mirror of
https://github.com/pybind/pybind11.git
synced 2025-02-22 16:39:29 +00:00
Merge branch 'master' into sh_merge_master
This commit is contained in:
commit
eba3d617ee
@ -225,19 +225,22 @@ struct EigenProps {
|
||||
= !show_c_contiguous && show_order && requires_col_major;
|
||||
|
||||
static constexpr auto descriptor
|
||||
= const_name("numpy.ndarray[") + npy_format_descriptor<Scalar>::name + const_name("[")
|
||||
= const_name("typing.Annotated[")
|
||||
+ io_name("numpy.typing.ArrayLike, ", "numpy.typing.NDArray[")
|
||||
+ npy_format_descriptor<Scalar>::name + io_name("", "]") + const_name(", \"[")
|
||||
+ const_name<fixed_rows>(const_name<(size_t) rows>(), const_name("m")) + const_name(", ")
|
||||
+ const_name<fixed_cols>(const_name<(size_t) cols>(), const_name("n")) + const_name("]")
|
||||
+
|
||||
+ const_name<fixed_cols>(const_name<(size_t) cols>(), const_name("n"))
|
||||
+ const_name("]\"")
|
||||
// For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to
|
||||
// be satisfied: writeable=True (for a mutable reference), and, depending on the map's
|
||||
// stride options, possibly f_contiguous or c_contiguous. We include them in the
|
||||
// descriptor output to provide some hint as to why a TypeError is occurring (otherwise
|
||||
// it can be confusing to see that a function accepts a 'numpy.ndarray[float64[3,2]]' and
|
||||
// an error message that you *gave* a numpy.ndarray of the right type and dimensions.
|
||||
const_name<show_writeable>(", flags.writeable", "")
|
||||
+ const_name<show_c_contiguous>(", flags.c_contiguous", "")
|
||||
+ const_name<show_f_contiguous>(", flags.f_contiguous", "") + const_name("]");
|
||||
// it can be confusing to see that a function accepts a
|
||||
// 'typing.Annotated[numpy.typing.NDArray[numpy.float64], "[3,2]"]' and an error message
|
||||
// that you *gave* a numpy.ndarray of the right type and dimensions.
|
||||
+ const_name<show_writeable>(", \"flags.writeable\"", "")
|
||||
+ const_name<show_c_contiguous>(", \"flags.c_contiguous\"", "")
|
||||
+ const_name<show_f_contiguous>(", \"flags.f_contiguous\"", "") + const_name("]");
|
||||
};
|
||||
|
||||
// Casts an Eigen type to numpy array. If given a base, the numpy array references the src data,
|
||||
@ -441,7 +444,9 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
static constexpr auto name = props::descriptor;
|
||||
// return_descr forces the use of NDArray instead of ArrayLike in args
|
||||
// since Ref<...> args can only accept arrays.
