mirror of
https://github.com/pybind/pybind11.git
synced 2024-11-25 22:52:01 +00:00
remainder of documentation
This commit is contained in:
parent
b50872acf2
commit
9329669683
@ -3,23 +3,506 @@
|
||||
Advanced topics
|
||||
###############
|
||||
|
||||
For brevity, the rest of this chapter assumes that the following two lines are
|
||||
present:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind/pybind.h>
|
||||
|
||||
namespace py = pybind;
|
||||
|
||||
Operator overloading
|
||||
====================
|
||||
|
||||
Suppose that we're given the following ``Vector2`` class with a vector addition
|
||||
and scalar multiplication operation, all implemented using overloaded operators
|
||||
in C++.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Vector2 {
|
||||
public:
|
||||
Vector2(float x, float y) : x(x), y(y) { }
|
||||
|
||||
std::string toString() const { return "[" + std::to_string(x) + ", " + std::to_string(y) + "]"; }
|
||||
|
||||
Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
|
||||
Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
|
||||
Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
|
||||
Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
|
||||
|
||||
friend Vector2 operator*(float f, const Vector2 &v) { return Vector2(f * v.x, f * v.y); }
|
||||
|
||||
private:
|
||||
float x, y;
|
||||
};
|
||||
|
||||
The following snippet shows how the above operators can be conveniently exposed
|
||||
to Python.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind/operators.h>
|
||||
|
||||
PYBIND_PLUGIN(example) {
|
||||
py::module m("example", "pybind example plugin");
|
||||
|
||||
py::class_<Vector2>(m, "Vector2")
|
||||
.def(py::init<float, float>())
|
||||
.def(py::self + py::self)
|
||||
.def(py::self += py::self)
|
||||
.def(py::self *= float())
|
||||
.def(float() * py::self)
|
||||
.def("__repr__", &Vector2::toString);
|
||||
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
Note that a line like
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
.def(py::self * float())
|
||||
|
||||
is really just short hand notation for
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
.def("__mul__", [](const Vector2 &a, float b) {
|
||||
return a * b;
|
||||
})
|
||||
|
||||
This can be useful for exposing additional operators that don't exist on the
|
||||
C++ side, or to perform other types of customization.
|
||||
|
||||
.. note::
|
||||
|
||||
To use the more convenient ``py::self`` notation, the additional
|
||||
header file :file:`pybind/operators.h` must be included.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`example/example3.cpp` contains a complete example that
|
||||
demonstrates how to work with overloaded operators in more detail.
|
||||
|
||||
Callbacks and passing anonymous functions
|
||||
=========================================
|
||||
|
||||
The C++11 standard brought lambda functions and the generic polymorphic
|
||||
function wrapper ``std::function<>`` to the C++ programming language, which
|
||||
enable powerful new ways of working with functions. Lambda functions come in
|
||||
two flavors: stateless lambda function resemble classic function pointers that
|
||||
link to an anonymous piece of code, while stateful lambda functions
|
||||
additionally depend on captured variables that are stored in an anonymous
|
||||
*lambda closure object*.
|
||||
|
||||
Here is a simple example of a C++ function that takes an arbitrary function
|
||||
(stateful or stateless) with signature ``int -> int`` as an argument and runs
|
||||
it with the value 10.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
int func_arg(const std::function<int(int)> &f) {
|
||||
return f(10);
|
||||
}
|
||||
|
||||
The example below is more involved: it takes a function of signature ``int -> int``
|
||||
and returns another function of the same kind. The return value is a stateful
|
||||
lambda function, which stores the value ``f`` in the capture object and adds 1 to
|
||||
its return value upon execution.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
std::function<int(int)> func_ret(const std::function<int(int)> &f) {
|
||||
return [f](int i) {
|
||||
return f(i) + 1;
|
||||
};
|
||||
}
|
||||
|
||||
After including the extra header file :file:`pybind/functional.h`, it is almost
|
||||
trivial to generate binding code for both of these functions.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <pybind/functional.h>
|
||||
|
||||
PYBIND_PLUGIN(example) {
|
||||
py::module m("example", "pybind example plugin");
|
||||
|
||||
m.def("func_arg", &func_arg);
|
||||
m.def("func_ret", &func_ret);
|
||||
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
The following interactive session shows how to call them from Python.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
$ python
|
||||
>>> import example
|
||||
>>> def square(i):
|
||||
... return i * i
|
||||
...
