like interface to a class.
|
||||
|
||||
In order to tell pybind11 that it should *always* initialize the trampoline
|
||||
class when creating new instances of a type, the class constructors should be
|
||||
declared using ``py::init_alias<Args, ...>()`` instead of the usual
|
||||
``py::init<Args, ...>()``. This forces construction via the trampoline class,
|
||||
ensuring member initialization and (eventual) destruction.
|
||||
|
||||
.. seealso::
|
||||
|
||||
See the file :file:`tests/test_alias_initialization.cpp` for complete examples
|
||||
showing both normal and forced trampoline instantiation.
|
||||
|
||||
.. _custom_constructors:
|
||||
|
||||
Custom constructors
|
||||
===================
|
||||
|
||||
The syntax for binding constructors was previously introduced, but it only
|
||||
works when a constructor with the given parameters actually exists on the C++
|
||||
side. To extend this to more general cases, let's take a look at what actually
|
||||
happens under the hood: the following statement
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Example>(m, "Example")
|
||||
.def(py::init<int>());
|
||||
|
||||
is short hand notation for
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Example>(m, "Example")
|
||||
.def("__init__",
|
||||
[](Example &instance, int arg) {
|
||||
new (&instance) Example(arg);
|
||||
}
|
||||
);
|
||||
|
||||
In other words, :func:`init` creates an anonymous function that invokes an
|
||||
in-place constructor. Memory allocation etc. is already take care of beforehand
|
||||
within pybind11.
|
||||
|
||||
.. _classes_with_non_public_destructors:
|
||||
|
||||
Non-public destructors
|
||||
======================
|
||||
|
||||
If a class has a private or protected destructor (as might e.g. be the case in
|
||||
a singleton pattern), a compile error will occur when creating bindings via
|
||||
pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that
|
||||
is responsible for managing the lifetime of instances will reference the
|
||||
destructor even if no deallocations ever take place. In order to expose classes
|
||||
with private or protected destructors, it is possible to override the holder
|
||||
type via a holder type argument to ``class_``. Pybind11 provides a helper class
|
||||
``py::nodelete`` that disables any destructor invocations. In this case, it is
|
||||
crucial that instances are deallocated on the C++ side to avoid memory leaks.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
/* ... definition ... */
|
||||
|
||||
class MyClass {
|
||||
private:
|
||||
~MyClass() { }
|
||||
};
|
||||
|
||||
/* ... binding code ... */
|
||||
|
||||
py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
|
||||
.def(py::init<>)
|
||||
|
||||
Implicit conversions
|
||||
====================
|
||||
|
||||
Suppose that instances of two types ``A`` and ``B`` are used in a project, and
|
||||
that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
|
||||
could be a fixed and an arbitrary precision number type).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<A>(m, "A")
|
||||
/// ... members ...
|
||||
|
||||
py::class_<B>(m, "B")
|
||||
.def(py::init<A>())
|
||||
/// ... members ...
|
||||
|
||||
m.def("func",
|
||||
[](const B &) { /* .... */ }
|
||||
);
|
||||
|
||||
To invoke the function ``func`` using a variable ``a`` containing an ``A``
|
||||
instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
|
||||
will automatically apply an implicit type conversion, which makes it possible
|
||||
to directly write ``func(a)``.
|
||||
|
||||
In this situation (i.e. where ``B`` has a constructor that converts from
|
||||
``A``), the following statement enables similar implicit conversions on the
|
||||
Python side:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::implicitly_convertible<A, B>();
|
||||
|
||||
.. note::
|
||||
|
||||
Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
|
||||
data type that is exposed to Python via pybind11.
|
||||
|
||||
.. _static_properties:
|
||||
|
||||
Static properties
|
||||
=================
|
||||
|
||||
The section on :ref:`properties` discussed the creation of instance properties
|
||||
that are implemented in terms of C++ getters and setters.
|
||||
|
||||
Static properties can also be created in a similar way to expose getters and
|
||||
setters of static class attributes. It is important to note that the implicit
|
||||
``self`` argument also exists in this case and is used to pass the Python
|
||||
``type`` subclass instance. This parameter will often not be needed by the C++
|
||||
side, and the following example illustrates how to instantiate a lambda getter
|
||||
function that ignores it:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Foo>(m, "Foo")
|
||||
.def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
|
||||
|
||||
Operator overloading
|
||||
====================
|
||||
|
||||
Suppose that we're given the following ``Vector2`` class with a vector addition
|
||||
and scalar multiplication operation, all implemented using overloaded operators
|
||||
in C++.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Vector2 {
|
||||
public:
|
||||
Vector2(float x, float y) : x(x), y(y) { }
|
||||
|
||||
Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
|
||||
Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
|
||||
Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
|
||||
Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
|
||||
|
||||
friend Vector2 operator*(float f, const Vector2 &v) {
|
||||
return Vector2(f * v.x, f * v.y);
|
||||
}
|
||||
|
||||
std::string toString() const {
|
||||
return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
|
||||
}
|
||||
private:
|
||||
float x, y;
|
||||
};
|
||||
|
||||
The following snippet shows how the above operators can be conveniently exposed
|
||||
to Python.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/operators.h>
|
||||
|
||||
PYBIND11_PLUGIN(example) {
|
||||
py::module m("example", "pybind11 example plugin");
|
||||
|
||||
py::class_<Vector2>(m, "Vector2")
|
||||
.def(py::init<float, float>())
|
||||
.def(py::self + py::self)
|
||||
.def(py::self += py::self)
|
||||
.def(py::self *= float())
|
||||
.def(float() * py::self)
|
||||
.def("__repr__", &Vector2::toString);
|
||||
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
Note that a line like
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
.def(py::self * float())
|
||||
|
||||
is really just short hand notation for
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
.def("__mul__", [](const Vector2 &a, float b) {
|
||||
return a * b;
|
||||
}, py::is_operator())
|
||||
|
||||
This can be useful for exposing additional operators that don't exist on the
|
||||
C++ side, or to perform other types of customization. The ``py::is_operator``
|
||||
flag marker is needed to inform pybind11 that this is an operator, which
|
||||
returns ``NotImplemented`` when invoked with incompatible arguments rather than
|
||||
throwing a type error.
|
||||
|
||||
.. note::
|
||||
|
||||
To use the more convenient ``py::self`` notation, the additional
|
||||
header file :file:`pybind11/operators.h` must be included.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_operator_overloading.cpp` contains a
|
||||
complete example that demonstrates how to work with overloaded operators in
|
||||
more detail.
|
||||
|
||||
Pickling support
|
||||
================
|
||||
|
||||
Python's ``pickle`` module provides a powerful facility to serialize and
|
||||
de-serialize a Python object graph into a binary data stream. To pickle and
|
||||
unpickle C++ classes using pybind11, two additional functions must be provided.