|
||||
static constexpr auto name = return_descr(props::descriptor);
|
||||
|
||||
// Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
|
||||
// types but not bound arguments). We still provide them (with an explicitly delete) so that
|
||||
|
@ -124,13 +124,16 @@ struct eigen_tensor_helper<
|
||||
template <typename Type, bool ShowDetails, bool NeedsWriteable = false>
|
||||
struct get_tensor_descriptor {
|
||||
static constexpr auto details
|
||||
= const_name<NeedsWriteable>(", flags.writeable", "") + const_name
|
||||
= const_name<NeedsWriteable>(", \"flags.writeable\"", "") + const_name
|
||||
< static_cast<int>(Type::Layout)
|
||||
== static_cast<int>(Eigen::RowMajor) > (", flags.c_contiguous", ", flags.f_contiguous");
|
||||
== static_cast<int>(Eigen::RowMajor)
|
||||
> (", \"flags.c_contiguous\"", ", \"flags.f_contiguous\"");
|
||||
static constexpr auto value
|
||||
= const_name("numpy.ndarray[") + npy_format_descriptor<typename Type::Scalar>::name
|
||||
+ const_name("[") + eigen_tensor_helper<remove_cv_t<Type>>::dimensions_descriptor
|
||||
+ const_name("]") + const_name<ShowDetails>(details, const_name("")) + const_name("]");
|
||||
= const_name("typing.Annotated[")
|
||||
+ io_name("numpy.typing.ArrayLike, ", "numpy.typing.NDArray[")
|
||||
+ npy_format_descriptor<typename Type::Scalar>::name + io_name("", "]")
|
||||
+ const_name(", \"[") + eigen_tensor_helper<remove_cv_t<Type>>::dimensions_descriptor
|
||||
+ const_name("]\"") + const_name<ShowDetails>(details, const_name("")) + const_name("]");
|
||||
};
|
||||
|
||||
// When EIGEN_AVOID_STL_ARRAY is defined, Eigen::DSizes<T, 0> does not have the begin() member
|
||||
@ -502,7 +505,10 @@ protected:
|
||||
std::unique_ptr<MapType> value;
|
||||
|
||||
public:
|
||||
static constexpr auto name = get_tensor_descriptor<Type, true, needs_writeable>::value;
|
||||
// return_descr forces the use of NDArray instead of ArrayLike since refs can only reference
|
||||
// arrays
|
||||
static constexpr auto name
|
||||
= return_descr(get_tensor_descriptor<Type, true, needs_writeable>::value);
|
||||
explicit operator MapType *() { return value.get(); }
|
||||
explicit operator MapType &() { return *value; }
|
||||
explicit operator MapType &&() && { return std::move(*value); }
|
||||
|
@ -175,7 +175,6 @@ inline numpy_internals &get_numpy_internals() {
|
||||
PYBIND11_NOINLINE module_ import_numpy_core_submodule(const char *submodule_name) {
|
||||
module_ numpy = module_::import("numpy");
|
||||
str version_string = numpy.attr("__version__");
|
||||
|
||||
module_ numpy_lib = module_::import("numpy.lib");
|
||||
object numpy_version = numpy_lib.attr("NumpyVersion")(version_string);
|
||||
int major_version = numpy_version.attr("major").cast<int>();
|
||||
@ -2183,7 +2182,8 @@ vectorize_helper<Func, Return, Args...> vectorize_extractor(const Func &f, Retur
|
||||
template <typename T, int Flags>
|
||||
struct handle_type_name<array_t<T, Flags>> {
|
||||
static constexpr auto name
|
||||
= const_name("numpy.ndarray[") + npy_format_descriptor<T>::name + const_name("]");
|
||||
= io_name("typing.Annotated[numpy.typing.ArrayLike, ", "numpy.typing.NDArray[")
|
||||
+ npy_format_descriptor<T>::name + const_name("]");
|