|
||||
>>> example.func_arg(square)
|
||||
100L
|
||||
>>> square_plus_1 = example.func_ret(square)
|
||||
>>> square_plus_1(4)
|
||||
17L
|
||||
>>>
|
||||
|
||||
.. note::
|
||||
|
||||
This functionality is very useful when generating bindings for callbacks in
|
||||
C++ libraries (e.g. a graphical user interface library).
|
||||
|
||||
The file :file:`example/example5.cpp` contains a complete example that
|
||||
demonstrates how to work with callbacks and anonymous functions in more detail.
|
||||
|
||||
Overriding virtual functions in Python
|
||||
======================================
|
||||
|
||||
Passing anonymous functions
|
||||
Suppose that a C++ class or interface has a virtual function that we'd like to
|
||||
to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
|
||||
given as a specific example of how one would do this with traditional C++
|
||||
code).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Animal {
|
||||
public:
|
||||
virtual ~Animal() { }
|
||||
virtual std::string go(int n_times) = 0;
|
||||
};
|
||||
|
||||
class Dog : public Animal {
|
||||
public:
|
||||
std::string go(int n_times) {
|
||||
std::string result;
|
||||
for (int i=0; i<n_times; ++i)
|
||||
result += "woof! ";
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
Let's also suppose that we are given a plain function which calls the
|
||||
function ``go()`` on an arbitrary ``Animal`` instance.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
std::string call_go(Animal *animal) {
|
||||
return animal->go(3);
|
||||
}
|
||||
|
||||
Normally, the binding code for these classes would look as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYBIND_PLUGIN(example) {
|
||||
py::module m("example", "pybind example plugin");
|
||||
|
||||
py::class_<Animal> animal(m, "Animal");
|
||||
animal
|
||||
.def("go", &Animal::go);
|
||||
|
||||
py::class_<Dog>(m, "Dog", animal)
|
||||
.def(py::init<>());
|
||||
|
||||
m.def("call_go", &call_go);
|
||||
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
However, these bindings are impossible to extend: ``Animal`` is not
|
||||
constructible, and we clearly require some kind of "trampoline" that
|
||||
redirects virtual calls back to Python.
|
||||
|
||||
Defining a new type of ``Animal`` from within Python is possible but requires a
|
||||
helper class that is defined as follows:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class PyAnimal : public Animal {
|
||||
public:
|
||||
/* Inherit the constructors */
|
||||
using Animal::Animal;
|
||||
|
||||
/* Trampoline (need one for each virtual function) */
|
||||
std::string go(int n_times) {
|
||||
PYBIND_OVERLOAD_PURE(
|
||||
std::string, /* Return type */
|
||||
Animal, /* Parent class */
|
||||
go, /* Name of function */
|
||||
n_times /* Argument(s) */
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
The macro :func:`PYBIND_OVERLOAD_PURE` should be used for pure virtual
|
||||
functions, and :func:`PYBIND_OVERLOAD` should be used for functions which have
|
||||
a default implementation. The binding code also needs a few minor adaptations
|
||||
(highlighted):
|
||||
|
||||
.. code-block:: cpp
|
||||
:emphasize-lines: 4,6,7
|
||||
|
||||
PYBIND_PLUGIN(example) {
|
||||
py::module m("example", "pybind example plugin");
|
||||
|
||||
py::class_<PyAnimal> animal(m, "Animal");
|
||||
animal
|
||||
.alias<Animal>()
|
||||
.def(py::init<>())
|
||||
.def("go", &Animal::go);
|
||||
|
||||
py::class_<Dog>(m, "Dog", animal)
|
||||
.def(py::init<>());
|
||||
|
||||
m.def("call_go", &call_go);
|
||||
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
Importantly, the trampoline helper class is used as the template argument to
|
||||
:class:`class_`, and a call to :func:`class_::alias` informs the binding
|
||||
generator that this is merely an alias for the underlying type ``Animal``.
