mirror of
https://github.com/pybind/pybind11.git
synced 2025-01-19 01:15:52 +00:00
only do numpy contiguous C/Fortran array conversion when explicitly requested
This commit is contained in:
parent
876eeab4ca
commit
f1032df891
@ -902,16 +902,30 @@ type of Python object satisfying the buffer protocol).
|
||||
In many situations, we want to define a function which only accepts a NumPy
|
||||
array of a certain data type. This is possible via the ``py::array_t<T>``
|
||||
template. For instance, the following function requires the argument to be a
|
||||
dense array of doubles in C-style ordering.
|
||||
NumPy array containing double precision values.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void f(py::array_t<double> array);
|
||||
|
||||
When it is invoked with a different type (e.g. an integer), the binding code
|
||||
will attempt to cast the input into a NumPy array of the requested type. Note
|
||||
that this feature requires the :file:``pybind11/numpy.h`` header to be
|
||||
included.
|
||||
When it is invoked with a different type (e.g. an integer or a list of
|
||||
integers), the binding code will attempt to cast the input into a NumPy array
|
||||
of the requested type. Note that this feature requires the
|
||||
:file:``pybind11/numpy.h`` header to be included.
|
||||
|
||||
Data in NumPy arrays is not guaranteed to packed in a dense manner;
|
||||
furthermore, entries can be separated by arbitrary column and row strides.
|
||||
Sometimes, it can be useful to require a function to only accept dense arrays
|
||||
using either the C (row-major) or Fortran (column-major) ordering. This can be
|
||||
accomplished via a second template argument with values ``py::array::c_style``
|
||||
or ``py::array::f_style``.
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
void f(py::array_t<double, py::array::c_style> array);
|
||||
|
||||
As before, the implementation will attempt to convert non-conforming arguments
|
||||
into an array satisfying the specified requirements.
|
||||
|
||||
Vectorizing functions
|
||||
=====================
|
||||
|
@ -77,6 +77,11 @@ public:
|
||||
|
||||
PYBIND11_OBJECT_DEFAULT(array, buffer, lookup_api().PyArray_Check_)
|
||||
|
||||
enum {
|
||||
c_style = API::NPY_C_CONTIGUOUS_,
|
||||
f_style = API::NPY_F_CONTIGUOUS_
|
||||
};
|
||||
|
||||
template <typename Type> array(size_t size, const Type *ptr) {
|
||||
API& api = lookup_api();
|
||||
PyObject *descr = api.PyArray_DescrFromType_(npy_format_descriptor<Type>::value);
|
||||
@ -120,7 +125,7 @@ protected:
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T> class array_t : public array {
|
||||
template <typename T, int ExtraFlags = 0> class array_t : public array {
|
||||
public:
|
||||
PYBIND11_OBJECT_CVT(array_t, array, is_non_null, m_ptr = ensure(m_ptr));
|
||||
array_t() : array() { }
|
||||
@ -131,8 +136,9 @@ public:
|
||||
API &api = lookup_api();
|
||||
PyObject *descr = api.PyArray_DescrFromType_(npy_format_descriptor<T>::value);
|
||||
PyObject *result = api.PyArray_FromAny_(
|
||||
ptr, descr, 0, 0, API::NPY_C_CONTIGUOUS_ | API::NPY_ENSURE_ARRAY_
|
||||
| API::NPY_ARRAY_FORCECAST_, nullptr);
|
||||
ptr, descr, 0, 0,
|
||||
API::NPY_ENSURE_ARRAY_ | API::NPY_ARRAY_FORCECAST_ | ExtraFlags,
|
||||
nullptr);
|
||||
Py_DECREF(ptr);
|
||||
return result;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user