||||
};
|
||||
|
||||
PYBIND11_NAMESPACE_END(detail)
|
||||
|
@ -440,4 +440,8 @@ TEST_SUBMODULE(eigen_matrix, m) {
|
||||
py::module_::import("numpy").attr("ones")(10);
|
||||
return v[0](5);
|
||||
});
|
||||
m.def("round_trip_vector", [](const Eigen::VectorXf &x) -> Eigen::VectorXf { return x; });
|
||||
m.def("round_trip_dense", [](const DenseMatrixR &m) -> DenseMatrixR { return m; });
|
||||
m.def("round_trip_dense_ref",
|
||||
[](const Eigen::Ref<DenseMatrixR> &m) -> Eigen::Ref<DenseMatrixR> { return m; });
|
||||
}
|
||||
|
@ -95,19 +95,20 @@ def test_mutator_descriptors():
|
||||
with pytest.raises(TypeError) as excinfo:
|
||||
m.fixed_mutator_r(zc)
|
||||
assert (
|
||||
"(arg0: numpy.ndarray[numpy.float32[5, 6],"
|
||||
" flags.writeable, flags.c_contiguous]) -> None" in str(excinfo.value)
|
||||
'(arg0: typing.Annotated[numpy.typing.NDArray[numpy.float32], "[5, 6]",'
|
||||
' "flags.writeable", "flags.c_contiguous"]) -> None' in str(excinfo.value)
|
||||
)
|
||||
with pytest.raises(TypeError) as excinfo:
|
||||
m.fixed_mutator_c(zr)
|
||||
assert (
|
||||
"(arg0: numpy.ndarray[numpy.float32[5, 6],"
|
||||
" flags.writeable, flags.f_contiguous]) -> None" in str(excinfo.value)
|
||||
'(arg0: typing.Annotated[numpy.typing.NDArray[numpy.float32], "[5, 6]",'
|
||||
' "flags.writeable", "flags.f_contiguous"]) -> None' in str(excinfo.value)
|
||||
)
|
||||
with pytest.raises(TypeError) as excinfo:
|
||||
m.fixed_mutator_a(np.array([[1, 2], [3, 4]], dtype="float32"))
|
||||
assert "(arg0: numpy.ndarray[numpy.float32[5, 6], flags.writeable]) -> None" in str(
|
||||
excinfo.value
|
||||
assert (
|
||||
'(arg0: typing.Annotated[numpy.typing.NDArray[numpy.float32], "[5, 6]", "flags.writeable"]) -> None'
|
||||
in str(excinfo.value)
|
||||
)
|
||||
zr.flags.writeable = False
|
||||
with pytest.raises(TypeError):
|
||||
@ -201,7 +202,7 @@ def test_negative_stride_from_python(msg):
|
||||
msg(excinfo.value)
|
||||
== """
|
||||
double_threer(): incompatible function arguments. The following argument types are supported:
|
||||
1. (arg0: numpy.ndarray[numpy.float32[1, 3], flags.writeable]) -> None
|
||||
1. (arg0: typing.Annotated[numpy.typing.NDArray[numpy.float32], "[1, 3]", "flags.writeable"]) -> None
|
||||
|
||||
Invoked with: """
|
||||
+ repr(np.array([5.0, 4.0, 3.0], dtype="float32"))
|
||||
@ -213,7 +214,7 @@ def test_negative_stride_from_python(msg):
|
||||
msg(excinfo.value)
|
||||
== """
|
||||
double_threec(): incompatible function arguments. The following argument types are supported:
|
||||
1. (arg0: numpy.ndarray[numpy.float32[3, 1], flags.writeable]) -> None
|
||||
1. (arg0: typing.Annotated[numpy.typing.NDArray[numpy.float32], "[3, 1]", "flags.writeable"]) -> None
|
||||
|
||||
Invoked with: """
|
||||
+ repr(np.array([7.0, 4.0, 1.0], dtype="float32"))
|
||||
@ -634,16 +635,16 @@ def test_nocopy_wrapper():
|
||||
with pytest.raises(TypeError) as excinfo:
|
||||
m.get_elem_nocopy(int_matrix_colmajor)
|
||||
assert "get_elem_nocopy(): incompatible function arguments." in str(excinfo.value)
|
||||
assert ", flags.f_contiguous" in str(excinfo.value)
|
||||
assert ', "flags.f_contiguous"' in str(excinfo.value)
|
||||
assert m.get_elem_nocopy(dbl_matrix_colmajor) == 8
