diff --git a/docs/advanced/cast/strings.rst b/docs/advanced/cast/strings.rst
index c70fb0bec..9328d3674 100644
--- a/docs/advanced/cast/strings.rst
+++ b/docs/advanced/cast/strings.rst
@@ -3,14 +3,23 @@ Strings, bytes and Unicode conversions
.. note::
- This section discusses string handling in terms of Python 3 strings. For Python 2.7, replace all occurrences of ``str`` with ``unicode`` and ``bytes`` with ``str``. Python 2.7 users may find it best to use ``from __future__ import unicode_literals`` to avoid unintentionally using ``str`` instead of ``unicode``.
+ This section discusses string handling in terms of Python 3 strings. For
+ Python 2.7, replace all occurrences of ``str`` with ``unicode`` and
+ ``bytes`` with ``str``. Python 2.7 users may find it best to use ``from
+ __future__ import unicode_literals`` to avoid unintentionally using ``str``
+ instead of ``unicode``.
Passing Python strings to C++
=============================
-When a Python ``str`` is passed from Python to a C++ function that accepts ``std::string`` or ``char *`` as arguments, pybind11 will encode the Python string to UTF-8. All Python ``str`` can be encoded in UTF-8, so this operation does not fail.
+When a Python ``str`` is passed from Python to a C++ function that accepts
+``std::string`` or ``char *`` as arguments, pybind11 will encode the Python
+string to UTF-8. All Python ``str`` can be encoded in UTF-8, so this operation
+does not fail.
-The C++ language is encoding agnostic. It is the responsibility of the programmer to track encodings. It's often easiest to simply `use UTF-8 everywhere `_.
+The C++ language is encoding agnostic. It is the responsibility of the
+programmer to track encodings. It's often easiest to simply `use UTF-8
+everywhere `_.
.. code-block:: c++
@@ -39,20 +48,27 @@ The C++ language is encoding agnostic. It is the responsibility of the programme
.. note::
- Some terminal emulators do not support UTF-8 or emoji fonts and may not display the example above correctly.
+ Some terminal emulators do not support UTF-8 or emoji fonts and may not
+ display the example above correctly.
-The results are the same whether the C++ function accepts arguments by value or reference, and whether or not ``const`` is used.
+The results are the same whether the C++ function accepts arguments by value or
+reference, and whether or not ``const`` is used.
Passing bytes to C++
--------------------
-A Python ``bytes`` object will be passed to C++ functions that accept ``std::string`` or ``char*`` *without* conversion.
+A Python ``bytes`` object will be passed to C++ functions that accept
+``std::string`` or ``char*`` *without* conversion.
Returning C++ strings to Python
===============================
-When a C++ function returns a ``std::string`` or ``char*`` to a Python caller, **pybind11 will assume that the string is valid UTF-8** and will decode it to a native Python ``str``, using the same API as Python uses to perform ``bytes.decode('utf-8')``. If this implicit conversion fails, pybind11 will raise a ``UnicodeDecodeError``.
+When a C++ function returns a ``std::string`` or ``char*`` to a Python caller,
+**pybind11 will assume that the string is valid UTF-8** and will decode it to a
+native Python ``str``, using the same API as Python uses to perform
+``bytes.decode('utf-8')``. If this implicit conversion fails, pybind11 will
+raise a ``UnicodeDecodeError``.
.. code-block:: c++
@@ -68,16 +84,22 @@ When a C++ function returns a ``std::string`` or ``char*`` to a Python caller, *
True
-Because UTF-8 is inclusive of pure ASCII, there is never any issue with returning a pure ASCII string to Python. If there is any possibility that the string is not pure ASCII, it is necessary to ensure the encoding is valid UTF-8.
+Because UTF-8 is inclusive of pure ASCII, there is never any issue with
+returning a pure ASCII string to Python. If there is any possibility that the
+string is not pure ASCII, it is necessary to ensure the encoding is valid
+UTF-8.
.. warning::
- Implicit conversion assumes that a returned ``char *`` is null-terminated. If there is no null terminator a buffer overrun will occur.
+ Implicit conversion assumes that a returned ``char *`` is null-terminated.
+ If there is no null terminator a buffer overrun will occur.
Explicit conversions
--------------------
-If some C++ code constructs a ``std::string`` that is not a UTF-8 string, one can perform a explicit conversion and return a ``py::str`` object. Explicit conversion has the same overhead as implicit conversion.
+If some C++ code constructs a ``std::string`` that is not a UTF-8 string, one
+can perform a explicit conversion and return a ``py::str`` object. Explicit
+conversion has the same overhead as implicit conversion.
.. code-block:: c++
@@ -95,15 +117,20 @@ If some C++ code constructs a ``std::string`` that is not a UTF-8 string, one ca
>>> str_output()
'Send your résumé to Alice in HR'
-The `Python C API `_ provides several built-in codecs.
+The `Python C API
+`_ provides
+several built-in codecs.
-One could also use a third party encoding library such as libiconv to transcode to UTF-8.
+One could also use a third party encoding library such as libiconv to transcode
+to UTF-8.
Return C++ strings without conversion
-------------------------------------
-If the data in a C++ ``std::string`` does not represent text and should be returned to Python as ``bytes``, then one can return the data as a ``py::bytes`` object.
+If the data in a C++ ``std::string`` does not represent text and should be
+returned to Python as ``bytes``, then one can return the data as a
+``py::bytes`` object.
