feat: make numpy.h compatible with both NumPy 1.x and 2.x (#5050)

* API: Make `numpy.h` compatible with both NumPy 1.x and 2.x

* TST: Update numpy dtype flags test to not covert flags to char

* API: Add `numpy2.h` instead and make `numpy.h` safe

This means that users of `numpy.h` cannot be broken, but need to
update to `numpy2.h` if they want to compile for NumPy 2.

Using Macros simply and didn't bother to try to remove unnecessary
code paths.

* API: Rather than `numpy2.h` use a define for the user.

* Thread `PYBIND11_NUMPY2_SUPPORT` through things and try to adept test matrix

* Small fixups (shouldn't matter)?

* Fixup.  Does upgrading scipy help?  (it shouldn't?)

(Some other small fixup)

* Use NumPy 2 nightlies for ubuntu-latest job also

* BUG: Fix numpy.bool check

* TST: Fix complexwarning

* BUG: Fix the fact that only the 50 slot is filled with the copy alias

(There were 3 functions all doing the same, only this slot survived 2.x)

* TST: One more test tweak

* TST: Use "long" name for long, since it changed on windows

* TST: Apparently we didn't always have ulong, so just use `L`

* TST: Enforce dtype='l' for test as default isn't long anymore on windows

* Rename macro and invert logic to PYBIND11_NUMPY_1_ONLY

* PYBIND11_INTERNAL_NUMPY_1_ONLY_DETECTED

* Test and code comment expansion

* CI: Use pre-releases of numpy/scipy from pip via explicit version

* CI: NumPy 2 only available on almalinux (as it is Python >=3.9)

* MAINT: Match name more exactly and adopt error phrasing

* MAINT: Pushed early, move helper to be private member

* fix error message compilation when using NumPy 1.x-only backcompat

* silence name shadowing warning

* chore: minor optimization

Signed-off-by: Henry Schreiner <henryschreineriii@gmail.com>

---------

Signed-off-by: Henry Schreiner <henryschreineriii@gmail.com>
Co-authored-by: Ralf W. Grosse-Kunstleve <rwgk@google.com>
Co-authored-by: Henry Schreiner <henryschreineriii@gmail.com>
This commit is contained in:
Sebastian Berg 2024-03-26 23:20:11 +01:00 committed by GitHub
parent e0f2c71596
commit 705efccecd
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 206 additions and 21 deletions

View File

@ -108,12 +108,14 @@ jobs:
run: python -m pip install pytest-github-actions-annotate-failures
# First build - C++11 mode and inplace
# More-or-less randomly adding -DPYBIND11_SIMPLE_GIL_MANAGEMENT=ON here.
# More-or-less randomly adding -DPYBIND11_SIMPLE_GIL_MANAGEMENT=ON here
# (same for PYBIND11_NUMPY_1_ONLY, but requires a NumPy 1.x at runtime).
- name: Configure C++11 ${{ matrix.args }}
run: >
cmake -S . -B .
-DPYBIND11_WERROR=ON
-DPYBIND11_SIMPLE_GIL_MANAGEMENT=ON
-DPYBIND11_NUMPY_1_ONLY=ON
-DDOWNLOAD_CATCH=ON
-DDOWNLOAD_EIGEN=ON
-DCMAKE_CXX_STANDARD=11
@ -138,11 +140,13 @@ jobs:
# Second build - C++17 mode and in a build directory
# More-or-less randomly adding -DPYBIND11_SIMPLE_GIL_MANAGEMENT=OFF here.
# (same for PYBIND11_NUMPY_1_ONLY, but requires a NumPy 1.x at runtime).
- name: Configure C++17
run: >
cmake -S . -B build2
-DPYBIND11_WERROR=ON
-DPYBIND11_SIMPLE_GIL_MANAGEMENT=OFF
-DPYBIND11_NUMPY_1_ONLY=ON
-DDOWNLOAD_CATCH=ON
-DDOWNLOAD_EIGEN=ON
-DCMAKE_CXX_STANDARD=17
@ -660,6 +664,11 @@ jobs:
run: |
python3 -m pip install cmake -r tests/requirements.txt
- name: Ensure NumPy 2 is used (required Python >= 3.9)
if: matrix.container == 'almalinux:9'
run: |
python3 -m pip install 'numpy>=2.0.0b1' 'scipy>=1.13.0rc1'
- name: Configure
shell: bash
run: >
@ -895,8 +904,10 @@ jobs:
python-version: ${{ matrix.python }}
- name: Prepare env
# Ensure use of NumPy 2 (via NumPy nightlies but can be changed soon)
run: |
python3 -m pip install -r tests/requirements.txt
python3 -m pip install 'numpy>=2.0.0b1' 'scipy>=1.13.0rc1'
- name: Update CMake
uses: jwlawson/actions-setup-cmake@v2.0