|
||||
with pytest.raises(TypeError) as excinfo:
|
||||
m.get_elem_nocopy(int_matrix_rowmajor)
|
||||
assert "get_elem_nocopy(): incompatible function arguments." in str(excinfo.value)
|
||||
assert ", flags.f_contiguous" in str(excinfo.value)
|
||||
assert ', "flags.f_contiguous"' in str(excinfo.value)
|
||||
with pytest.raises(TypeError) as excinfo:
|
||||
m.get_elem_nocopy(dbl_matrix_rowmajor)
|
||||
assert "get_elem_nocopy(): incompatible function arguments." in str(excinfo.value)
|
||||
assert ", flags.f_contiguous" in str(excinfo.value)
|
||||
assert ', "flags.f_contiguous"' in str(excinfo.value)
|
||||
|
||||
# For the row-major test, we take a long matrix in row-major, so only the third is allowed:
|
||||
with pytest.raises(TypeError) as excinfo:
|
||||
@ -651,20 +652,20 @@ def test_nocopy_wrapper():
|
||||
assert "get_elem_rm_nocopy(): incompatible function arguments." in str(
|
||||
excinfo.value
|
||||
)
|
||||
assert ", flags.c_contiguous" in str(excinfo.value)
|
||||
assert ', "flags.c_contiguous"' in str(excinfo.value)
|
||||
with pytest.raises(TypeError) as excinfo:
|
||||
m.get_elem_rm_nocopy(dbl_matrix_colmajor)
|
||||
assert "get_elem_rm_nocopy(): incompatible function arguments." in str(
|
||||
excinfo.value
|
||||
)
|
||||
assert ", flags.c_contiguous" in str(excinfo.value)
|
||||
assert ', "flags.c_contiguous"' in str(excinfo.value)
|
||||
assert m.get_elem_rm_nocopy(int_matrix_rowmajor) == 8
|
||||
with pytest.raises(TypeError) as excinfo:
|
||||
m.get_elem_rm_nocopy(dbl_matrix_rowmajor)
|
||||
assert "get_elem_rm_nocopy(): incompatible function arguments." in str(
|
||||
excinfo.value
|
||||
)
|
||||
assert ", flags.c_contiguous" in str(excinfo.value)
|
||||
assert ', "flags.c_contiguous"' in str(excinfo.value)
|
||||
|
||||
|
||||
def test_eigen_ref_life_support():
|
||||
@ -700,25 +701,25 @@ def test_dense_signature(doc):
|
||||
assert (
|
||||
doc(m.double_col)
|
||||
== """
|
||||
double_col(arg0: numpy.ndarray[numpy.float32[m, 1]]) -> numpy.ndarray[numpy.float32[m, 1]]
|
||||
double_col(arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float32, "[m, 1]"]) -> typing.Annotated[numpy.typing.NDArray[numpy.float32], "[m, 1]"]
|
||||
"""
|
||||
)
|
||||
assert (
|
||||
doc(m.double_row)
|
||||
== """
|
||||
double_row(arg0: numpy.ndarray[numpy.float32[1, n]]) -> numpy.ndarray[numpy.float32[1, n]]
|
||||
double_row(arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float32, "[1, n]"]) -> typing.Annotated[numpy.typing.NDArray[numpy.float32], "[1, n]"]
|
||||
"""
|
||||
)
|
||||
assert doc(m.double_complex) == (
|
||||
"""
|
||||
double_complex(arg0: numpy.ndarray[numpy.complex64[m, 1]])"""
|
||||
""" -> numpy.ndarray[numpy.complex64[m, 1]]
|
||||
double_complex(arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.complex64, "[m, 1]"])"""
|
||||
""" -> typing.Annotated[numpy.typing.NDArray[numpy.complex64], "[m, 1]"]
|
||||
"""
|
||||
)
|
||||
assert doc(m.double_mat_rm) == (
|
||||
"""
|
||||
double_mat_rm(arg0: numpy.ndarray[numpy.float32[m, n]])"""
|
||||
""" -> numpy.ndarray[numpy.float32[m, n]]
|
||||
double_mat_rm(arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float32, "[m, n]"])"""
|
||||