.. code-block:: c++
@@ -120,7 +147,8 @@ If the data in a C++ ``std::string`` does not represent text and should be retur
b'\xba\xd0\xba\xd0'
-Note the asymmetry: pybind11 will convert ``bytes`` to ``std::string`` without encoding, but cannot convert ``std::string`` back to ``bytes`` implicitly.
+Note the asymmetry: pybind11 will convert ``bytes`` to ``std::string`` without
+encoding, but cannot convert ``std::string`` back to ``bytes`` implicitly.
.. code-block:: c++
@@ -128,7 +156,7 @@ Note the asymmetry: pybind11 will convert ``bytes`` to ``std::string`` without e
[](std::string s) { // Accepts str or bytes from Python
return s; // Looks harmless, but implicitly converts to str
}
- );
+ );
.. code-block:: python
@@ -142,7 +170,12 @@ Note the asymmetry: pybind11 will convert ``bytes`` to ``std::string`` without e
Wide character strings
======================
-When a Python ``str`` is passed to a C++ function expecting ``std::wstring``, ``wchar_t*``, ``std::u16string`` or ``std::u32string``, the ``str`` will be encoded to UTF-16 or UTF-32 depending on how the C++ compiler implements each type, in the platform's endian. When strings of these types are returned, they are assumed to contain valid UTF-16 or UTF-32, and will be decoded to Python ``str``.
+When a Python ``str`` is passed to a C++ function expecting ``std::wstring``,
+``wchar_t*``, ``std::u16string`` or ``std::u32string``, the ``str`` will be
+encoded to UTF-16 or UTF-32 depending on how the C++ compiler implements each
+type, in the platform's endian. When strings of these types are returned, they
+are assumed to contain valid UTF-16 or UTF-32, and will be decoded to Python
+``str``.
.. code-block:: c++
@@ -171,17 +204,23 @@ When a Python ``str`` is passed to a C++ function expecting ``std::wstring``, ``
.. warning::
- Wide character strings may not work as described on Python 2.7 or Python 3.3 compiled with ``--enable-unicode=ucs2``.
+ Wide character strings may not work as described on Python 2.7 or Python
+ 3.3 compiled with ``--enable-unicode=ucs2``.
-Strings in multibyte encodings such as Shift-JIS must transcoded to a UTF-8/16/32 before being returned to Python.
+Strings in multibyte encodings such as Shift-JIS must transcoded to a
+UTF-8/16/32 before being returned to Python.
Character literals
==================
-C++ functions that accept character literals as input will receive the first character of a Python ``str`` as their input. If the string is longer than one Unicode character, trailing characters will be ignored.
+C++ functions that accept character literals as input will receive the first
+character of a Python ``str`` as their input. If the string is longer than one
+Unicode character, trailing characters will be ignored.
-When a character literal is returned from C++ (such as a ``char`` or a ``wchar_t``), it will be converted to a ``str`` that represents the single character.
+When a character literal is returned from C++ (such as a ``char`` or a
+``wchar_t``), it will be converted to a ``str`` that represents the single
+character.
.. code-block:: c++
@@ -189,26 +228,34 @@ When a character literal is returned from C++ (such as a ``char`` or a ``wchar_t
m.def("pass_wchar", [](wchar_t w) { return w; });
.. code-block:: python
-
+
>>> example.pass_char('A')
'A'
-While C++ will cast integers to character types (``char c = 0x65;``), pybind11 does not convert Python integers to characters implicitly. The Python function ``chr()`` can be used to convert integers to characters.
+While C++ will cast integers to character types (``char c = 0x65;``), pybind11
+does not convert Python integers to characters implicitly. The Python function
+``chr()`` can be used to convert integers to characters.
.. code-block:: python
-
+
>>> example.pass_char(0x65)
TypeError
>>> example.pass_char(chr(0x65))
'A'
-If the desire is to work with an 8-bit integer, use ``int8_t`` or ``uint8_t`` as the argument type.
+If the desire is to work with an 8-bit integer, use ``int8_t`` or ``uint8_t``
+as the argument type.
Grapheme clusters
-----------------
-A single grapheme may be represented by two or more Unicode characters. For example 'é' is usually represented as U+00E9 but can also be expressed as the combining character sequence U+0065 U+0301 (that is, the letter 'e' followed by a combining acute accent). The combining character will be lost if the two-character sequence is passed as an argument, even though it renders as a single grapheme.
+A single grapheme may be represented by two or more Unicode characters. For
+example 'é' is usually represented as U+00E9 but can also be expressed as the
+combining character sequence U+0065 U+0301 (that is, the letter 'e' followed by
+a combining acute accent). The combining character will be lost if the
+two-character sequence is passed as an argument, even though it renders as a
+single grapheme.
.. code-block:: python
@@ -226,18 +273,22 @@ A single grapheme may be represented by two or more Unicode characters. For exam
>>> example.pass_wchar(combining_e_acute)
'e'
-Normalizing combining characters before passing the character literal to C++ may resolve *some* of these issues:
+Normalizing combining characters before passing the character literal to C++
+may resolve *some* of these issues:
.. code-block:: python
>>> example.pass_wchar(unicodedata.normalize('NFC', combining_e_acute))
'é'
-In some languages (Thai for example), there are `graphemes that cannot be expressed as a single Unicode code point `_, so there is no way to capture them in a C++ character type.
+In some languages (Thai for example), there are `graphemes that cannot be
+expressed as a single Unicode code point
+`_, so there is
+no way to capture them in a C++ character type.
References
==========
-* `The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!) `_
-* `C++ - Using STL Strings at Win32 API Boundaries `_
\ No newline at end of file
+* `The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!) `
+* `C++ - Using STL Strings at Win32 API Boundaries `_