|
||||
Suppose the class in question has the following signature:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Pickleable {
|
||||
public:
|
||||
Pickleable(const std::string &value) : m_value(value) { }
|
||||
const std::string &value() const { return m_value; }
|
||||
|
||||
void setExtra(int extra) { m_extra = extra; }
|
||||
int extra() const { return m_extra; }
|
||||
private:
|
||||
std::string m_value;
|
||||
int m_extra = 0;
|
||||
};
|
||||
|
||||
The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
|
||||
looks as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Pickleable>(m, "Pickleable")
|
||||
.def(py::init<std::string>())
|
||||
.def("value", &Pickleable::value)
|
||||
.def("extra", &Pickleable::extra)
|
||||
.def("setExtra", &Pickleable::setExtra)
|
||||
.def("__getstate__", [](const Pickleable &p) {
|
||||
/* Return a tuple that fully encodes the state of the object */
|
||||
return py::make_tuple(p.value(), p.extra());
|
||||
})
|
||||
.def("__setstate__", [](Pickleable &p, py::tuple t) {
|
||||
if (t.size() != 2)
|
||||
throw std::runtime_error("Invalid state!");
|
||||
|
||||
/* Invoke the in-place constructor. Note that this is needed even
|
||||
when the object just has a trivial default constructor */
|
||||
new (&p) Pickleable(t[0].cast<std::string>());
|
||||
|
||||
/* Assign any additional state */
|
||||
p.setExtra(t[1].cast<int>());
|
||||
});
|
||||
|
||||
An instance can now be pickled as follows:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
try:
|
||||
import cPickle as pickle # Use cPickle on Python 2.7
|
||||
except ImportError:
|
||||
import pickle
|
||||
|
||||
p = Pickleable("test_value")
|
||||
p.setExtra(15)
|
||||
data = pickle.dumps(p, 2)
|
||||
|
||||
Note that only the cPickle module is supported on Python 2.7. The second
|
||||
argument to ``dumps`` is also crucial: it selects the pickle protocol version
|
||||
2, since the older version 1 is not supported. Newer versions are also fine—for
|
||||
instance, specify ``-1`` to always use the latest available version. Beware:
|
||||
failure to follow these instructions will cause important pybind11 memory
|
||||
allocation routines to be skipped during unpickling, which will likely lead to
|
||||
memory corruption and/or segmentation faults.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_pickling.cpp` contains a complete example
|
||||
that demonstrates how to pickle and unpickle types using pybind11 in more
|
||||
detail.
|
||||
|
||||
.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
|
||||
|
||||
Multiple Inheritance
|
||||
====================
|
||||
|
||||
pybind11 can create bindings for types that derive from multiple base types
|
||||
(aka. *multiple inheritance*). To do so, specify all bases in the template
|
||||
arguments of the ``class_`` declaration:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType")
|
||||
...
|
||||
|
||||
The base types can be specified in arbitrary order, and they can even be
|
||||
interspersed with alias types and holder types (discussed earlier in this
|
||||
document)---pybind11 will automatically find out which is which. The only
|
||||
requirement is that the first template argument is the type to be declared.
|
||||
|
||||
There are two caveats regarding the implementation of this feature:
|
||||
|
||||
1. When only one base type is specified for a C++ type that actually has
|
||||
multiple bases, pybind11 will assume that it does not participate in
|
||||
multiple inheritance, which can lead to undefined behavior. In such cases,
|
||||
add the tag ``multiple_inheritance``:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance());
|
||||
|
||||
The tag is redundant and does not need to be specified when multiple base
|
||||
types are listed.
|
||||
|
||||
2. As was previously discussed in the section on :ref:`overriding_virtuals`, it
|
||||
is easy to create Python types that derive from C++ classes. It is even
|
||||
possible to make use of multiple inheritance to declare a Python class which
|
||||
has e.g. a C++ and a Python class as bases. However, any attempt to create a
|
||||
type that has *two or more* C++ classes in its hierarchy of base types will
|
||||
fail with a fatal error message: ``TypeError: multiple bases have instance
|
||||
lay-out conflict``. Core Python types that are implemented in C (e.g.
|
||||
``dict``, ``list``, ``Exception``, etc.) also fall under this combination
|
||||
and cannot be combined with C++ types bound using pybind11 via multiple
|
||||
inheritance.
|
142
docs/advanced/exceptions.rst
Normal file
142
docs/advanced/exceptions.rst
Normal file
@ -0,0 +1,142 @@
|
||||
Exceptions
|
||||
##########
|
||||
|
||||
Built-in exception translation
|
||||
==============================
|
||||
|
||||
When C++ code invoked from Python throws an ``std::exception``, it is
|
||||
automatically converted into a Python ``Exception``. pybind11 defines multiple
|
||||
special exception classes that will map to different types of Python
|
||||
exceptions:
|
||||
|
||||
.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
|
||||
|
||||
+--------------------------------------+------------------------------+
|
||||
| C++ exception type | Python exception type |
|
||||
+======================================+==============================+
|
||||
| :class:`std::exception` | ``RuntimeError`` |
|
||||
+--------------------------------------+------------------------------+
|
||||
| :class:`std::bad_alloc` | ``MemoryError`` |
|
||||
+--------------------------------------+------------------------------+
|
||||
| :class:`std::domain_error` | ``ValueError`` |
|
||||
+--------------------------------------+------------------------------+
|
||||
| :class:`std::invalid_argument` | ``ValueError`` |
|
||||
+--------------------------------------+------------------------------+
|
||||
| :class:`std::length_error` | ``ValueError`` |
|
||||
+--------------------------------------+------------------------------+
|
||||
| :class:`std::out_of_range` | ``ValueError`` |
|
||||
+--------------------------------------+------------------------------+
|
||||
| :class:`std::range_error` | ``ValueError`` |
|
||||
+--------------------------------------+------------------------------+
|
||||
| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
|
||||
| | implement custom iterators) |
|
||||
+--------------------------------------+------------------------------+
|
||||
| :class:`pybind11::index_error` | ``IndexError`` (used to |
|
||||
| | indicate out of bounds |
|
||||
| | accesses in ``__getitem__``, |
|
||||
| | ``__setitem__``, etc.) |
|
||||
+--------------------------------------+------------------------------+
|
||||
| :class:`pybind11::value_error` | ``ValueError`` (used to |
|
||||
| | indicate wrong value passed |
|
||||
| | in ``container.remove(...)`` |
|
||||
+--------------------------------------+------------------------------+
|
||||
| :class:`pybind11::key_error` | ``KeyError`` (used to |
|
||||
| | indicate out of bounds |
|
||||
| | accesses in ``__getitem__``, |
|
||||
| | ``__setitem__`` in dict-like |
|
||||
| | objects, etc.) |
|
||||
+--------------------------------------+------------------------------+
|
||||
| :class:`pybind11::error_already_set` | Indicates that the Python |
|
||||
| | exception flag has already |
|
||||
| | been initialized |
|
||||
+--------------------------------------+------------------------------+
|
||||
|
||||
When a Python function invoked from C++ throws an exception, it is converted
|
||||
into a C++ exception of type :class:`error_already_set` whose string payload
|
||||
contains a textual summary.
|
||||
|
||||
There is also a special exception :class:`cast_error` that is thrown by
|
||||
:func:`handle::call` when the input arguments cannot be converted to Python
|
||||
objects.
|
||||
|
||||
Registering custom translators
|
||||
==============================
|
||||
|
||||
If the default exception conversion policy described above is insufficient,
|
||||
pybind11 also provides support for registering custom exception translators.
|
||||
To register a simple exception conversion that translates a C++ exception into
|
||||
a new Python exception using the C++ exception's ``what()`` method, a helper
|
||||
function is available:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::register_exception<CppExp>(module, "PyExp");
|
||||
|
||||
This call creates a Python exception class with the name ``PyExp`` in the given
|
||||
module and automatically converts any encountered exceptions of type ``CppExp``
|
||||
into Python exceptions of type ``PyExp``.
|
||||
|
||||
When more advanced exception translation is needed, the function
|
||||
``py::register_exception_translator(translator)`` can be used to register
|
||||
functions that can translate arbitrary exception types (and which may include
|
||||
additional logic to do so). The function takes a stateless callable (e.g. a
|
||||
function pointer or a lambda function without captured variables) with the call
|
||||
signature ``void(std::exception_ptr)``.
|
||||
|
||||
When a C++ exception is thrown, the registered exception translators are tried
|
||||
in reverse order of registration (i.e. the last registered translator gets the
|
||||
first shot at handling the exception).