""" -> typing.Annotated[numpy.typing.NDArray[numpy.float32], "[m, n]"]
|
||||
"""
|
||||
)
|
||||
|
||||
@ -817,3 +818,22 @@ def test_custom_operator_new():
|
||||
o = m.CustomOperatorNew()
|
||||
np.testing.assert_allclose(o.a, 0.0)
|
||||
np.testing.assert_allclose(o.b.diagonal(), 1.0)
|
||||
|
||||
|
||||
def test_arraylike_signature(doc):
|
||||
assert doc(m.round_trip_vector) == (
|
||||
'round_trip_vector(arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float32, "[m, 1]"])'
|
||||
' -> typing.Annotated[numpy.typing.NDArray[numpy.float32], "[m, 1]"]'
|
||||
)
|
||||
assert doc(m.round_trip_dense) == (
|
||||
'round_trip_dense(arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float32, "[m, n]"])'
|
||||
' -> typing.Annotated[numpy.typing.NDArray[numpy.float32], "[m, n]"]'
|
||||
)
|
||||
assert doc(m.round_trip_dense_ref) == (
|
||||
'round_trip_dense_ref(arg0: typing.Annotated[numpy.typing.NDArray[numpy.float32], "[m, n]", "flags.writeable", "flags.c_contiguous"])'
|
||||
' -> typing.Annotated[numpy.typing.NDArray[numpy.float32], "[m, n]", "flags.writeable", "flags.c_contiguous"]'
|
||||
)
|
||||
m.round_trip_vector([1.0, 2.0])
|
||||
m.round_trip_dense([[1.0, 2.0], [3.0, 4.0]])
|
||||
with pytest.raises(TypeError, match="incompatible function arguments"):
|
||||
m.round_trip_dense_ref([[1.0, 2.0], [3.0, 4.0]])
|
||||
|
@ -271,23 +271,46 @@ def test_round_trip_references_actually_refer(m):
|
||||
@pytest.mark.parametrize("m", submodules)
|
||||
def test_doc_string(m, doc):
|
||||
assert (
|
||||
doc(m.copy_tensor) == "copy_tensor() -> numpy.ndarray[numpy.float64[?, ?, ?]]"
|
||||
doc(m.copy_tensor)
|
||||
== 'copy_tensor() -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[?, ?, ?]"]'
|
||||
)
|
||||
assert (
|
||||
doc(m.copy_fixed_tensor)
|
||||
== "copy_fixed_tensor() -> numpy.ndarray[numpy.float64[3, 5, 2]]"
|
||||
== 'copy_fixed_tensor() -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[3, 5, 2]"]'
|
||||
)
|
||||
assert (
|
||||
doc(m.reference_const_tensor)
|
||||
== "reference_const_tensor() -> numpy.ndarray[numpy.float64[?, ?, ?]]"
|
||||
== 'reference_const_tensor() -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[?, ?, ?]"]'
|
||||
)
|
||||
|
||||
order_flag = f"flags.{m.needed_options.lower()}_contiguous"
|
||||
order_flag = f'"flags.{m.needed_options.lower()}_contiguous"'
|
||||
assert doc(m.round_trip_view_tensor) == (
|
||||
f"round_trip_view_tensor(arg0: numpy.ndarray[numpy.float64[?, ?, ?], flags.writeable, {order_flag}])"
|
||||
f" -> numpy.ndarray[numpy.float64[?, ?, ?], flags.writeable, {order_flag}]"
|
||||
f'round_trip_view_tensor(arg0: typing.Annotated[numpy.typing.NDArray[numpy.float64], "[?, ?, ?]", "flags.writeable", {order_flag}])'
|
||||
f' -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[?, ?, ?]", "flags.writeable", {order_flag}]'
|
||||
)
|
||||
assert doc(m.round_trip_const_view_tensor) == (
|
||||
f"round_trip_const_view_tensor(arg0: numpy.ndarray[numpy.float64[?, ?, ?], {order_flag}])"
|
||||
" -> numpy.ndarray[numpy.float64[?, ?, ?]]"
|
||||
f'round_trip_const_view_tensor(arg0: typing.Annotated[numpy.typing.NDArray[numpy.float64], "[?, ?, ?]", {order_flag}])'
|
||||
' -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[?, ?, ?]"]'