View File

@ -109,6 +109,8 @@ option(PYBIND11_TEST "Build pybind11 test suite?" ${PYBIND11_MASTER_PROJECT})
option(PYBIND11_NOPYTHON "Disable search for Python" OFF)
option(PYBIND11_SIMPLE_GIL_MANAGEMENT
"Use simpler GIL management logic that does not support disassociation" OFF)
option(PYBIND11_NUMPY_1_ONLY
"Disable NumPy 2 support to avoid changes to previous pybind11 versions." OFF)
set(PYBIND11_INTERNALS_VERSION
""
CACHE STRING "Override the ABI version, may be used to enable the unstable ABI.")
@ -116,6 +118,9 @@ set(PYBIND11_INTERNALS_VERSION
if(PYBIND11_SIMPLE_GIL_MANAGEMENT)
add_compile_definitions(PYBIND11_SIMPLE_GIL_MANAGEMENT)
endif()
if(PYBIND11_NUMPY_1_ONLY)
add_compile_definitions(PYBIND11_NUMPY_1_ONLY)
endif()
cmake_dependent_option(
USE_PYTHON_INCLUDE_DIR

View File

@ -327,8 +327,9 @@ public:
value = false;
return true;
}
if (convert || (std::strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name) == 0)) {
// (allow non-implicit conversion for numpy booleans)
if (convert || is_numpy_bool(src)) {
// (allow non-implicit conversion for numpy booleans), use strncmp
// since NumPy 1.x had an additional trailing underscore.
Py_ssize_t res = -1;
if (src.is_none()) {
@ -360,6 +361,15 @@ public:
return handle(src ? Py_True : Py_False).inc_ref();
}
PYBIND11_TYPE_CASTER(bool, const_name("bool"));
private:
// Test if an object is a NumPy boolean (without fetching the type).
static inline bool is_numpy_bool(handle object) {
const char *type_name = Py_TYPE(object.ptr())->tp_name;
// Name changed to `numpy.bool` in NumPy 2, `numpy.bool_` is needed for 1.x support
return std::strcmp("numpy.bool", type_name) == 0
|| std::strcmp("numpy.bool_", type_name) == 0;
}
};
// Helper class for UTF-{8,16,32} C++ stl strings:

View File

@ -296,6 +296,10 @@ PYBIND11_WARNING_DISABLE_MSVC(4505)
# undef copysign
#endif
#if defined(PYBIND11_NUMPY_1_ONLY)
# define PYBIND11_INTERNAL_NUMPY_1_ONLY_DETECTED
#endif
#if defined(PYPY_VERSION) && !defined(PYBIND11_SIMPLE_GIL_MANAGEMENT)
# define PYBIND11_SIMPLE_GIL_MANAGEMENT
#endif

