Add dtype::normalized_num and dtype::num_of (#5429)

* Add dtype::normalized_num and dtype::num_of

* Fix compiler warning and improve NumPy 1.x compatibility

* Fix clang-tidy warning

* Fix another clang-tidy warning

* Add extra comment
This commit is contained in:
Maarten Baert 2024-11-17 16:56:02 +01:00 committed by GitHub
parent b9fb3168ab
commit f41dae31a3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 216 additions and 1 deletions

View File

@ -212,6 +212,7 @@ constexpr int platform_lookup(int I, Ints... Is) {
} }
struct npy_api { struct npy_api {
// If you change this code, please review `normalized_dtype_num` below.
enum constants { enum constants {
NPY_ARRAY_C_CONTIGUOUS_ = 0x0001, NPY_ARRAY_C_CONTIGUOUS_ = 0x0001,
NPY_ARRAY_F_CONTIGUOUS_ = 0x0002, NPY_ARRAY_F_CONTIGUOUS_ = 0x0002,
@ -384,6 +385,74 @@ private:
} }
}; };
// This table normalizes typenums by mapping NPY_INT_, NPY_LONG, ... to NPY_INT32_, NPY_INT64, ...
// This is needed to correctly handle situations where multiple typenums map to the same type,
// e.g. NPY_LONG_ may be equivalent to NPY_INT_ or NPY_LONGLONG_ despite having a different
// typenum. The normalized typenum should always match the values used in npy_format_descriptor.
// If you change this code, please review `enum constants` above.
static constexpr int normalized_dtype_num[npy_api::NPY_VOID_ + 1] = {
// NPY_BOOL_ =>
npy_api::NPY_BOOL_,
// NPY_BYTE_ =>
npy_api::NPY_BYTE_,
// NPY_UBYTE_ =>
npy_api::NPY_UBYTE_,
// NPY_SHORT_ =>
npy_api::NPY_INT16_,
// NPY_USHORT_ =>
npy_api::NPY_UINT16_,
// NPY_INT_ =>
sizeof(int) == sizeof(std::int16_t) ? npy_api::NPY_INT16_
: sizeof(int) == sizeof(std::int32_t) ? npy_api::NPY_INT32_
: sizeof(int) == sizeof(std::int64_t) ? npy_api::NPY_INT64_
: npy_api::NPY_INT_,
// NPY_UINT_ =>
sizeof(unsigned int) == sizeof(std::uint16_t) ? npy_api::NPY_UINT16_
: sizeof(unsigned int) == sizeof(std::uint32_t) ? npy_api::NPY_UINT32_
: sizeof(unsigned int) == sizeof(std::uint64_t) ? npy_api::NPY_UINT64_
: npy_api::NPY_UINT_,
// NPY_LONG_ =>
sizeof(long) == sizeof(std::int16_t) ? npy_api::NPY_INT16_
: sizeof(long) == sizeof(std::int32_t) ? npy_api::NPY_INT32_
: sizeof(long) == sizeof(std::int64_t) ? npy_api::NPY_INT64_
: npy_api::NPY_LONG_,
// NPY_ULONG_ =>
sizeof(unsigned long) == sizeof(std::uint16_t) ? npy_api::NPY_UINT16_
: sizeof(unsigned long) == sizeof(std::uint32_t) ? npy_api::NPY_UINT32_
: sizeof(unsigned long) == sizeof(std::uint64_t) ? npy_api::NPY_UINT64_
: npy_api::NPY_ULONG_,
// NPY_LONGLONG_ =>
sizeof(long long) == sizeof(std::int16_t) ? npy_api::NPY_INT16_
: sizeof(long long) == sizeof(std::int32_t) ? npy_api::NPY_INT32_
: sizeof(long long) == sizeof(std::int64_t) ? npy_api::NPY_INT64_
: npy_api::NPY_LONGLONG_,
// NPY_ULONGLONG_ =>
sizeof(unsigned long long) == sizeof(std::uint16_t) ? npy_api::NPY_UINT16_
: sizeof(unsigned long long) == sizeof(std::uint32_t) ? npy_api::NPY_UINT32_
: sizeof(unsigned long long) == sizeof(std::uint64_t) ? npy_api::NPY_UINT64_