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("m", submodules)
|
||||
def test_arraylike_signature(m, doc):
|
||||
order_flag = f'"flags.{m.needed_options.lower()}_contiguous"'
|
||||
assert doc(m.round_trip_tensor) == (
|
||||
'round_trip_tensor(arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float64, "[?, ?, ?]"])'
|
||||
' -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[?, ?, ?]"]'
|
||||
)
|
||||
assert doc(m.round_trip_tensor_noconvert) == (
|
||||
'round_trip_tensor_noconvert(tensor: typing.Annotated[numpy.typing.NDArray[numpy.float64], "[?, ?, ?]"])'
|
||||
' -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[?, ?, ?]"]'
|
||||
)
|
||||
assert doc(m.round_trip_view_tensor) == (
|
||||
f'round_trip_view_tensor(arg0: typing.Annotated[numpy.typing.NDArray[numpy.float64], "[?, ?, ?]", "flags.writeable", {order_flag}])'
|
||||
f' -> typing.Annotated[numpy.typing.NDArray[numpy.float64], "[?, ?, ?]", "flags.writeable", {order_flag}]'
|
||||
)
|
||||
m.round_trip_tensor(tensor_ref.tolist())
|
||||
with pytest.raises(TypeError, match="incompatible function arguments"):
|
||||
m.round_trip_tensor_noconvert(tensor_ref.tolist())
|
||||
with pytest.raises(TypeError, match="incompatible function arguments"):
|
||||
m.round_trip_view_tensor(tensor_ref.tolist())
|
||||
|
@ -586,4 +586,13 @@ TEST_SUBMODULE(numpy_array, sm) {
|
||||
sm.def("return_array_pyobject_ptr_from_list", return_array_from_list<PyObject *>);
|
||||
sm.def("return_array_handle_from_list", return_array_from_list<py::handle>);
|
||||
sm.def("return_array_object_from_list", return_array_from_list<py::object>);
|
||||
|
||||
sm.def(
|
||||
"round_trip_array_t",
|
||||
[](const py::array_t<float> &x) -> py::array_t<float> { return x; },
|
||||
py::arg("x"));
|
||||
sm.def(
|
||||
"round_trip_array_t_noconvert",
|
||||
[](const py::array_t<float> &x) -> py::array_t<float> { return x; },
|
||||
py::arg("x").noconvert());
|
||||
}
|
||||
|
@ -321,13 +321,13 @@ def test_overload_resolution(msg):
|
||||
msg(excinfo.value)
|
||||
== """
|
||||
overloaded(): incompatible function arguments. The following argument types are supported:
|
||||
1. (arg0: numpy.ndarray[numpy.float64]) -> str
|
||||
2. (arg0: numpy.ndarray[numpy.float32]) -> str
|
||||
3. (arg0: numpy.ndarray[numpy.int32]) -> str
|
||||
4. (arg0: numpy.ndarray[numpy.uint16]) -> str
|
||||
5. (arg0: numpy.ndarray[numpy.int64]) -> str
|
||||
6. (arg0: numpy.ndarray[numpy.complex128]) -> str
|
||||
7. (arg0: numpy.ndarray[numpy.complex64]) -> str
|
||||
1. (arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float64]) -> str
|
||||
2. (arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.float32]) -> str
|
||||
3. (arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.int32]) -> str
|
||||
4. (arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.uint16]) -> str
|
||||
5. (arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.int64]) -> str
|
||||
6. (arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.complex128]) -> str
|
||||
7. (arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.complex64]) -> str
|
||||
|
||||
Invoked with: 'not an array'
|
||||
"""
|
||||
@ -343,8 +343,8 @@ def test_overload_resolution(msg):