|
||||
|
||||
Inside the translator, ``std::rethrow_exception`` should be used within
|
||||
a try block to re-throw the exception. One or more catch clauses to catch
|
||||
the appropriate exceptions should then be used with each clause using
|
||||
``PyErr_SetString`` to set a Python exception or ``ex(string)`` to set
|
||||
the python exception to a custom exception type (see below).
|
||||
|
||||
To declare a custom Python exception type, declare a ``py::exception`` variable
|
||||
and use this in the associated exception translator (note: it is often useful
|
||||
to make this a static declaration when using it inside a lambda expression
|
||||
without requiring capturing).
|
||||
|
||||
|
||||
The following example demonstrates this for a hypothetical exception classes
|
||||
``MyCustomException`` and ``OtherException``: the first is translated to a
|
||||
custom python exception ``MyCustomError``, while the second is translated to a
|
||||
standard python RuntimeError:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
static py::exception<MyCustomException> exc(m, "MyCustomError");
|
||||
py::register_exception_translator([](std::exception_ptr p) {
|
||||
try {
|
||||
if (p) std::rethrow_exception(p);
|
||||
} catch (const MyCustomException &e) {
|
||||
exc(e.what());
|
||||
} catch (const OtherException &e) {
|
||||
PyErr_SetString(PyExc_RuntimeError, e.what());
|
||||
}
|
||||
});
|
||||
|
||||
Multiple exceptions can be handled by a single translator, as shown in the
|
||||
example above. If the exception is not caught by the current translator, the
|
||||
previously registered one gets a chance.
|
||||
|
||||
If none of the registered exception translators is able to handle the
|
||||
exception, it is handled by the default converter as described in the previous
|
||||
section.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_exceptions.cpp` contains examples
|
||||
of various custom exception translators and custom exception types.
|
||||
|
||||
.. note::
|
||||
|
||||
You must call either ``PyErr_SetString`` or a custom exception's call
|
||||
operator (``exc(string)``) for every exception caught in a custom exception
|
||||
translator. Failure to do so will cause Python to crash with ``SystemError:
|
||||
error return without exception set``.
|
||||
|
||||
Exceptions that you do not plan to handle should simply not be caught, or
|
||||
may be explicity (re-)thrown to delegate it to the other,
|
||||
previously-declared existing exception translators.
|
263
docs/advanced/functions.rst
Normal file
263
docs/advanced/functions.rst
Normal file
@ -0,0 +1,263 @@
|
||||
Functions
|
||||
#########
|
||||
|
||||
Before proceeding with this section, make sure that you are already familiar
|
||||
with the basics of binding functions and classes, as explained in :doc:`/basics`
|
||||
and :doc:`/classes`. The following guide is applicable to both free and member
|
||||
functions, i.e. *methods* in Python.
|
||||
|
||||
Return value policies
|
||||
=====================
|
||||
|
||||
Python and C++ use wildly different ways of managing the memory and lifetime of
|
||||
objects managed by them. This can lead to issues when creating bindings for
|
||||
functions that return a non-trivial type. Just by looking at the type
|
||||
information, it is not clear whether Python should take charge of the returned
|
||||
value and eventually free its resources, or if this is handled on the C++ side.
|
||||
For this reason, pybind11 provides a several `return value policy` annotations
|
||||
that can be passed to the :func:`module::def` and :func:`class_::def`
|
||||
functions. The default policy is :enum:`return_value_policy::automatic`.
|
||||
|
||||
Return value policies can also be applied to properties, in which case the
|
||||
arguments must be passed through the :class:`cpp_function` constructor:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class_<MyClass>(m, "MyClass")
|
||||
def_property("data"
|
||||
py::cpp_function(&MyClass::getData, py::return_value_policy::copy),
|
||||
py::cpp_function(&MyClass::setData)
|
||||
);
|
||||
|
||||
The following table provides an overview of the available return value policies:
|
||||
|
||||
.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
|
||||
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
| Return value policy | Description |
|
||||
+==================================================+============================================================================+
|
||||
| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
|
||||
| | :enum:`return_value_policy::take_ownership` when the return value is a |
|
||||
| | pointer. Otherwise, it uses :enum:`return_value::move` or |
|
||||
| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
|
||||
| | See below for a description of what all of these different policies do. |
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
|
||||
| | return value is a pointer. This is the default conversion policy for |
|
||||
| | function arguments when calling Python functions manually from C++ code |
|
||||
| | (i.e. via handle::operator()). You probably won't need to use this. |
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
|
||||
| | ownership. Python will call the destructor and delete operator when the |
|
||||
| | object's reference count reaches zero. Undefined behavior ensues when the |
|
||||
| | C++ side does the same. |
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
|
||||
| | This policy is comparably safe because the lifetimes of the two instances |
|
||||
| | are decoupled. |
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
|
||||
| | that will be owned by Python. This policy is comparably safe because the |
|
||||
| | lifetimes of the two instances (move source and destination) are decoupled.|
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
|
||||
| | responsible for managing the object's lifetime and deallocating it when |
|
||||
| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
|
||||
| | side deletes an object that is still referenced and used by Python. |
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime |
|
||||
| | of a parent object, namely the implicit ``this``, or ``self`` argument of |
|
||||
| | the called method or property. Internally, this policy works just like |
|
||||
| | :enum:`return_value_policy::reference` but additionally applies a |
|
||||
| | ``keep_alive<0, 1>`` *call policy* (described in the next section) that |
|
||||
| | prevents the parent object from being garbage collected as long as the |
|
||||
| | return value is referenced by Python. This is the default policy for |
|
||||
| | property getters created via ``def_property``, ``def_readwrite``, etc. |
|
||||
+--------------------------------------------------+----------------------------------------------------------------------------+
|
||||
|
||||
.. warning::
|
||||
|
||||
Code with invalid return value policies might access unitialized memory or
|
||||
free data structures multiple times, which can lead to hard-to-debug
|
||||
non-determinism and segmentation faults, hence it is worth spending the
|
||||
time to understand all the different options in the table above.
|
||||
|
||||
One important aspect of the above policies is that they only apply to instances
|
||||
which pybind11 has *not* seen before, in which case the policy clarifies
|
||||
essential questions about the return value's lifetime and ownership. When
|
||||
pybind11 knows the instance already (as identified by its type and address in
|
||||
memory), it will return the existing Python object wrapper rather than creating
|
||||
a new copy.
|
||||
|
||||
.. note::
|
||||
|
||||
The next section on :ref:`call_policies` discusses *call policies* that can be
|
||||
specified *in addition* to a return value policy from the list above. Call
|
||||
policies indicate reference relationships that can involve both return values
|
||||
and parameters of functions.
|
||||
|
||||
.. note::
|
||||
|
||||
As an alternative to elaborate call policies and lifetime management logic,
|
||||
consider using smart pointers (see the section on :ref:`smart_pointers` for
|
||||
details). Smart pointers can tell whether an object is still referenced from
|
||||
C++ or Python, which generally eliminates the kinds of inconsistencies that
|
||||
can lead to crashes or undefined behavior. For functions returning smart
|
||||
pointers, it is not necessary to specify a return value policy.
|
||||
|
||||
.. _call_policies:
|
||||
|
||||
Additional call policies
|
||||
========================
|
||||
|
||||
In addition to the above return value policies, further `call policies` can be
|
||||
specified to indicate dependencies between parameters. There is currently just
|
||||
one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
|
||||
argument with index ``Patient`` should be kept alive at least until the
|
||||
argument with index ``Nurse`` is freed by the garbage collector. Argument
|
||||
indices start at one, while zero refers to the return value. For methods, index
|
||||
``1`` refers to the implicit ``this`` pointer, while regular arguments begin at
|
||||
index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse``
|
||||
with value ``None`` is detected at runtime, the call policy does nothing.