|
||||
Following this, we are able to define a constructor as usual.
|
||||
|
||||
The Python session below shows how to override ``Animal::go`` and invoke it via
|
||||
a virtual method call.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
>>> from example import *
|
||||
>>> d = Dog()
|
||||
>>> call_go(d)
|
||||
u'woof! woof! woof! '
|
||||
>>> class Cat(Animal):
|
||||
... def go(self, n_times):
|
||||
... return "meow! " * n_times
|
||||
...
|
||||
>>> c = Cat()
|
||||
>>> call_go(c)
|
||||
u'meow! meow! meow! '
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`example/example12.cpp` contains a complete example that
|
||||
demonstrates how to override virtual functions using pybind11 in more
|
||||
detail.
|
||||
|
||||
Passing STL data structures
|
||||
===========================
|
||||
|
||||
When including the additional header file :file:`pybind/stl.h`, conversions
|
||||
between ``std::vector<>`` and ``std::map<>`` and the Python ``list`` and
|
||||
``dict`` data structures are automatically enabled. The types ``std::pair<>``
|
||||
and ``std::tuple<>`` are already supported out of the box with just the core
|
||||
:file:`pybind/pybind.h` header.
|
||||
|
||||
.. note::
|
||||
|
||||
Arbitrary nesting of any of these types is explicitly permitted.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`example/example2.cpp` contains a complete example that
|
||||
demonstrates how to pass STL data types in more detail.
|
||||
|
||||
Binding sequence data types, the slicing protocol, etc.
|
||||
=======================================================
|
||||
|
||||
Please refer to the supplemental example for details.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`example/example6.cpp` contains a complete example that
|
||||
shows how to bind a sequence data type, including length queries
|
||||
(``__len__``), iterators (``__iter__``), the slicing protocol and other
|
||||
kinds of useful operations.
|
||||
|
||||
Return value policies
|
||||
=====================
|
||||
|
||||
Functions taking Python objects as arguments
|
||||
============================================
|
||||
Python and C++ use wildly different ways of managing the memory and lifetime of
|
||||
objects managed by them. This can lead to issues when creating bindings for
|
||||
functions that return a non-trivial type. Just by looking at the type
|
||||
information, it is not clear whether Python should take charge of the returned
|
||||
value and eventually free its resources, or if this is handled on the C++ side.
|
||||
For this reason, pybind11 provides a several `return value policy` annotations
|
||||
that can be passed to the :func:`module::def` and :func:`class_::def`
|
||||
functions. The default policy is :enum:`return_value_policy::automatic``.
|
||||
|
||||
Callbacks
|
||||
=========
|
||||
|
||||
+--------------------------------------------------+---------------------------------------------------------------------------+
|
||||
| Return value policy | Description |
|
||||
+==================================================+===========================================================================+
|
||||
| :enum:`return_value_policy::automatic` | Automatic: copy objects returned as values and take ownership of |
|
||||
| | objects returned as pointers |
|
||||
+--------------------------------------------------+---------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python |
|
||||
+--------------------------------------------------+---------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::take_ownership` | Reference the existing object and take ownership. Python will call |
|
||||
| | the destructor and delete operator when the reference count reaches zero |
|
||||
+--------------------------------------------------+---------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::reference` | Reference the object, but do not take ownership and defer responsibility |
|
||||
| | for deleting it to C++ (dangerous when C++ code at some point decides to |
|
||||
| | delete it while Python still has a nonzero reference count) |
|
||||
+--------------------------------------------------+---------------------------------------------------------------------------+
|
||||
| :enum:`return_value_policy::reference_internal` | Reference the object, but do not take ownership. The object is considered |
|
||||
| | be owned by the C++ instance whose method or property returned it. The |
|
||||
| | Python object will increase the reference count of this 'parent' by 1 |
|
||||
| | to ensure that it won't be deallocated while Python is using the 'child' |
|
||||
+--------------------------------------------------+---------------------------------------------------------------------------+
|
||||
|
||||
.. warning::
|
||||
|
||||
Code with invalid call policies might access unitialized memory and free
|
||||
data structures multiple times, which can lead to hard-to-debug
|
||||
non-determinism and segmentation faults, hence it is worth spending the
|
||||
time to understand all the different options above.