|
||||
assert m.overloaded3(np.array([1], dtype="intc")) == "int"
|
||||
expected_exc = """
|
||||
overloaded3(): incompatible function arguments. The following argument types are supported:
|
||||
1. (arg0: numpy.ndarray[numpy.int32]) -> str
|
||||
2. (arg0: numpy.ndarray[numpy.float64]) -> str
|
||||
1. (arg0: numpy.typing.NDArray[numpy.int32]) -> str
|
||||
2. (arg0: numpy.typing.NDArray[numpy.float64]) -> str
|
||||
|
||||
Invoked with: """
|
||||
|
||||
@ -528,7 +528,7 @@ def test_index_using_ellipsis():
|
||||
],
|
||||
)
|
||||
def test_format_descriptors_for_floating_point_types(test_func):
|
||||
assert "numpy.ndarray[numpy.float" in test_func.__doc__
|
||||
assert "numpy.typing.ArrayLike, numpy.float" in test_func.__doc__
|
||||
|
||||
|
||||
@pytest.mark.parametrize("forcecast", [False, True])
|
||||
@ -687,3 +687,17 @@ def test_return_array_object_cpp_loop(return_array, unwrap):
|
||||
assert isinstance(arr_from_list, np.ndarray)
|
||||
assert arr_from_list.dtype == np.dtype("O")
|
||||
assert unwrap(arr_from_list) == [6, "seven", -8.0]
|
||||
|
||||
|
||||
def test_arraylike_signature(doc):
|
||||
assert (
|
||||
doc(m.round_trip_array_t)
|
||||
== "round_trip_array_t(x: typing.Annotated[numpy.typing.ArrayLike, numpy.float32]) -> numpy.typing.NDArray[numpy.float32]"
|
||||
)
|
||||
assert (
|
||||
doc(m.round_trip_array_t_noconvert)
|
||||
== "round_trip_array_t_noconvert(x: numpy.typing.NDArray[numpy.float32]) -> numpy.typing.NDArray[numpy.float32]"
|
||||
)
|
||||
m.round_trip_array_t([1, 2, 3])
|
||||
with pytest.raises(TypeError, match="incompatible function arguments"):
|
||||
m.round_trip_array_t_noconvert([1, 2, 3])
|
||||
|
@ -373,7 +373,7 @@ def test_complex_array():
|
||||
def test_signature(doc):
|
||||
assert (
|
||||
doc(m.create_rec_nested)
|
||||
== "create_rec_nested(arg0: int) -> numpy.ndarray[NestedStruct]"
|
||||
== "create_rec_nested(arg0: int) -> numpy.typing.NDArray[NestedStruct]"
|
||||
)
|
||||
|
||||
|
||||
|
@ -150,7 +150,7 @@ def test_docs(doc):
|
||||
assert (
|
||||
doc(m.vectorized_func)
|
||||
== """
|
||||
vectorized_func(arg0: numpy.ndarray[numpy.int32], arg1: numpy.ndarray[numpy.float32], arg2: numpy.ndarray[numpy.float64]) -> object
|
||||
vectorized_func(arg0: typing.Annotated[numpy.typing.ArrayLike, numpy.int32], arg1: typing.Annotated[numpy.typing.ArrayLike, numpy.float32], arg2: typing.Annotated[numpy.typing.ArrayLike, numpy.float64]) -> object
|
||||
"""
|
||||
)
|
||||
|
||||
@ -212,12 +212,12 @@ def test_passthrough_arguments(doc):
|
||||
+ ", ".join(
|
||||
[
|
||||
"arg0: float",
|
||||
"arg1: numpy.ndarray[numpy.float64]",
|
||||
"arg2: numpy.ndarray[numpy.float64]",
|
||||
"arg3: numpy.ndarray[numpy.int32]",
|
||||
"arg1: typing.Annotated[numpy.typing.ArrayLike, numpy.float64]",
|
||||
"arg2: typing.Annotated[numpy.typing.ArrayLike, numpy.float64]",
|
||||
"arg3: typing.Annotated[numpy.typing.ArrayLike, numpy.int32]",
|
||||
"arg4: int",
|
||||
"arg5: m.numpy_vectorize.NonPODClass",
|
||||
"arg6: numpy.ndarray[numpy.float64]",
|
||||
"arg6: typing.Annotated[numpy.typing.ArrayLike, numpy.float64]",
|
||||
]
|
||||
)
|
||||
+ ") -> object"
|
||||
|
Loading…
Reference in New Issue
Block a user