View File

@ -29,10 +29,15 @@
#include <utility>
#include <vector>
#if defined(PYBIND11_NUMPY_1_ONLY) && !defined(PYBIND11_INTERNAL_NUMPY_1_ONLY_DETECTED)
# error PYBIND11_NUMPY_1_ONLY must be defined before any pybind11 header is included.
#endif
/* This will be true on all flat address space platforms and allows us to reduce the
whole npy_intp / ssize_t / Py_intptr_t business down to just ssize_t for all size
and dimension types (e.g. shape, strides, indexing), instead of inflicting this
upon the library user. */
upon the library user.
Note that NumPy 2 now uses ssize_t for `npy_intp` to simplify this. */
static_assert(sizeof(::pybind11::ssize_t) == sizeof(Py_intptr_t), "ssize_t != Py_intptr_t");
static_assert(std::is_signed<Py_intptr_t>::value, "Py_intptr_t must be signed");
// We now can reinterpret_cast between py::ssize_t and Py_intptr_t (MSVC + PyPy cares)
@ -53,7 +58,8 @@ struct handle_type_name<array> {
template <typename type, typename SFINAE = void>
struct npy_format_descriptor;
struct PyArrayDescr_Proxy {
/* NumPy 1 proxy (always includes legacy fields) */
struct PyArrayDescr1_Proxy {
PyObject_HEAD
PyObject *typeobj;
char kind;
@ -68,6 +74,43 @@ struct PyArrayDescr_Proxy {
PyObject *names;
};
#ifndef PYBIND11_NUMPY_1_ONLY
struct PyArrayDescr_Proxy {
PyObject_HEAD
PyObject *typeobj;
char kind;
char type;
char byteorder;
char _former_flags;
int type_num;
/* Additional fields are NumPy version specific. */
};
#else
/* NumPy 1.x only, we can expose all fields */
using PyArrayDescr_Proxy = PyArrayDescr1_Proxy;
#endif
/* NumPy 2 proxy, including legacy fields */
struct PyArrayDescr2_Proxy {
PyObject_HEAD
PyObject *typeobj;
char kind;
char type;
char byteorder;
char _former_flags;
int type_num;
std::uint64_t flags;
ssize_t elsize;
ssize_t alignment;
PyObject *metadata;
Py_hash_t hash;
void *reserved_null[2];
/* The following fields only exist if 0 <= type_num < 2056 */
char *subarray;
PyObject *fields;
PyObject *names;
};
struct PyArray_Proxy {
PyObject_HEAD
char *data;
@ -131,6 +174,14 @@ PYBIND11_NOINLINE module_ import_numpy_core_submodule(const char *submodule_name
object numpy_version = numpy_lib.attr("NumpyVersion")(version_string);
int major_version = numpy_version.attr("major").cast<int>();
#ifdef PYBIND11_NUMPY_1_ONLY
if (major_version >= 2) {
throw std::runtime_error(
"This extension was built with PYBIND11_NUMPY_1_ONLY defined, "
"but NumPy 2 is used in this process. For NumPy2 compatibility, "
"this extension needs to be rebuilt without the PYBIND11_NUMPY_1_ONLY define.");
}
#endif
/* `numpy.core` was renamed to `numpy._core` in NumPy 2.0 as it officially
became a private module. */
std::string numpy_core_path = major_version >= 2 ? "numpy._core" : "numpy.core";
@ -203,6 +254,8 @@ struct npy_api {
NPY_ULONG_, NPY_ULONGLONG_, NPY_UINT_),
};
unsigned int PyArray_RUNTIME_VERSION_;
struct PyArray_Dims {
Py_intptr_t *ptr;
int len;
@ -241,6 +294,7 @@ struct npy_api {
PyObject *(*PyArray_FromAny_)(PyObject *, PyObject *, int, int, int, PyObject *);
int (*PyArray_DescrConverter_)(PyObject *, PyObject **);
bool (*PyArray_EquivTypes_)(PyObject *, PyObject *);
#ifdef PYBIND11_NUMPY_1_ONLY
int (*PyArray_GetArrayParamsFromObject_)(PyObject *,
PyObject *,
unsigned char,
@ -249,6 +303,7 @@ struct npy_api {
Py_intptr_t *,
PyObject **,
PyObject *);
#endif
PyObject *(*PyArray_Squeeze_)(PyObject *);
// Unused. Not removed because that affects ABI of the class.
int (*PyArray_SetBaseObject_)(PyObject *, PyObject *);
@ -266,7 +321,8 @@ private:
API_PyArray_DescrFromScalar = 57,
API_PyArray_FromAny = 69,
API_PyArray_Resize = 80,
API_PyArray_CopyInto = 82,
// CopyInto was slot 82 and 50 was effectively an alias. NumPy 2 removed 82.
API_PyArray_CopyInto = 50,
API_PyArray_NewCopy = 85,
