short_vector removed and code formatting

This commit is contained in:
jmabille 2016-02-19 22:26:56 +01:00
parent 57098708ce
commit feeced6f75
3 changed files with 168 additions and 338 deletions

View File

@ -1,177 +0,0 @@
/*
pybind11/array_iter.h: Array iteration support
Copyright (c) 2016 Johan Mabille
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include "short_vector.h"
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#endif
/*
WARNING: These iterators are not a binding to numpy.nditer, they're convenient classes for broadcasting in vectorize
*/
NAMESPACE_BEGIN(pybind11)
template <class T>
using array_iterator = typename std::add_pointer<T>::type;
template <class T>
array_iterator<T> array_begin(const buffer_info& buffer)
{
return array_iterator<T>(reinterpret_cast<T*>(buffer.ptr));
}
template <class T>
array_iterator<T> array_end(const buffer_info& buffer)
{
return array_iterator<T>(reinterpret_cast<T*>(buffer.ptr) + buffer.size);
}
NAMESPACE_BEGIN(detail)
template <class C>
class common_iterator
{
public:
using container_type = C;
using value_type = typename container_type::value_type;
using size_type = typename container_type::size_type;
common_iterator() : p_ptr(0), m_strides() {}
common_iterator(void* ptr, const container_type& strides, const std::vector<size_t>& shape)
: p_ptr(reinterpret_cast<char*>(ptr)), m_strides(strides.size())
{
m_strides.back() = static_cast<value_type>(strides.back());
for (size_type i = m_strides.size() - 1; i != 0; --i)
{
size_type j = i - 1;
value_type s = static_cast<value_type>(shape[i]);
m_strides[j] = strides[j] + m_strides[i] - strides[i] * s;
}
}
void increment(size_type dim)
{
p_ptr += m_strides[dim];
}
void* data() const
{
return p_ptr;
}
private:
char* p_ptr;
container_type m_strides;
};
NAMESPACE_END(detail)
template <class C, size_t N>
class multi_array_iterator
{
public:
using container_type = C;
multi_array_iterator(const std::array<buffer_info, N>& buffers,
const std::vector<size_t>& shape)
: m_shape(shape.size()), m_index(shape.size(), 0), m_common_iterator()
{
// Manual copy to avoid conversion warning if using std::copy
for (size_t i = 0; i < shape.size(); ++i)
{
m_shape[i] = static_cast<typename container_type::value_type>(shape[i]);
}
container_type strides(shape.size());
for (size_t i = 0; i < N; ++i)
{
init_common_iterator(buffers[i], shape, m_common_iterator[i], strides);
}
}
multi_array_iterator& operator++()
{
for (size_t j = m_index.size(); j != 0; --j)
{
size_t i = j - 1;
if (++m_index[i] != m_shape[i])
{
increment_common_iterator(i);
break;
}
else
{
m_index[i] = 0;
}
}
return *this;
}
template <size_t K, class T>
const T& data() const
{
return *reinterpret_cast<T*>(m_common_iterator[K].data());
}
private:
using common_iter = detail::common_iterator<container_type>;
void init_common_iterator(const buffer_info& buffer, const std::vector<size_t>& shape, common_iter& iterator, container_type& strides)
{
auto buffer_shape_iter = buffer.shape.rbegin();
auto buffer_strides_iter = buffer.strides.rbegin();
auto shape_iter = shape.rbegin();
auto strides_iter = strides.rbegin();
while (buffer_shape_iter != buffer.shape.rend())
{
if (*shape_iter == *buffer_shape_iter)
*strides_iter = static_cast<int>(*buffer_strides_iter);
else
*strides_iter = 0;
++buffer_shape_iter;
++buffer_strides_iter;
++shape_iter;
++strides_iter;
}
std::fill(strides_iter, strides.rend(), 0);
iterator = common_iter(buffer.ptr, strides, shape);
}
void increment_common_iterator(size_t dim)
{
std::for_each(m_common_iterator.begin(), m_common_iterator.end(), [=](common_iter& iter)
{
iter.increment(dim);
});
}
container_type m_shape;
container_type m_index;
std::array<common_iter, N> m_common_iterator;
};
NAMESPACE_END(pybind11)
#if defined(_MSC_VER)
#pragma warning(pop)
#endif