|
||||
|
||||
See below for an example that uses the
|
||||
:enum:`return_value_policy::reference_internal` policy.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
class Example {
|
||||
public:
|
||||
Internal &get_internal() { return internal; }
|
||||
private:
|
||||
Internal internal;
|
||||
};
|
||||
|
||||
PYBIND_PLUGIN(example) {
|
||||
py::module m("example", "pybind example plugin");
|
||||
|
||||
py::class_<Example>(m, "Example")
|
||||
.def(py::init<>())
|
||||
.def("get_internal", &Example::get_internal, "Return the internal data", py::return_value_policy::reference_internal)
|
||||
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
Implicit type conversions
|
||||
=========================
|
||||
|
||||
Suppose that instances of two types ``A`` and ``B`` are used in a project, and
|
||||
that an ``A`` can easily be converted into a an instance of type ``B`` (examples of this
|
||||
could be a fixed and an arbitrary precision number type).
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<A>(m, "A")
|
||||
/// ... members ...
|
||||
|
||||
py::class_<B>(m, "B")
|
||||
.def(py::init<A>())
|
||||
/// ... members ...
|
||||
|
||||
m.def("func",
|
||||
[](const B &) { /* .... */ }
|
||||
);
|
||||
|
||||
To invoke the function ``func`` using a variable ``a`` containing an ``A``
|
||||
instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
|
||||
will automatically apply an implicit type conversion, which makes it possible
|
||||
to directly write ``func(a)``.
|
||||
|
||||
In this situation (i.e. where ``B`` has a constructor that converts from
|
||||
``A``), the following statement enables similar implicit conversions on the
|
||||
Python side:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::implicitly_convertible<A, B>();
|
||||
|
||||
Smart pointers
|
||||
==============
|
||||
|
||||
The binding generator for classes (:class:`class_`) takes an optional second
|
||||
template type, which denotes a special *holder* type that is used to manage
|
||||
references to the object. When wrapping a type named ``Type``, the default
|
||||
value of this template parameter is ``std::unique_ptr<Type>``, which means that
|
||||
the object is deallocated when Python's reference count goes to zero.
|
||||
|
||||
It is possible to switch to other types of smart pointers, which is useful in
|
||||
codebases that rely on them. For instance, the following snippet causes
|
||||
``std::shared_ptr`` to be used instead.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Example, std::shared_ptr<Example>> obj(m, "Example");
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`example/example8.cpp` contains a complete example that
|
||||
demonstrates how to work with custom smart pointer types in more detail.
|
||||
|
||||
.. _custom_constructors:
|
||||
|
||||
Custom constructors
|
||||
===================
|
||||
|
||||
The syntax for binding constructors was previously introduced, but it only
|
||||
works when a constructor with the given parameters actually exists on the C++
|
||||
side. To extend this to more general cases, let's take a look at what actually
|
||||
happens under the hood: the following statement
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Example>(m, "Example")
|
||||
.def(py::init<int>());
|
||||
|
||||
is short hand notation for
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
py::class_<Example>(m, "Example")
|
||||
.def("__init__",
|
||||
[](Example &instance, int arg) {
|
||||
new (&instance) Example(arg);
|
||||
}
|
||||
);
|
||||
|
||||
In other words, :func:`init` creates an anonymous function that invokes an
|
||||
in-place constructor. Memory allocation etc. is already take care of beforehand
|
||||
within pybind11.