|
||||
|
||||
This feature internally relies on the ability to create a *weak reference* to
|
||||
the nurse object, which is permitted by all classes exposed via pybind11. When
|
||||
the nurse object does not support weak references, an exception will be thrown.
|
||||
|
||||
Consider the following example: here, the binding code for a list append
|
||||
operation ties the lifetime of the newly added element to the underlying
|
||||
container:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<List>(m, "List")
|
||||
.def("append", &List::append, py::keep_alive<1, 2>());
|
||||
|
||||
.. note::
|
||||
|
||||
``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
|
||||
Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
|
||||
0) policies from Boost.Python.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_keep_alive.cpp` contains a complete example
|
||||
that demonstrates using :class:`keep_alive` in more detail.
|
||||
|
||||
.. _python_objects_as_args:
|
||||
|
||||
Python objects as arguments
|
||||
===========================
|
||||
|
||||
pybind11 exposes all major Python types using thin C++ wrapper classes. These
|
||||
wrapper classes can also be used as parameters of functions in bindings, which
|
||||
makes it possible to directly work with native Python types on the C++ side.
|
||||
For instance, the following statement iterates over a Python ``dict``:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void print_dict(py::dict dict) {
|
||||
/* Easily interact with Python types */
|
||||
for (auto item : dict)
|
||||
std::cout << "key=" << item.first << ", "
|
||||
<< "value=" << item.second << std::endl;
|
||||
}
|
||||
|
||||
It can be exported:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("print_dict", &print_dict);
|
||||
|
||||
And used in Python as usual:
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> print_dict({'foo': 123, 'bar': 'hello'})
|
||||
key=foo, value=123
|
||||
key=bar, value=hello
|
||||
|
||||
For more information on using Python objects in C++, see :doc:`/advanced/pycpp/index`.
|
||||
|
||||
Accepting \*args and \*\*kwargs
|
||||
===============================
|
||||
|
||||
Python provides a useful mechanism to define functions that accept arbitrary
|
||||
numbers of arguments and keyword arguments:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def generic(*args, **kwargs):
|
||||
... # do something with args and kwargs
|
||||
|
||||
Such functions can also be created using pybind11:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void generic(py::args args, py::kwargs kwargs) {
|
||||
/// .. do something with args
|
||||
if (kwargs)
|
||||
/// .. do something with kwargs
|
||||
}
|
||||
|
||||
/// Binding code
|
||||
m.def("generic", &generic);
|
||||
|
||||
The class ``py::args`` derives from ``py::tuple`` and ``py::kwargs`` derives
|
||||
from ``py::dict``. Note that the ``kwargs`` argument is invalid if no keyword
|
||||
arguments were actually provided. Please refer to the other examples for
|
||||
details on how to iterate over these, and on how to cast their entries into
|
||||
C++ objects. A demonstration is also available in
|
||||
``tests/test_kwargs_and_defaults.cpp``.
|
||||
|
||||
.. warning::
|
||||
|
||||
Unlike Python, pybind11 does not allow combining normal parameters with the
|
||||
``args`` / ``kwargs`` special parameters.
|
||||
|
||||
Default arguments revisited
|
||||
===========================
|
||||
|
||||
The section on :ref:`default_args` previously discussed basic usage of default
|
||||
arguments using pybind11. One noteworthy aspect of their implementation is that
|
||||
default arguments are converted to Python objects right at declaration time.
|
||||
Consider the following example:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<MyClass>("MyClass")
|
||||
.def("myFunction", py::arg("arg") = SomeType(123));
|
||||
|
||||
In this case, pybind11 must already be set up to deal with values of the type
|
||||
``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
|
||||
exception will be thrown.
|
||||
|
||||
Another aspect worth highlighting is that the "preview" of the default argument
|
||||
in the function signature is generated using the object's ``__repr__`` method.
|
||||
If not available, the signature may not be very helpful, e.g.:
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
FUNCTIONS
|
||||
...
|
||||
| myFunction(...)
|
||||
| Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
|
||||
...
|
||||
|
||||
The first way of addressing this is by defining ``SomeType.__repr__``.
|
||||
Alternatively, it is possible to specify the human-readable preview of the
|
||||
default argument manually using the ``arg_v`` notation:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<MyClass>("MyClass")
|
||||
.def("myFunction", py::arg_v("arg", SomeType(123), "SomeType(123)"));
|
||||
|
||||
Sometimes it may be necessary to pass a null pointer value as a default
|
||||
argument. In this case, remember to cast it to the underlying type in question,
|
||||
like so:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<MyClass>("MyClass")
|
||||
.def("myFunction", py::arg("arg") = (SomeType *) nullptr);
|
187
docs/advanced/misc.rst
Normal file
187
docs/advanced/misc.rst
Normal file
@ -0,0 +1,187 @@
|
||||
Miscellaneous
|
||||
#############
|
||||
|
||||
.. _macro_notes:
|
||||
|
||||
General notes regarding convenience macros
|
||||
==========================================
|
||||
|
||||
pybind11 provides a few convenience macros such as
|
||||
:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
|
||||
``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
|
||||
in the preprocessor (which has no concept of types), they *will* get confused
|
||||
by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
|
||||
T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
|
||||
the beginning of the next parameter. Use a ``typedef`` to bind the template to
|
||||
another name and use it in the macro to avoid this problem.
|
||||
|
||||
|
||||
Global Interpreter Lock (GIL)
|
||||
=============================
|
||||
|
||||
The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
|
||||
used to acquire and release the global interpreter lock in the body of a C++
|
||||
function call. In this way, long-running C++ code can be parallelized using
|
||||
multiple Python threads. Taking :ref:`overriding_virtuals` as an example, this
|
||||
could be realized as follows (important changes highlighted):
|
||||
|
||||
.. code-block:: cpp
|
||||
:emphasize-lines: 8,9,33,34
|
||||
|
||||
class PyAnimal : public Animal {
|
||||
public:
|
||||
/* Inherit the constructors */
|
||||
using Animal::Animal;
|
||||
|
||||
/* Trampoline (need one for each virtual function) */
|
||||
std::string go(int n_times) {
|
||||
/* Acquire GIL before calling Python code */
|
||||
py::gil_scoped_acquire acquire;
|
||||
|
||||
PYBIND11_OVERLOAD_PURE(
|
||||
std::string, /* Return type */
|
||||
Animal, /* Parent class */
|
||||
go, /* Name of function */
|
||||
n_times /* Argument(s) */
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
PYBIND11_PLUGIN(example) {
|
||||
py::module m("example", "pybind11 example plugin");
|
||||
|
||||
py::class_<Animal, PyAnimal> animal(m, "Animal");
|
||||
animal
|
||||
.def(py::init<>())
|
||||
.def("go", &Animal::go);
|
||||
|
||||
py::class_<Dog>(m, "Dog", animal)
|
||||
.def(py::init<>());
|
||||
|
||||
m.def("call_go", [](Animal *animal) -> std::string {
|
||||
/* Release GIL before calling into (potentially long-running) C++ code */
|
||||
py::gil_scoped_release release;
|
||||
return call_go(animal);
|
||||
});
|
||||
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
|
||||
Binding sequence data types, iterators, the slicing protocol, etc.
|
||||
==================================================================
|
||||
|
||||
Please refer to the supplemental example for details.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_sequences_and_iterators.cpp` contains a
|
||||
complete example that shows how to bind a sequence data type, including
|
||||
length queries (``__len__``), iterators (``__iter__``), the slicing
|
||||
protocol and other kinds of useful operations.
