numpy: Add test for explicit dtype checks. At present, int64 + uint64 do not exactly match dtype(...).num

This commit is contained in:
Eric Cousineau 2018-03-20 16:55:29 -04:00 committed by Wenzel Jakob
parent c6b699d9c2
commit e9ca89f453
2 changed files with 96 additions and 0 deletions

View File

@ -14,6 +14,67 @@
#include <cstdint> #include <cstdint>
// Size / dtype checks.
struct DtypeCheck {
py::dtype numpy{};
py::dtype pybind11{};
};
template <typename T>
DtypeCheck get_dtype_check(const char* name) {
py::module np = py::module::import("numpy");
DtypeCheck check{};
check.numpy = np.attr("dtype")(np.attr(name));
check.pybind11 = py::dtype::of<T>();
return check;
}
std::vector<DtypeCheck> get_concrete_dtype_checks() {
return {
// Normalization
get_dtype_check<std::int8_t>("int8"),
get_dtype_check<std::uint8_t>("uint8"),
get_dtype_check<std::int16_t>("int16"),
get_dtype_check<std::uint16_t>("uint16"),
get_dtype_check<std::int32_t>("int32"),
get_dtype_check<std::uint32_t>("uint32"),
get_dtype_check<std::int64_t>("int64"),
get_dtype_check<std::uint64_t>("uint64")
};
}
struct DtypeSizeCheck {
std::string name{};
int size_cpp{};
int size_numpy{};
// For debugging.
py::dtype dtype{};
};
template <typename T>
DtypeSizeCheck get_dtype_size_check() {
DtypeSizeCheck check{};
check.name = py::type_id<T>();
check.size_cpp = sizeof(T);
check.dtype = py::dtype::of<T>();
check.size_numpy = check.dtype.attr("itemsize").template cast<int>();
return check;
}
std::vector<DtypeSizeCheck> get_platform_dtype_size_checks() {
return {
get_dtype_size_check<short>(),
get_dtype_size_check<unsigned short>(),
get_dtype_size_check<int>(),
get_dtype_size_check<unsigned int>(),
get_dtype_size_check<long>(),
get_dtype_size_check<unsigned long>(),
get_dtype_size_check<long long>(),
get_dtype_size_check<unsigned long long>(),
};
}
// Arrays.
using arr = py::array; using arr = py::array;
using arr_t = py::array_t<uint16_t, 0>; using arr_t = py::array_t<uint16_t, 0>;
static_assert(std::is_same<arr_t::value_type, uint16_t>::value, ""); static_assert(std::is_same<arr_t::value_type, uint16_t>::value, "");
@ -75,6 +136,26 @@ TEST_SUBMODULE(numpy_array, sm) {
try { py::module::import("numpy"); } try { py::module::import("numpy"); }
catch (...) { return; } catch (...) { return; }
// test_dtypes
py::class_<DtypeCheck>(sm, "DtypeCheck")
.def_readonly("numpy", &DtypeCheck::numpy)
.def_readonly("pybind11", &DtypeCheck::pybind11)
.def("__repr__", [](const DtypeCheck& self) {
return py::str("<DtypeCheck numpy={} pybind11={}>").format(
self.numpy, self.pybind11);
});
sm.def("get_concrete_dtype_checks", &get_concrete_dtype_checks);
py::class_<DtypeSizeCheck>(sm, "DtypeSizeCheck")
.def_readonly("name", &DtypeSizeCheck::name)
.def_readonly("size_cpp", &DtypeSizeCheck::size_cpp)
.def_readonly("size_numpy", &DtypeSizeCheck::size_numpy)
.def("__repr__", [](const DtypeSizeCheck& self) {
return py::str("<DtypeSizeCheck name='{}' size_cpp={} size_numpy={} dtype={}>").format(
self.name, self.size_cpp, self.size_numpy, self.dtype);
});
sm.def("get_platform_dtype_size_checks", &get_platform_dtype_size_checks);
// test_array_attributes // test_array_attributes
sm.def("ndim", [](const arr& a) { return a.ndim(); }); sm.def("ndim", [](const arr& a) { return a.ndim(); });
sm.def("shape", [](const arr& a) { return arr(a.ndim(), a.shape()); }); sm.def("shape", [](const arr& a) { return arr(a.ndim(), a.shape()); });

View File

@ -7,6 +7,21 @@ with pytest.suppress(ImportError):
import numpy as np import numpy as np
def test_dtypes():
# See issue #1328.
# - Platform-dependent sizes.
for size_check in m.get_platform_dtype_size_checks():
print(size_check)
assert size_check.size_cpp == size_check.size_numpy, size_check
# - Concrete sizes.
for check in m.get_concrete_dtype_checks():
print(check)
assert check.numpy == check.pybind11, check
if check.numpy.num != check.pybind11.num:
print("NOTE: typenum mismatch for {}: {} != {}".format(
check, check.numpy.num, check.pybind11.num))
@pytest.fixture(scope='function') @pytest.fixture(scope='function')
def arr(): def arr():
return np.array([[1, 2, 3], [4, 5, 6]], '=u2') return np.array([[1, 2, 3], [4, 5, 6]], '=u2')