|
||||
|
||||
Catching and throwing exceptions
|
||||
================================
|
||||
|
||||
When C++ code invoked from Python throws an ``std::exception``, it is
|
||||
automatically converted into a Python ``Exception``. pybind11 defines multiple
|
||||
special exception classes that will map to different types of Python
|
||||
exceptions:
|
||||
|
||||
+----------------------------+------------------------------+
|
||||
| C++ exception type | Python exception type |
|
||||
+============================+==============================+
|
||||
| :class:`std::exception` | ``Exception`` |
|
||||
+----------------------------+------------------------------+
|
||||
| :class:`stop_iteration` | ``StopIteration`` (used to |
|
||||
| | implement custom iterators) |
|
||||
+----------------------------+------------------------------+
|
||||
| :class:`index_error` | ``IndexError`` (used to |
|
||||
| | indicate out of bounds |
|
||||
| | accesses in ``__getitem__``, |
|
||||
| | ``__setitem__``, etc.) |
|
||||
+----------------------------+------------------------------+
|
||||
| :class:`error_already_set` | Indicates that the Python |
|
||||
| | exception flag has already |
|
||||
| | been initialized. |
|
||||
+----------------------------+------------------------------+
|
||||
|
||||
When a Python function invoked from C++ throws an exception, it is converted
|
||||
into a C++ exception of type :class:`error_already_set` whose string payload
|
||||
contains a textual summary.
|
||||
|
||||
There is also a special exception :class:`cast_error` that is thrown by
|
||||
:func:`handle::call` when the input arguments cannot be converted to Python
|
||||
objects.
|
||||
|
||||
Buffer protocol
|
||||
===============
|
||||
@ -114,6 +597,11 @@ objects (e.g. a NumPy matrix).
|
||||
}
|
||||
});
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`example/example7.cpp` contains a complete example that
|
||||
demonstrates using the buffer protocol with pybind11 in more detail.
|
||||
|
||||
NumPy support
|
||||
=============
|
||||
|
||||
@ -122,13 +610,13 @@ restrict the function so that it only accepts NumPy arrays (rather than any
|
||||
type of Python object satisfying the buffer object protocol).
|
||||
|
||||
In many situations, we want to define a function which only accepts a NumPy
|
||||
array of a certain data type. This is possible via the ``py::array_dtype<T>``
|
||||
array of a certain data type. This is possible via the ``py::array_t<T>``
|
||||
template. For instance, the following function requires the argument to be a
|
||||
dense array of doubles in C-style ordering.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void f(py::array_dtype<double> array);
|
||||
void f(py::array_t<double> array);
|
||||
|
||||
When it is invoked with a different type (e.g. an integer), the binding code
|
||||
will attempt to cast the input into a NumPy array of the requested type.
|
||||
@ -181,22 +669,41 @@ This can be done with a stateful Lambda closure:
|
||||
|
||||
// Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
|
||||
m.def("vectorized_func",
|
||||
[](py::array_dtype<int> x, py::array_dtype<float> y, my_custom_type *z) {
|
||||
[](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
|
||||
auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
|
||||
return py::vectorize(stateful_closure)(x, y);
|
||||
}
|
||||
);
|
||||
|
||||
Throwing exceptions
|
||||
===================
|
||||
.. seealso::
|
||||
|
||||
STL data structures
|
||||
===================
|
||||
The file :file:`example/example10.cpp` contains a complete example that
|
||||
demonstrates using :func:`vectorize` in more detail.
|
||||
|
||||
Smart pointers
|
||||
==============
|
||||
Functions taking Python objects as arguments
|
||||
============================================
|
||||
|
||||
.. _custom_constructors:
|
||||
pybind11 exposes all major Python types using thin C++ wrapper classes. These
|
||||
wrapper classes can also be used as parameters of functions in bindings, which
|
||||
makes it possible to directly work with native Python types on the C++ side.