|
||||
|
||||
|
||||
Partitioning code over multiple extension modules
|
||||
=================================================
|
||||
|
||||
It's straightforward to split binding code over multiple extension modules,
|
||||
while referencing types that are declared elsewhere. Everything "just" works
|
||||
without any special precautions. One exception to this rule occurs when
|
||||
extending a type declared in another extension module. Recall the basic example
|
||||
from Section :ref:`inheritance`.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Pet> pet(m, "Pet");
|
||||
pet.def(py::init<const std::string &>())
|
||||
.def_readwrite("name", &Pet::name);
|
||||
|
||||
py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
|
||||
.def(py::init<const std::string &>())
|
||||
.def("bark", &Dog::bark);
|
||||
|
||||
Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
|
||||
whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
|
||||
course that the variable ``pet`` is not available anymore though it is needed
|
||||
to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
|
||||
However, it can be acquired as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::object pet = (py::object) py::module::import("basic").attr("Pet");
|
||||
|
||||
py::class_<Dog>(m, "Dog", pet)
|
||||
.def(py::init<const std::string &>())
|
||||
.def("bark", &Dog::bark);
|
||||
|
||||
Alternatively, you can specify the base class as a template parameter option to
|
||||
``class_``, which performs an automated lookup of the corresponding Python
|
||||
type. Like the above code, however, this also requires invoking the ``import``
|
||||
function once to ensure that the pybind11 binding code of the module ``basic``
|
||||
has been executed:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::module::import("basic");
|
||||
|
||||
py::class_<Dog, Pet>(m, "Dog")
|
||||
.def(py::init<const std::string &>())
|
||||
.def("bark", &Dog::bark);
|
||||
|
||||
Naturally, both methods will fail when there are cyclic dependencies.
|
||||
|
||||
Note that compiling code which has its default symbol visibility set to
|
||||
*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
|
||||
ability to access types defined in another extension module. Workarounds
|
||||
include changing the global symbol visibility (not recommended, because it will
|
||||
lead unnecessarily large binaries) or manually exporting types that are
|
||||
accessed by multiple extension modules:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#ifdef _WIN32
|
||||
# define EXPORT_TYPE __declspec(dllexport)
|
||||
#else
|
||||
# define EXPORT_TYPE __attribute__ ((visibility("default")))
|
||||
#endif
|
||||
|
||||
class EXPORT_TYPE Dog : public Animal {
|
||||
...
|
||||
};
|
||||
|
||||
|
||||
|
||||
Generating documentation using Sphinx
|
||||
=====================================
|
||||
|
||||
Sphinx [#f4]_ has the ability to inspect the signatures and documentation
|
||||
strings in pybind11-based extension modules to automatically generate beautiful
|
||||
documentation in a variety formats. The python_example repository [#f5]_ contains a
|
||||
simple example repository which uses this approach.
|
||||
|
||||
There are two potential gotchas when using this approach: first, make sure that
|
||||
the resulting strings do not contain any :kbd:`TAB` characters, which break the
|
||||
docstring parsing routines. You may want to use C++11 raw string literals,
|
||||
which are convenient for multi-line comments. Conveniently, any excess
|
||||
indentation will be automatically be removed by Sphinx. However, for this to
|
||||
work, it is important that all lines are indented consistently, i.e.:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// ok
|
||||
m.def("foo", &foo, R"mydelimiter(
|
||||
The foo function
|
||||
|
||||
Parameters
|
||||
----------
|
||||
)mydelimiter");
|
||||
|
||||
// *not ok*
|
||||
m.def("foo", &foo, R"mydelimiter(The foo function
|
||||
|
||||
Parameters
|
||||
----------
|
||||
)mydelimiter");
|
||||
|
||||
.. [#f4] http://www.sphinx-doc.org
|
||||
.. [#f5] http://github.com/pybind/python_example
|
13
docs/advanced/pycpp/index.rst
Normal file
13
docs/advanced/pycpp/index.rst
Normal file
@ -0,0 +1,13 @@
|
||||
Python C++ interface
|
||||
####################
|
||||
|
||||
pybind11 exposes Python types and functions using thin C++ wrappers, which
|
||||
makes it possible to conveniently call Python code from C++ without resorting
|
||||
to Python's C API.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
object
|
||||
numpy
|
||||
utilities
|
299
docs/advanced/pycpp/numpy.rst
Normal file
299
docs/advanced/pycpp/numpy.rst
Normal file
@ -0,0 +1,299 @@
|
||||
.. _numpy:
|
||||
|
||||
NumPy
|
||||
#####
|
||||
|
||||
Buffer protocol
|
||||
===============
|
||||
|
||||
Python supports an extremely general and convenient approach for exchanging
|
||||
data between plugin libraries. Types can expose a buffer view [#f2]_, which
|
||||
provides fast direct access to the raw internal data representation. Suppose we
|
||||
want to bind the following simplistic Matrix class:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Matrix {
|
||||
public:
|
||||
Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
|
||||
m_data = new float[rows*cols];
|
||||
}
|
||||
float *data() { return m_data; }
|
||||
size_t rows() const { return m_rows; }
|
||||
size_t cols() const { return m_cols; }
|
||||
private:
|
||||
size_t m_rows, m_cols;
|
||||
float *m_data;
|
||||
};
|
||||
|
||||
The following binding code exposes the ``Matrix`` contents as a buffer object,
|
||||
making it possible to cast Matrices into NumPy arrays. It is even possible to
|
||||
completely avoid copy operations with Python expressions like
|
||||
``np.array(matrix_instance, copy = False)``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Matrix>(m, "Matrix")
|
||||
.def_buffer([](Matrix &m) -> py::buffer_info {
|
||||
return py::buffer_info(
|
||||
m.data(), /* Pointer to buffer */
|
||||
sizeof(float), /* Size of one scalar */
|
||||
py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
|
||||
2, /* Number of dimensions */
|
||||
{ m.rows(), m.cols() }, /* Buffer dimensions */
|
||||
{ sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
|
||||
sizeof(float) }
|
||||
);
|
||||
});
|
||||
|
||||
The snippet above binds a lambda function, which can create ``py::buffer_info``
|
||||
description records on demand describing a given matrix. The contents of
|
||||
``py::buffer_info`` mirror the Python buffer protocol specification.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
struct buffer_info {
|
||||
void *ptr;
|
||||
size_t itemsize;
|
||||
std::string format;
|
||||
int ndim;
|
||||
std::vector<size_t> shape;
|
||||
std::vector<size_t> strides;
|
||||
};
|
||||
|
||||
To create a C++ function that can take a Python buffer object as an argument,
|
||||
simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
|
||||
in a great variety of configurations, hence some safety checks are usually
|
||||
necessary in the function body. Below, you can see an basic example on how to
|
||||
define a custom constructor for the Eigen double precision matrix
|
||||
(``Eigen::MatrixXd``) type, which supports initialization from compatible
|
||||
buffer objects (e.g. a NumPy matrix).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
/* Bind MatrixXd (or some other Eigen type) to Python */
|
||||
typedef Eigen::MatrixXd Matrix;
|
||||
|
||||
typedef Matrix::Scalar Scalar;
|
||||
constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
|
||||
|
||||
py::class_<Matrix>(m, "Matrix")
|
||||
.def("__init__", [](Matrix &m, py::buffer b) {
|
||||
typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
|
||||
|
||||
/* Request a buffer descriptor from Python */
|
||||
py::buffer_info info = b.request();
|
||||
|
||||
/* Some sanity checks ... */
|
||||
if (info.format != py::format_descriptor<Scalar>::format())
|
||||
throw std::runtime_error("Incompatible format: expected a double array!");
|
||||
|
||||
if (info.ndim != 2)
|
||||
throw std::runtime_error("Incompatible buffer dimension!");
|
||||
|
||||
auto strides = Strides(
|
||||
info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
|
||||
info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
|
||||
|
||||
auto map = Eigen::Map<Matrix, 0, Strides>(
|
||||
static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
|
||||
|
||||
new (&m) Matrix(map);
|
||||
});
|
||||
|
||||
For reference, the ``def_buffer()`` call for this Eigen data type should look
|
||||
as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
.def_buffer([](Matrix &m) -> py::buffer_info {
|
||||
return py::buffer_info(
|
||||
m.data(), /* Pointer to buffer */
|
||||
sizeof(Scalar), /* Size of one scalar */
|
||||
/* Python struct-style format descriptor */
|
||||
py::format_descriptor<Scalar>::format(),
|
||||
/* Number of dimensions */
|
||||
2,
|
||||
/* Buffer dimensions */
|
||||
{ (size_t) m.rows(),
|
||||
(size_t) m.cols() },
|
||||
/* Strides (in bytes) for each index */
|
||||
{ sizeof(Scalar) * (rowMajor ? m.cols() : 1),
|
||||
sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
|
||||
);
|
||||
})
|
||||
|
||||
For a much easier approach of binding Eigen types (although with some
|
||||
limitations), refer to the section on :doc:`/advanced/cast/eigen`.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_buffers.cpp` contains a complete example
|
||||
that demonstrates using the buffer protocol with pybind11 in more detail.