: npy_api::NPY_ULONGLONG_,
// NPY_FLOAT_ =>
npy_api::NPY_FLOAT_,
// NPY_DOUBLE_ =>
npy_api::NPY_DOUBLE_,
// NPY_LONGDOUBLE_ =>
npy_api::NPY_LONGDOUBLE_,
// NPY_CFLOAT_ =>
npy_api::NPY_CFLOAT_,
// NPY_CDOUBLE_ =>
npy_api::NPY_CDOUBLE_,
// NPY_CLONGDOUBLE_ =>
npy_api::NPY_CLONGDOUBLE_,
// NPY_OBJECT_ =>
npy_api::NPY_OBJECT_,
// NPY_STRING_ =>
npy_api::NPY_STRING_,
// NPY_UNICODE_ =>
npy_api::NPY_UNICODE_,
// NPY_VOID_ =>
npy_api::NPY_VOID_,
};
inline PyArray_Proxy *array_proxy(void *ptr) { return reinterpret_cast<PyArray_Proxy *>(ptr); } inline PyArray_Proxy *array_proxy(void *ptr) { return reinterpret_cast<PyArray_Proxy *>(ptr); }
inline const PyArray_Proxy *array_proxy(const void *ptr) { inline const PyArray_Proxy *array_proxy(const void *ptr) {
@ -684,6 +753,13 @@ public:
return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::dtype(); return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::dtype();
} }
/// Return the type number associated with a C++ type.
/// This is the constexpr equivalent of `dtype::of<T>().num()`.
template <typename T>
static constexpr int num_of() {
return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::value;
}
/// Size of the data type in bytes. /// Size of the data type in bytes.
#ifdef PYBIND11_NUMPY_1_ONLY #ifdef PYBIND11_NUMPY_1_ONLY
ssize_t itemsize() const { return detail::array_descriptor_proxy(m_ptr)->elsize; } ssize_t itemsize() const { return detail::array_descriptor_proxy(m_ptr)->elsize; }
@ -725,7 +801,9 @@ public:
return detail::array_descriptor_proxy(m_ptr)->type; return detail::array_descriptor_proxy(m_ptr)->type;
} }
/// type number of dtype. /// Type number of dtype. Note that different values may be returned for equivalent types,
/// e.g. even though ``long`` may be equivalent to ``int`` or ``long long``, they still have
/// different type numbers. Consider using `normalized_num` to avoid this.
int num() const { int num() const {
// Note: The signature, `dtype::num` follows the naming of NumPy's public // Note: The signature, `dtype::num` follows the naming of NumPy's public
// Python API (i.e., ``dtype.num``), rather than its internal // Python API (i.e., ``dtype.num``), rather than its internal
@ -733,6 +811,17 @@ public:
return detail::array_descriptor_proxy(m_ptr)->type_num; return detail::array_descriptor_proxy(m_ptr)->type_num;
} }
/// Type number of dtype, normalized to match the return value of `num_of` for equivalent
/// types. This function can be used to write switch statements that correctly handle
/// equivalent types with different type numbers.
int normalized_num() const {
int value = num();
if (value >= 0 && value <= detail::npy_api::NPY_VOID_) {
return detail::normalized_dtype_num[value];
}
return value;
}
/// Single character for byteorder /// Single character for byteorder
char byteorder() const { return detail::array_descriptor_proxy(m_ptr)->byteorder; } char byteorder() const { return detail::array_descriptor_proxy(m_ptr)->byteorder; }