|
||||
For instance, the following statement iterates over a Python ``dict``:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void print_dict(py::dict dict) {
|
||||
/* Easily interact with Python types */
|
||||
for (auto item : dict)
|
||||
std::cout << "key=" << item.first << ", "
|
||||
<< "value=" << item.second << std::endl;
|
||||
}
|
||||
|
||||
Available types include :class:`handle`, :class:`object`, :class:`bool_`,
|
||||
:class:`int_`, :class:`float_`, :class:`str`, :class:`tuple`, :class:`list`,
|
||||
:class:`dict`, :class:`slice`, :class:`capsule`, :class:`function`,
|
||||
:class:`buffer`, :class:`array`, and :class:`array_t`.
|
||||
|
||||
.. seealso::
|
||||
|
||||
The file :file:`example/example2.cpp` contains a complete example that
|
||||
demonstrates passing native Python types in more detail.
|
||||
|
||||
Custom constructors
|
||||
===================
|
||||
|
@ -87,7 +87,7 @@ a file named :file:`example.cpp` with the following contents:
|
||||
|
||||
namespace py = pybind;
|
||||
|
||||
PYTHON_PLUGIN(example) {
|
||||
PYBIND_PLUGIN(example) {
|
||||
py::module m("example", "pybind example plugin");
|
||||
|
||||
m.def("add", &add, "A function which adds two numbers");
|
||||
@ -95,7 +95,7 @@ a file named :file:`example.cpp` with the following contents:
|
||||
return m.ptr();
|
||||
}
|
||||
|
||||
The :func:`PYTHON_PLUGIN` macro creates a function that will be called when an
|
||||
The :func:`PYBIND_PLUGIN` macro creates a function that will be called when an
|
||||
``import`` statement is issued from within Python. The next line creates a
|
||||
module named ``example`` (with the supplied docstring). The method
|
||||
:func:`module::def` generates binding code that exposes the
|
||||
@ -130,13 +130,14 @@ shows how to load and execute the example.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
% python
|
||||
$ python
|
||||
Python 2.7.10 (default, Aug 22 2015, 20:33:39)
|
||||
[GCC 4.2.1 Compatible Apple LLVM 7.0.0 (clang-700.0.59.1)] on darwin
|
||||
Type "help", "copyright", "credits" or "license" for more information.
|
||||
>>> import example
|
||||
>>> example.add(1, 2)
|
||||
3L
|
||||
>>>
|
||||
|
||||
.. _keyword_args:
|
||||
|
||||
@ -219,7 +220,7 @@ Supported data types
|
||||
|
||||
The following basic data types are supported out of the box (some may require
|
||||
an additional extension header to be included). To pass other data structures
|
||||
as arguments and return values, refer to the section on :ref:`classes`.
|
||||
as arguments and return values, refer to the section on binding :ref:`classes`.
|
||||
|
||||
+------------------------+--------------------------+---------------------+
|
||||
| Data type | Description | Header file |
|
||||
|
@ -27,7 +27,7 @@ The binding code for ``Pet`` looks as follows:
|
||||
|
||||
namespace py = pybind;
|
||||
|
||||
PYTHON_PLUGIN(example) {
|
||||
PYBIND_PLUGIN(example) {
|
||||
py::module m("example", "pybind example plugin");
|
||||
|
||||
py::class_<Pet>(m, "Pet")
|
||||
@ -140,7 +140,8 @@ that can only be accessed via setters and getters.
|
||||
|
||||
In this case, the method :func:`class_::def_property`
|
||||
(:func:`class_::def_property_readonly` for read-only data) can be used to
|
||||
provide an interface that is indistinguishable from within Python:
|
||||
provide a field-like interface within Python that will transparently call
|
||||
the setter and getter functions:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
@ -249,13 +250,18 @@ The overload signatures are also visible in the method's docstring:
|
||||
| 2. Signature : (Pet, str) -> None
|
||||
|
|
||||
| Set the pet's name
|
||||
|
|
||||
|
||||
.. note::
|
||||
|
||||
To define multiple overloaded constructors, simply declare one after the
|
||||
other using the ``.def(py::init<...>())`` syntax. The existing machinery
|
||||
for specifying keyword and default arguments also works.