|
||||
|
||||
.. [#f2] http://docs.python.org/3/c-api/buffer.html
|
||||
|
||||
Arrays
|
||||
======
|
||||
|
||||
By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
|
||||
restrict the function so that it only accepts NumPy arrays (rather than any
|
||||
type of Python object satisfying the buffer protocol).
|
||||
|
||||
In many situations, we want to define a function which only accepts a NumPy
|
||||
array of a certain data type. This is possible via the ``py::array_t<T>``
|
||||
template. For instance, the following function requires the argument to be a
|
||||
NumPy array containing double precision values.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void f(py::array_t<double> array);
|
||||
|
||||
When it is invoked with a different type (e.g. an integer or a list of
|
||||
integers), the binding code will attempt to cast the input into a NumPy array
|
||||
of the requested type. Note that this feature requires the
|
||||
:file:``pybind11/numpy.h`` header to be included.
|
||||
|
||||
Data in NumPy arrays is not guaranteed to packed in a dense manner;
|
||||
furthermore, entries can be separated by arbitrary column and row strides.
|
||||
Sometimes, it can be useful to require a function to only accept dense arrays
|
||||
using either the C (row-major) or Fortran (column-major) ordering. This can be
|
||||
accomplished via a second template argument with values ``py::array::c_style``
|
||||
or ``py::array::f_style``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
|
||||
|
||||
The ``py::array::forcecast`` argument is the default value of the second
|
||||
template parameter, and it ensures that non-conforming arguments are converted
|
||||
into an array satisfying the specified requirements instead of trying the next
|
||||
function overload.
|
||||
|
||||
Structured types
|
||||
================
|
||||
|
||||
In order for ``py::array_t`` to work with structured (record) types, we first need
|
||||
to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE``
|
||||
macro which expects the type followed by field names:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
struct A {
|
||||
int x;
|
||||
double y;
|
||||
};
|
||||
|
||||
struct B {
|
||||
int z;
|
||||
A a;
|
||||
};
|
||||
|
||||
PYBIND11_NUMPY_DTYPE(A, x, y);
|
||||
PYBIND11_NUMPY_DTYPE(B, z, a);
|
||||
|
||||
/* now both A and B can be used as template arguments to py::array_t */
|
||||
|
||||
Vectorizing functions
|
||||
=====================
|
||||
|
||||
Suppose we want to bind a function with the following signature to Python so
|
||||
that it can process arbitrary NumPy array arguments (vectors, matrices, general
|
||||
N-D arrays) in addition to its normal arguments:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
double my_func(int x, float y, double z);
|
||||
|
||||
After including the ``pybind11/numpy.h`` header, this is extremely simple:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("vectorized_func", py::vectorize(my_func));
|
||||
|
||||
Invoking the function like below causes 4 calls to be made to ``my_func`` with
|
||||
each of the array elements. The significant advantage of this compared to
|
||||
solutions like ``numpy.vectorize()`` is that the loop over the elements runs
|
||||
entirely on the C++ side and can be crunched down into a tight, optimized loop
|
||||
by the compiler. The result is returned as a NumPy array of type
|
||||
``numpy.dtype.float64``.
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> x = np.array([[1, 3],[5, 7]])
|
||||
>>> y = np.array([[2, 4],[6, 8]])
|
||||
>>> z = 3
|
||||
>>> result = vectorized_func(x, y, z)
|
||||
|
||||
The scalar argument ``z`` is transparently replicated 4 times. The input
|
||||
arrays ``x`` and ``y`` are automatically converted into the right types (they
|
||||
are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
|
||||
``numpy.dtype.float32``, respectively)
|
||||
|
||||
Sometimes we might want to explicitly exclude an argument from the vectorization
|
||||
because it makes little sense to wrap it in a NumPy array. For instance,
|
||||
suppose the function signature was
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
double my_func(int x, float y, my_custom_type *z);
|
||||
|
||||
This can be done with a stateful Lambda closure:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
|
||||
m.def("vectorized_func",
|
||||
[](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
|
||||
auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
|
||||
return py::vectorize(stateful_closure)(x, y);
|
||||
}
|
||||
);
|
||||
|
||||
In cases where the computation is too complicated to be reduced to
|
||||
``vectorize``, it will be necessary to create and access the buffer contents
|
||||
manually. The following snippet contains a complete example that shows how this
|
||||
works (the code is somewhat contrived, since it could have been done more
|
||||
simply using ``vectorize``).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/numpy.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
|
||||
auto buf1 = input1.request(), buf2 = input2.request();
|
||||
|
||||
if (buf1.ndim != 1 || buf2.ndim != 1)
|
||||
throw std::runtime_error("Number of dimensions must be one");
|
||||
|
||||
if (buf1.size != buf2.size)
|
||||
throw std::runtime_error("Input shapes must match");
|
||||
|
||||
/* No pointer is passed, so NumPy will allocate the buffer */
|
||||
auto result = py::array_t<double>(buf1.size);
|
||||
|
||||
auto buf3 = result.request();
|
||||
|
||||
double *ptr1 = (double *) buf1.ptr,
|
||||
*ptr2 = (double *) buf2.ptr,
|
||||
*ptr3 = (double *) buf3.ptr;
|
||||
|
||||
for (size_t idx = 0; idx < buf1.shape[0]; idx++)
|
||||
ptr3[idx] = ptr1[idx] + ptr2[idx];
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
PYBIND11_PLUGIN(test) {
|
||||
py::module m("test");
|
||||
m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_numpy_vectorize.cpp` contains a complete
|
||||
example that demonstrates using :func:`vectorize` in more detail.
|
96
docs/advanced/pycpp/object.rst
Normal file
96
docs/advanced/pycpp/object.rst
Normal file
@ -0,0 +1,96 @@
|
||||
Python types
|
||||
############
|
||||
|
||||
Available wrappers
|
||||
==================
|
||||
|
||||
All major Python types are available as thin C++ wrapper classes. These
|
||||
can also be used as function parameters -- see :ref:`python_objects_as_args`.
|
||||
|
||||
Available types include :class:`handle`, :class:`object`, :class:`bool_`,
|
||||
:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
|
||||
:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
|
||||
:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
|
||||
:class:`array`, and :class:`array_t`.
|
||||
|
||||
Casting back and forth
|
||||
======================
|
||||
|
||||
In this kind of mixed code, it is often necessary to convert arbitrary C++
|
||||
types to Python, which can be done using :func:`py::cast`:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
MyClass *cls = ..;
|
||||
py::object obj = py::cast(cls);
|
||||
|
||||
The reverse direction uses the following syntax:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::object obj = ...;
|
||||
MyClass *cls = obj.cast<MyClass *>();
|
||||
|
||||
When conversion fails, both directions throw the exception :class:`cast_error`.