View File

@ -11,6 +11,9 @@
#include "pybind11_tests.h" #include "pybind11_tests.h"
#include <cstdint>
#include <stdexcept>
#ifdef __GNUC__ #ifdef __GNUC__
# define PYBIND11_PACKED(cls) cls __attribute__((__packed__)) # define PYBIND11_PACKED(cls) cls __attribute__((__packed__))
#else #else
@ -297,6 +300,15 @@ py::list test_dtype_ctors() {
return list; return list;
} }
template <typename T>
py::array_t<T> dispatch_array_increment(py::array_t<T> arr) {
py::array_t<T> res(arr.shape(0));
for (py::ssize_t i = 0; i < arr.shape(0); ++i) {
res.mutable_at(i) = T(arr.at(i) + 1);
}
return res;
}
struct A {}; struct A {};
struct B {}; struct B {};
@ -496,6 +508,98 @@ TEST_SUBMODULE(numpy_dtypes, m) {
} }
return list; return list;
}); });
m.def("test_dtype_num_of", []() -> py::list {
py::list res;
#define TEST_DTYPE(T) res.append(py::make_tuple(py::dtype::of<T>().num(), py::dtype::num_of<T>()));
TEST_DTYPE(bool)
TEST_DTYPE(char)
TEST_DTYPE(unsigned char)
TEST_DTYPE(short)
TEST_DTYPE(unsigned short)
TEST_DTYPE(int)
TEST_DTYPE(unsigned int)
TEST_DTYPE(long)
TEST_DTYPE(unsigned long)
TEST_DTYPE(long long)
TEST_DTYPE(unsigned long long)
TEST_DTYPE(float)
TEST_DTYPE(double)
TEST_DTYPE(long double)
TEST_DTYPE(std::complex<float>)
TEST_DTYPE(std::complex<double>)
TEST_DTYPE(std::complex<long double>)
TEST_DTYPE(int8_t)
TEST_DTYPE(uint8_t)
TEST_DTYPE(int16_t)
TEST_DTYPE(uint16_t)
TEST_DTYPE(int32_t)
TEST_DTYPE(uint32_t)
TEST_DTYPE(int64_t)
TEST_DTYPE(uint64_t)
#undef TEST_DTYPE
return res;
});
m.def("test_dtype_normalized_num", []() -> py::list {
py::list res;
#define TEST_DTYPE(NT, T) \
res.append(py::make_tuple(py::dtype(py::detail::npy_api::NT).normalized_num(), \
py::dtype::num_of<T>()));
TEST_DTYPE(NPY_BOOL_, bool)
TEST_DTYPE(NPY_BYTE_, char);
TEST_DTYPE(NPY_UBYTE_, unsigned char);
TEST_DTYPE(NPY_SHORT_, short);
TEST_DTYPE(NPY_USHORT_, unsigned short);
TEST_DTYPE(NPY_INT_, int);
TEST_DTYPE(NPY_UINT_, unsigned int);
TEST_DTYPE(NPY_LONG_, long);
TEST_DTYPE(NPY_ULONG_, unsigned long);
TEST_DTYPE(NPY_LONGLONG_, long long);
TEST_DTYPE(NPY_ULONGLONG_, unsigned long long);
TEST_DTYPE(NPY_FLOAT_, float);
TEST_DTYPE(NPY_DOUBLE_, double);
TEST_DTYPE(NPY_LONGDOUBLE_, long double);
TEST_DTYPE(NPY_CFLOAT_, std::complex<float>);
TEST_DTYPE(NPY_CDOUBLE_, std::complex<double>);
TEST_DTYPE(NPY_CLONGDOUBLE_, std::complex<long double>);
TEST_DTYPE(NPY_INT8_, int8_t);
TEST_DTYPE(NPY_UINT8_, uint8_t);
TEST_DTYPE(NPY_INT16_, int16_t);
TEST_DTYPE(NPY_UINT16_, uint16_t);
TEST_DTYPE(NPY_INT32_, int32_t);
TEST_DTYPE(NPY_UINT32_, uint32_t);
TEST_DTYPE(NPY_INT64_, int64_t);
TEST_DTYPE(NPY_UINT64_, uint64_t);
#undef TEST_DTYPE
return res;
});
m.def("test_dtype_switch", [](const py::array &arr) -> py::array {
switch (arr.dtype().normalized_num()) {
case py::dtype::num_of<int8_t>():
return dispatch_array_increment<int8_t>(arr);
case py::dtype::num_of<uint8_t>():
return dispatch_array_increment<uint8_t>(arr);
case py::dtype::num_of<int16_t>():
return dispatch_array_increment<int16_t>(arr);
case py::dtype::num_of<uint16_t>():
return dispatch_array_increment<uint16_t>(arr);
case py::dtype::num_of<int32_t>():
return dispatch_array_increment<int32_t>(arr);
case py::dtype::num_of<uint32_t>():
return dispatch_array_increment<uint32_t>(arr);
case py::dtype::num_of<int64_t>():
return dispatch_array_increment<int64_t>(arr);
case py::dtype::num_of<uint64_t>():
return dispatch_array_increment<uint64_t>(arr);
case py::dtype::num_of<float>():
return dispatch_array_increment<float>(arr);
case py::dtype::num_of<double>():
return dispatch_array_increment<double>(arr);
case py::dtype::num_of<long double>():
return dispatch_array_increment<long double>(arr);
default:
throw std::runtime_error("Unsupported dtype");
}
});
m.def("test_dtype_methods", []() { m.def("test_dtype_methods", []() {
py::list list; py::list list;
auto dt1 = py::dtype::of<int32_t>(); auto dt1 = py::dtype::of<int32_t>();

View File

@ -188,6 +188,28 @@ def test_dtype(simple_dtype):
chr(np.dtype(ch).flags) for ch in expected_chars chr(np.dtype(ch).flags) for ch in expected_chars
] ]
for a, b in m.test_dtype_num_of():
assert a == b
for a, b in m.test_dtype_normalized_num():
assert a == b
arr = np.array([4, 84, 21, 36])
# Note: "ulong" does not work in NumPy 1.x, so we use "L"
assert (m.test_dtype_switch(arr.astype("byte")) == arr + 1).all()
assert (m.test_dtype_switch(arr.astype("ubyte")) == arr + 1).all()
assert (m.test_dtype_switch(arr.astype("short")) == arr + 1).all()
assert (m.test_dtype_switch(arr.astype("ushort")) == arr + 1).all()
assert (m.test_dtype_switch(arr.astype("intc")) == arr + 1).all()
assert (m.test_dtype_switch(arr.astype("uintc")) == arr + 1).all()
assert (m.test_dtype_switch(arr.astype("long")) == arr + 1).all()
assert (m.test_dtype_switch(arr.astype("L")) == arr + 1).all()
assert (m.test_dtype_switch(arr.astype("longlong")) == arr + 1).all()
assert (m.test_dtype_switch(arr.astype("ulonglong")) == arr + 1).all()
assert (m.test_dtype_switch(arr.astype("single")) == arr + 1).all()
assert (m.test_dtype_switch(arr.astype("double")) == arr + 1).all()
assert (m.test_dtype_switch(arr.astype("longdouble")) == arr + 1).all()
def test_recarray(simple_dtype, packed_dtype): def test_recarray(simple_dtype, packed_dtype):
elements = [(False, 0, 0.0, -0.0), (True, 1, 1.5, -2.5), (False, 2, 3.0, -5.0)] elements = [(False, 0, 0.0, -0.0), (True, 1, 1.5, -2.5), (False, 2, 3.0, -5.0)]