API_PyArray_NewFromDescr = 94,
API_PyArray_DescrNewFromType = 96,
@ -275,7 +331,9 @@ private:
API_PyArray_View = 137,
API_PyArray_DescrConverter = 174,
API_PyArray_EquivTypes = 182,
#ifdef PYBIND11_NUMPY_1_ONLY
API_PyArray_GetArrayParamsFromObject = 278,
#endif
API_PyArray_SetBaseObject = 282
};
@ -290,7 +348,8 @@ private:
npy_api api;
#define DECL_NPY_API(Func) api.Func##_ = (decltype(api.Func##_)) api_ptr[API_##Func];
DECL_NPY_API(PyArray_GetNDArrayCFeatureVersion);
if (api.PyArray_GetNDArrayCFeatureVersion_() < 0x7) {
api.PyArray_RUNTIME_VERSION_ = api.PyArray_GetNDArrayCFeatureVersion_();
if (api.PyArray_RUNTIME_VERSION_ < 0x7) {
pybind11_fail("pybind11 numpy support requires numpy >= 1.7.0");
}
DECL_NPY_API(PyArray_Type);
@ -309,7 +368,9 @@ private:
DECL_NPY_API(PyArray_View);
DECL_NPY_API(PyArray_DescrConverter);
DECL_NPY_API(PyArray_EquivTypes);
#ifdef PYBIND11_NUMPY_1_ONLY
DECL_NPY_API(PyArray_GetArrayParamsFromObject);
#endif
DECL_NPY_API(PyArray_SetBaseObject);
#undef DECL_NPY_API
@ -331,6 +392,14 @@ inline const PyArrayDescr_Proxy *array_descriptor_proxy(const PyObject *ptr) {
return reinterpret_cast<const PyArrayDescr_Proxy *>(ptr);
}
inline const PyArrayDescr1_Proxy *array_descriptor1_proxy(const PyObject *ptr) {
return reinterpret_cast<const PyArrayDescr1_Proxy *>(ptr);
}
inline const PyArrayDescr2_Proxy *array_descriptor2_proxy(const PyObject *ptr) {
return reinterpret_cast<const PyArrayDescr2_Proxy *>(ptr);
}
inline bool check_flags(const void *ptr, int flag) {
return (flag == (array_proxy(ptr)->flags & flag));
}
@ -610,10 +679,32 @@ public:
}
/// Size of the data type in bytes.
#ifdef PYBIND11_NUMPY_1_ONLY
ssize_t itemsize() const { return detail::array_descriptor_proxy(m_ptr)->elsize; }
#else
ssize_t itemsize() const {
if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) {
return detail::array_descriptor1_proxy(m_ptr)->elsize;
}
return detail::array_descriptor2_proxy(m_ptr)->elsize;
}
#endif
/// Returns true for structured data types.
#ifdef PYBIND11_NUMPY_1_ONLY
bool has_fields() const { return detail::array_descriptor_proxy(m_ptr)->names != nullptr; }
#else
bool has_fields() const {
if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) {
return detail::array_descriptor1_proxy(m_ptr)->names != nullptr;
}
const auto *proxy = detail::array_descriptor2_proxy(m_ptr);
if (proxy->type_num < 0 || proxy->type_num >= 2056) {
return false;
}
return proxy->names != nullptr;
}
#endif
/// Single-character code for dtype's kind.
/// For example, floating point types are 'f' and integral types are 'i'.
@ -640,10 +731,28 @@ public:
char byteorder() const { return detail::array_descriptor_proxy(m_ptr)->byteorder; }
/// Alignment of the data type
#ifdef PYBIND11_NUMPY_1_ONLY
int alignment() const { return detail::array_descriptor_proxy(m_ptr)->alignment; }
#else
ssize_t alignment() const {
if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) {
return detail::array_descriptor1_proxy(m_ptr)->alignment;
}
return detail::array_descriptor2_proxy(m_ptr)->alignment;
}
#endif
/// Flags for the array descriptor
#ifdef PYBIND11_NUMPY_1_ONLY
char flags() const { return detail::array_descriptor_proxy(m_ptr)->flags; }
#else
std::uint64_t flags() const {
if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) {
return (unsigned char) detail::array_descriptor1_proxy(m_ptr)->flags;
}
return detail::array_descriptor2_proxy(m_ptr)->flags;
}
#endif
private:
static object &_dtype_from_pep3118() {
@ -810,9 +919,7 @@ public:
}
/// Byte size of a single element
ssize_t itemsize() const {
return detail::array_descriptor_proxy(detail::array_proxy(m_ptr)->descr)->elsize;
}
ssize_t itemsize() const { return dtype().itemsize(); }
/// Total number of bytes
ssize_t nbytes() const { return size() * itemsize(); }