|
||||
|
||||
Calling Python functions
|
||||
========================
|
||||
|
||||
It is also possible to call python functions via ``operator()``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::function f = <...>;
|
||||
py::object result_py = f(1234, "hello", some_instance);
|
||||
MyClass &result = result_py.cast<MyClass>();
|
||||
|
||||
Keyword arguments are also supported. In Python, there is the usual call syntax:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def f(number, say, to):
|
||||
... # function code
|
||||
|
||||
f(1234, say="hello", to=some_instance) # keyword call in Python
|
||||
|
||||
In C++, the same call can be made using:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
using pybind11::literals; // to bring in the `_a` literal
|
||||
f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++
|
||||
|
||||
Unpacking of ``*args`` and ``**kwargs`` is also possible and can be mixed with
|
||||
other arguments:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// * unpacking
|
||||
py::tuple args = py::make_tuple(1234, "hello", some_instance);
|
||||
f(*args);
|
||||
|
||||
// ** unpacking
|
||||
py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance);
|
||||
f(**kwargs);
|
||||
|
||||
// mixed keywords, * and ** unpacking
|
||||
py::tuple args = py::make_tuple(1234);
|
||||
py::dict kwargs = py::dict("to"_a=some_instance);
|
||||
f(*args, "say"_a="hello", **kwargs);
|
||||
|
||||
Generalized unpacking according to PEP448_ is also supported:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::dict kwargs1 = py::dict("number"_a=1234);
|
||||
py::dict kwargs2 = py::dict("to"_a=some_instance);
|
||||
f(**kwargs1, "say"_a="hello", **kwargs2);
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_python_types.cpp` contains a complete
|
||||
example that demonstrates passing native Python types in more detail. The
|
||||
file :file:`tests/test_callbacks.cpp` presents a few examples of calling
|
||||
Python functions from C++, including keywords arguments and unpacking.
|
||||
|
||||
.. _PEP448: https://www.python.org/dev/peps/pep-0448/
|
57
docs/advanced/pycpp/utilities.rst
Normal file
57
docs/advanced/pycpp/utilities.rst
Normal file
@ -0,0 +1,57 @@
|
||||
Utilities
|
||||
#########
|
||||
|
||||
Using Python's print function in C++
|
||||
====================================
|
||||
|
||||
The usual way to write output in C++ is using ``std::cout`` while in Python one
|
||||
would use ``print``. Since these methods use different buffers, mixing them can
|
||||
lead to output order issues. To resolve this, pybind11 modules can use the
|
||||
:func:`py::print` function which writes to Python's ``sys.stdout`` for consistency.
|
||||
|
||||
Python's ``print`` function is replicated in the C++ API including optional
|
||||
keyword arguments ``sep``, ``end``, ``file``, ``flush``. Everything works as
|
||||
expected in Python:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::print(1, 2.0, "three"); // 1 2.0 three
|
||||
py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three
|
||||
|
||||
auto args = py::make_tuple("unpacked", true);
|
||||
py::print("->", *args, "end"_a="<-"); // -> unpacked True <-
|
||||
|
||||
Evaluating Python expressions from strings and files
|
||||
====================================================
|
||||
|
||||
pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate
|
||||
Python expressions and statements. The following example illustrates how they
|
||||
can be used.
|
||||
|
||||
Both functions accept a template parameter that describes how the argument
|
||||
should be interpreted. Possible choices include ``eval_expr`` (isolated
|
||||
expression), ``eval_single_statement`` (a single statement, return value is
|
||||
always ``none``), and ``eval_statements`` (sequence of statements, return value
|
||||
is always ``none``).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
// At beginning of file
|
||||
#include <pybind11/eval.h>
|
||||
|
||||
...
|
||||
|
||||
// Evaluate in scope of main module
|
||||
py::object scope = py::module::import("__main__").attr("__dict__");
|
||||
|
||||
// Evaluate an isolated expression
|
||||
int result = py::eval("my_variable + 10", scope).cast<int>();
|
||||
|
||||
// Evaluate a sequence of statements
|
||||
py::eval<py::eval_statements>(
|
||||
"print('Hello')\n"
|
||||
"print('world!');",
|
||||
scope);
|
||||
|
||||
// Evaluate the statements in an separate Python file on disk
|
||||
py::eval_file("script.py", scope);
|
149
docs/advanced/smart_ptrs.rst
Normal file
149
docs/advanced/smart_ptrs.rst
Normal file
@ -0,0 +1,149 @@
|
||||
Smart pointers
|
||||
##############
|
||||
|
||||
Unique pointers
|
||||
===============
|
||||
|
||||
Given a class ``Example`` with Python bindings, it's possible to return
|
||||
instances wrapped in C++11 unique pointers, like so
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
m.def("create_example", &create_example);
|
||||
|
||||
In other words, there is nothing special that needs to be done. While returning
|
||||
unique pointers in this way is allowed, it is *illegal* to use them as function
|
||||
arguments. For instance, the following function signature cannot be processed
|
||||
by pybind11.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void do_something_with_example(std::unique_ptr<Example> ex) { ... }
|
||||
|
||||
The above signature would imply that Python needs to give up ownership of an
|
||||
object that is passed to this function, which is generally not possible (for
|
||||
instance, the object might be referenced elsewhere).
|
||||
|
||||
.. _smart_pointers:
|
||||
|
||||
Reference-counting pointers
|
||||
===========================
|
||||
|
||||
This section explains how to pass values that are wrapped in "smart" pointer
|
||||
types with internal reference counting. For the simpler C++11 unique pointers,
|
||||
refer to the previous section.
|
||||
|
||||
The binding generator for classes, :class:`class_`, can be passed a template
|
||||
type that denotes a special *holder* type that is used to manage references to
|
||||
the object. If no such holder type template argument is given, the default for
|
||||
a type named ``Type`` is ``std::unique_ptr<Type>``, which means that the object
|
||||
is deallocated when Python's reference count goes to zero.
|
||||
|
||||
It is possible to switch to other types of reference counting wrappers or smart
|
||||
pointers, which is useful in codebases that rely on them. For instance, the
|
||||
following snippet causes ``std::shared_ptr`` to be used instead.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
|
||||
|
||||
Note that any particular class can only be associated with a single holder type.
|
||||
|
||||
To enable transparent conversions for functions that take shared pointers as an
|
||||
argument or that return them, a macro invocation similar to the following must
|
||||
be declared at the top level before any binding code:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
|
||||
|
||||
.. note::
|
||||
|
||||
The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
|
||||
placeholder name that is used as a template parameter of the second
|
||||
argument. Thus, feel free to use any identifier, but use it consistently on
|
||||
both sides; also, don't use the name of a type that already exists in your
|
||||
codebase.
|
||||
|
||||
One potential stumbling block when using holder types is that they need to be
|
||||
applied consistently. Can you guess what's broken about the following binding
|
||||
code?
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
|
||||
|
||||
class Child { };
|
||||
|
||||
class Parent {
|
||||
public:
|
||||
Parent() : child(std::make_shared<Child>()) { }
|
||||
Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
|
||||
private:
|
||||
std::shared_ptr<Child> child;
|
||||
};
|
||||
|
||||
PYBIND11_PLUGIN(example) {
|
||||
py::module m("example");
|
||||
|
||||
py::class_<Child, std::shared_ptr<Child>>(m, "Child");
|
||||
|
||||
py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
|
||||
.def(py::init<>())
|
||||
.def("get_child", &Parent::get_child);
|
||||
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
The following Python code will cause undefined behavior (and likely a
|
||||
segmentation fault).