|
||||
|
||||
Enumerations and internal types
|
||||
===============================
|
||||
|
||||
Let's now suppose that the example class also contains an internal enumeration
|
||||
type.
|
||||
Let's now suppose that the example class contains an internal enumeration type,
|
||||
e.g.:
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
@ -288,9 +294,9 @@ The binding code for this example looks as follows:
|
||||
|
||||
To ensure that the ``Kind`` type is created within the scope of ``Pet``, the
|
||||
``pet`` :class:`class_` instance must be supplied to the :class:`enum_`.
|
||||
constructor. The :func:`enum_::export_values` function ensures that the enum
|
||||
entries are exported into the parent scope; skip this call for new C++11-style
|
||||
strongly typed enums.
|
||||
constructor. The :func:`enum_::export_values` function exports the enum entries
|
||||
into the parent scope, which should be skipped for newer C++11-style strongly
|
||||
typed enums.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@ -301,4 +307,4 @@ strongly typed enums.
|
||||
1L
|
||||
|
||||
|
||||
.. [#f1] (those with an empty pair of brackets ``[]`` as the capture object)
|
||||
.. [#f1] Stateless closures are those with an empty pair of brackets ``[]`` as the capture object.
|
||||
|
@ -116,6 +116,11 @@ if not on_rtd: # only import and set the theme if we're building docs locally
|
||||
import sphinx_rtd_theme
|
||||
html_theme = 'sphinx_rtd_theme'
|
||||
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
|
||||
html_context = {
|
||||
'css_files': [
|
||||
'_static/theme_overrides.css',
|
||||
]
|
||||
}
|
||||
|
||||
#import alabaster
|
||||
|
||||
|
@ -21,7 +21,9 @@ everything stripped away that isn't relevant for binding generation. The whole
|
||||
codebase requires less than 3000 lines of code and only depends on Python (2.7
|
||||
or 3.x) and the C++ standard library. This compact implementation was possible
|
||||
thanks to some of the new C++11 language features (tuples, lambda functions and
|
||||
variadic templates).
|
||||
variadic templates). Since its creation, this library has grown beyond
|
||||
Boost.Python in many ways, leading to dramatically simpler binding code in many
|
||||
common situations.
|
||||
|
||||
Core features
|
||||
*************
|
||||
|
@ -1,12 +1,18 @@
|
||||
.. _reference:
|
||||
|
||||
.. warning::
|
||||
|
||||
Please be advised that the reference documentation discussing pybind11
|
||||
internals is currently incomplete. Please refer to the previous sections
|
||||
and the pybind header files for the nitty gritty details.
|
||||
|
||||
Reference
|
||||
#########
|
||||
|
||||
Macros
|
||||
======
|
||||
|
||||
.. function:: PYTHON_PLUGIN(const char *name)
|
||||
.. function:: PYBIND_PLUGIN(const char *name)
|
||||
|
||||
This macro creates the entry point that will be invoked when the Python
|
||||
interpreter imports a plugin library. Please create a
|
||||
@ -15,7 +21,7 @@ Macros
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
PYTHON_PLUGIN(example) {
|
||||
PYBIND_PLUGIN(example) {
|
||||
pybind::module m("example", "pybind example plugin");
|
||||
/// Set up bindings here
|
||||
return m.ptr();
|
||||
@ -122,7 +128,7 @@ Without reference counting
|
||||
Assuming the Python object is a function or implements the ``__call__``
|
||||
protocol, ``call()`` invokes the underlying function, passing an arbitrary
|
||||
set of parameters. The result is returned as a :class:`object` and may need
|
||||
to be converted back into a Python object using :func:`template <typename T> handle::cast`.
|
||||
to be converted back into a Python object using :func:`handle::cast`.
|
||||
|
||||
When some of the arguments cannot be converted to Python objects, the
|
||||
function will throw a :class:`cast_error` exception. When the Python
|
||||
|
Loading…
Reference in New Issue
Block a user