View File

@ -218,4 +218,5 @@ def pytest_report_header(config):
f" {pybind11_tests.cpp_std}"
f" {pybind11_tests.PYBIND11_INTERNALS_ID}"
f" PYBIND11_SIMPLE_GIL_MANAGEMENT={pybind11_tests.PYBIND11_SIMPLE_GIL_MANAGEMENT}"
f" PYBIND11_NUMPY_1_ONLY={pybind11_tests.PYBIND11_NUMPY_1_ONLY}"
)

View File

@ -95,6 +95,12 @@ PYBIND11_MODULE(pybind11_tests, m) {
#else
false;
#endif
m.attr("PYBIND11_NUMPY_1_ONLY") =
#if defined(PYBIND11_NUMPY_1_ONLY)
true;
#else
false;
#endif
bind_ConstructorStats(m);

View File

@ -608,7 +608,9 @@ def test_both_ref_mutators():
def test_nocopy_wrapper():
# get_elem requires a column-contiguous matrix reference, but should be
# callable with other types of matrix (via copying):
int_matrix_colmajor = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], order="F")
int_matrix_colmajor = np.array(
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype="l", order="F"
)
dbl_matrix_colmajor = np.array(
int_matrix_colmajor, dtype="double", order="F", copy=True
)

View File

@ -536,7 +536,12 @@ def test_format_descriptors_for_floating_point_types(test_func):
@pytest.mark.parametrize("contiguity", [None, "C", "F"])
@pytest.mark.parametrize("noconvert", [False, True])
@pytest.mark.filterwarnings(
"ignore:Casting complex values to real discards the imaginary part:numpy.ComplexWarning"
"ignore:Casting complex values to real discards the imaginary part:"
+ (
"numpy.exceptions.ComplexWarning"
if hasattr(np, "exceptions")
else "numpy.ComplexWarning"
)
)
def test_argument_conversions(forcecast, contiguity, noconvert):
function_name = "accept_double"
@ -583,7 +588,8 @@ def test_argument_conversions(forcecast, contiguity, noconvert):
def test_dtype_refcount_leak():
from sys import getrefcount
dtype = np.dtype(np.float_)
# Was np.float_ but that alias for float64 was removed in NumPy 2.
dtype = np.dtype(np.float64)
a = np.array([1], dtype=dtype)
before = getrefcount(dtype)
m.ndim(a)

View File

@ -405,10 +405,35 @@ TEST_SUBMODULE(numpy_dtypes, m) {
});
// test_dtype
// Below we use `L` for unsigned long as unfortunately the only name that
// works reliably on Both NumPy 2.x and old NumPy 1.x.
std::vector<const char *> dtype_names{
"byte", "short", "intc", "int_", "longlong", "ubyte", "ushort",
"uintc", "uint", "ulonglong", "half", "single", "double", "longdouble",
"csingle", "cdouble", "clongdouble", "bool_", "datetime64", "timedelta64", "object_"};
"byte",
"short",
"intc",
"long",
"longlong",
"ubyte",
"ushort",
"uintc",
"L",
"ulonglong",
"half",
"single",
"double",
"longdouble",
"csingle",
"cdouble",
"clongdouble",
"bool_",
"datetime64",
"timedelta64",
"object_",
// platform dependent aliases (int_ and uint are also NumPy version dependent on windows)
"int_",
"uint",
"intp",
"uintp"};
m.def("print_dtypes", []() {
py::list l;

View File

@ -3,6 +3,7 @@ import re
import pytest
import env # noqa: F401
from pybind11_tests import PYBIND11_NUMPY_1_ONLY
from pybind11_tests import numpy_dtypes as m
np = pytest.importorskip("numpy")
@ -172,13 +173,20 @@ def test_dtype(simple_dtype):
np.zeros(1, m.trailing_padding_dtype())
)
expected_chars = "bhilqBHILQefdgFDG?MmO"
assert m.test_dtype_kind() == list("iiiiiuuuuuffffcccbMmO")
expected_chars = list("bhilqBHILQefdgFDG?MmO")
# Note that int_ and uint size and mapping is NumPy version dependent:
expected_chars += [np.dtype(_).char for _ in ("int_", "uint", "intp", "uintp")]
assert m.test_dtype_kind() == list("iiiiiuuuuuffffcccbMmOiuiu")
assert m.test_dtype_char_() == list(expected_chars)
assert m.test_dtype_num() == [np.dtype(ch).num for ch in expected_chars]
assert m.test_dtype_byteorder() == [np.dtype(ch).byteorder for ch in expected_chars]
assert m.test_dtype_alignment() == [np.dtype(ch).alignment for ch in expected_chars]
assert m.test_dtype_flags() == [chr(np.dtype(ch).flags) for ch in expected_chars]
if not PYBIND11_NUMPY_1_ONLY:
assert m.test_dtype_flags() == [np.dtype(ch).flags for ch in expected_chars]
else:
assert m.test_dtype_flags() == [
chr(np.dtype(ch).flags) for ch in expected_chars
]
def test_recarray(simple_dtype, packed_dtype):