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from example import Parent
|
||||
print(Parent().get_child())
|
||||
|
||||
The problem is that ``Parent::get_child()`` returns a pointer to an instance of
|
||||
``Child``, but the fact that this instance is already managed by
|
||||
``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
|
||||
pybind11 will create a second independent ``std::shared_ptr<...>`` that also
|
||||
claims ownership of the pointer. In the end, the object will be freed **twice**
|
||||
since these shared pointers have no way of knowing about each other.
|
||||
|
||||
There are two ways to resolve this issue:
|
||||
|
||||
1. For types that are managed by a smart pointer class, never use raw pointers
|
||||
in function arguments or return values. In other words: always consistently
|
||||
wrap pointers into their designated holder types (such as
|
||||
``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
|
||||
should be modified as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
std::shared_ptr<Child> get_child() { return child; }
|
||||
|
||||
2. Adjust the definition of ``Child`` by specifying
|
||||
``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
|
||||
base class. This adds a small bit of information to ``Child`` that allows
|
||||
pybind11 to realize that there is already an existing
|
||||
``std::shared_ptr<...>`` and communicate with it. In this case, the
|
||||
declaration of ``Child`` should look as follows:
|
||||
|
||||
.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Child : public std::enable_shared_from_this<Child> { };
|
||||
|
||||
|
||||
Please take a look at the :ref:`macro_notes` before using this feature.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`tests/test_smart_ptr.cpp` contains a complete example
|
||||
that demonstrates how to work with custom reference-counting holder types
|
||||
in more detail.
|
116
docs/basics.rst
116
docs/basics.rst
@ -60,6 +60,19 @@ command line.
|
||||
the tutorial and look at the test cases in the :file:`tests` directory,
|
||||
which exercise all features of pybind11.
|
||||
|
||||
Header and namespace conventions
|
||||
================================
|
||||
|
||||
For brevity, all code examples assume that the following two lines are present:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind11/pybind11.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
Some features may require additional headers, but those will be specified as needed.
|
||||
|
||||
Creating bindings for a simple function
|
||||
=======================================
|
||||
|
||||
@ -93,6 +106,9 @@ a file named :file:`example.cpp` with the following contents:
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
.. [#f1] In practice, implementation and binding code will generally be located
|
||||
in separate files.
|
||||
|
||||
The :func:`PYBIND11_PLUGIN` macro creates a function that will be called when an
|
||||
``import`` statement is issued from within Python. The next line creates a
|
||||
module named ``example`` (with the supplied docstring). The method
|
||||
@ -235,79 +251,37 @@ The shorthand notation is also available for default arguments:
|
||||
// shorthand
|
||||
m.def("add2", &add, "i"_a=1, "j"_a=2);
|
||||
|
||||
Exporting variables
|
||||
===================
|
||||
|
||||
To expose a value from C++, use the ``attr`` function to register it in a module
|
||||
as shown below. Built-in types and general objects (more on that later) can be
|
||||
converted using the function ``py::cast``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND11_PLUGIN(example) {
|
||||
py::module m("example", "pybind11 example plugin");
|
||||
m.attr("the_answer") = py::cast(42);
|
||||
m.attr("what") = py::cast("World");
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
These are then accessible from Python:
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
>>> import example
|
||||
>>> example.the_answer
|
||||
42
|
||||
>>> example.what
|
||||
'World'
|
||||
|
||||
.. _supported_types:
|
||||
|
||||
Supported data types
|
||||
====================
|
||||
|
||||
The following basic data types are supported out of the box (some may require
|
||||
an additional extension header to be included). To pass other data structures
|
||||
as arguments and return values, refer to the section on binding :ref:`classes`.
|
||||
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| Data type | Description | Header file |
|
||||
+=================================+==========================+===============================+
|
||||
| ``int8_t``, ``uint8_t`` | 8-bit integers | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``int16_t``, ``uint16_t`` | 16-bit integers | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``int32_t``, ``uint32_t`` | 32-bit integers | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``int64_t``, ``uint64_t`` | 64-bit integers | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``ssize_t``, ``size_t`` | Platform-dependent size | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``float``, ``double`` | Floating point types | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``bool`` | Two-state Boolean type | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``char`` | Character literal | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``wchar_t`` | Wide character literal | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``const char *`` | UTF-8 string literal | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``const wchar_t *`` | Wide string literal | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::string`` | STL dynamic UTF-8 string | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::wstring`` | STL dynamic wide string | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::pair<T1, T2>`` | Pair of two custom types | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::tuple<...>`` | Arbitrary tuple of types | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::reference_wrapper<...>`` | Reference type wrapper | :file:`pybind11/pybind11.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::complex<T>`` | Complex numbers | :file:`pybind11/complex.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::array<T, Size>`` | STL static array | :file:`pybind11/stl.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::vector<T>`` | STL dynamic array | :file:`pybind11/stl.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::list<T>`` | STL linked list | :file:`pybind11/stl.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::map<T1, T2>`` | STL ordered map | :file:`pybind11/stl.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::unordered_map<T1, T2>`` | STL unordered map | :file:`pybind11/stl.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::set<T>`` | STL ordered set | :file:`pybind11/stl.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::unordered_set<T>`` | STL unordered set | :file:`pybind11/stl.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::function<...>`` | STL polymorphic function | :file:`pybind11/functional.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::chrono::duration<...>`` | STL time duration | :file:`pybind11/chrono.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``std::chrono::time_point<...>``| STL date/time | :file:`pybind11/chrono.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``Eigen::Matrix<...>`` | Eigen: dense matrix | :file:`pybind11/eigen.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``Eigen::Map<...>`` | Eigen: mapped memory | :file:`pybind11/eigen.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
| ``Eigen::SparseMatrix<...>`` | Eigen: sparse matrix | :file:`pybind11/eigen.h` |
|
||||
+---------------------------------+--------------------------+-------------------------------+
|
||||
|
||||
|
||||
.. [#f1] In practice, implementation and binding code will generally be located
|
||||
in separate files.
|
||||
A large number of data types are supported out of the box and can be used
|
||||
seamlessly as functions arguments, return values or with ``py::cast`` in general.
|
||||
For a full overview, see the :doc:`advanced/cast/index` section.
|
||||
|
@ -10,15 +10,36 @@ pybind11 --- Seamless operability between C++11 and Python
|
||||
Contents:
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:maxdepth: 1
|
||||
|
||||
intro
|
||||
changelog
|
||||
|
||||
.. toctree::
|
||||
:caption: The Basics
|
||||
:maxdepth: 2
|
||||
|
||||
basics
|
||||
classes
|
||||
advanced
|
||||
compiling
|
||||
|
||||
.. toctree::
|
||||
:caption: Advanced Topics
|
||||
:maxdepth: 2
|
||||
|
||||
advanced/functions
|
||||
advanced/classes
|
||||
advanced/exceptions
|
||||
advanced/smart_ptrs
|
||||
advanced/cast/index
|
||||
advanced/pycpp/index
|
||||
advanced/misc
|
||||
|
||||
.. toctree::
|
||||
:caption: Extra Information
|
||||
:maxdepth: 1
|
||||
|
||||
faq
|
||||
benchmark
|
||||
limitations
|
||||
faq
|
||||
reference
|
||||
changelog
|
||||
|
@ -215,9 +215,9 @@ Passing extra arguments to the def function
|
||||
|
||||
.. function:: arg::arg(const char *name)
|
||||
|
||||
.. function:: template <typename T> arg_t<T> arg::operator=(const T &value)
|
||||
.. function:: template <typename T> arg_v arg::operator=(T &&value)
|
||||
|
||||
.. class:: template <typename T> arg_t<T> : public arg
|
||||
.. class:: arg_v : public arg
|
||||
|
||||
Represents a named argument with a default value
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user