View File

@ -11,8 +11,8 @@
#include "pybind11.h" #include "pybind11.h"
#include "complex.h" #include "complex.h"
#include "array_iterator.h"
#include <numeric> #include <numeric>
#include <algorithm>
#if defined(_MSC_VER) #if defined(_MSC_VER)
#pragma warning(push) #pragma warning(push)
@ -148,37 +148,154 @@ DECL_FMT(std::complex<double>, NPY_CDOUBLE_);
NAMESPACE_BEGIN(detail) NAMESPACE_BEGIN(detail)
template <class T>
using array_iterator = typename std::add_pointer<T>::type;
template <class T>
array_iterator<T> array_begin(const buffer_info& buffer) {
return array_iterator<T>(reinterpret_cast<T*>(buffer.ptr));
}
template <class T>
array_iterator<T> array_end(const buffer_info& buffer) {
return array_iterator<T>(reinterpret_cast<T*>(buffer.ptr) + buffer.size);
}
class common_iterator {
public:
using container_type = std::vector<size_t>;
using value_type = container_type::value_type;
using size_type = container_type::size_type;
common_iterator() : p_ptr(0), m_strides() {}
common_iterator(void* ptr, const container_type& strides, const std::vector<size_t>& shape)
: p_ptr(reinterpret_cast<char*>(ptr)), m_strides(strides.size()) {
m_strides.back() = static_cast<value_type>(strides.back());
for (size_type i = m_strides.size() - 1; i != 0; --i) {
size_type j = i - 1;
value_type s = static_cast<value_type>(shape[i]);
m_strides[j] = strides[j] + m_strides[i] - strides[i] * s;
}
}
void increment(size_type dim) {
p_ptr += m_strides[dim];
}
void* data() const {
return p_ptr;
}
private:
char* p_ptr;
container_type m_strides;
};
template <size_t N>
class multi_array_iterator {
public:
using container_type = std::vector<size_t>;
multi_array_iterator(const std::array<buffer_info, N>& buffers,
const std::vector<size_t>& shape)
: m_shape(shape.size()), m_index(shape.size(), 0), m_common_iterator() {
// Manual copy to avoid conversion warning if using std::copy
for (size_t i = 0; i < shape.size(); ++i) {
m_shape[i] = static_cast<container_type::value_type>(shape[i]);
}
container_type strides(shape.size());
for (size_t i = 0; i < N; ++i) {
init_common_iterator(buffers[i], shape, m_common_iterator[i], strides);
}
}
multi_array_iterator& operator++() {
for (size_t j = m_index.size(); j != 0; --j) {
size_t i = j - 1;
if (++m_index[i] != m_shape[i]) {
increment_common_iterator(i);
break;
}
else {
m_index[i] = 0;
}
}
return *this;
}
template <size_t K, class T>
const T& data() const {
return *reinterpret_cast<T*>(m_common_iterator[K].data());
}
private:
using common_iter = common_iterator;
void init_common_iterator(const buffer_info& buffer, const std::vector<size_t>& shape, common_iter& iterator, container_type& strides) {
auto buffer_shape_iter = buffer.shape.rbegin();
auto buffer_strides_iter = buffer.strides.rbegin();
auto shape_iter = shape.rbegin();
auto strides_iter = strides.rbegin();
while (buffer_shape_iter != buffer.shape.rend()) {
if (*shape_iter == *buffer_shape_iter)
*strides_iter = static_cast<int>(*buffer_strides_iter);
else
*strides_iter = 0;
++buffer_shape_iter;
++buffer_strides_iter;
++shape_iter;
++strides_iter;
}
std::fill(strides_iter, strides.rend(), 0);
iterator = common_iter(buffer.ptr, strides, shape);
}
void increment_common_iterator(size_t dim) {
std::for_each(m_common_iterator.begin(), m_common_iterator.end(), [=](common_iter& iter) {
iter.increment(dim);
});
}
container_type m_shape;
container_type m_index;
std::array<common_iter, N> m_common_iterator;
};
template <typename T> struct handle_type_name<array_t<T>> { template <typename T> struct handle_type_name<array_t<T>> {
static PYBIND11_DESCR name() { return _("array[") + type_caster<T>::name() + _("]"); } static PYBIND11_DESCR name() { return _("array[") + type_caster<T>::name() + _("]"); }
}; };
template <size_t N> template <size_t N>
bool broadcast(const std::array<buffer_info, N>& buffers, int& ndim, std::vector<size_t>& shape) bool broadcast(const std::array<buffer_info, N>& buffers, int& ndim, std::vector<size_t>& shape) {
{ ndim = std::accumulate(buffers.begin(), buffers.end(), 0, [](int res, const buffer_info& buf) {
ndim = std::accumulate(buffers.begin(), buffers.end(), 0, [](int res, const buffer_info& buf) return std::max(res, buf.ndim);
{
return std::max(res, buf.ndim);
}); });
shape = std::vector<size_t>(static_cast<size_t>(ndim), 1); shape = std::vector<size_t>(static_cast<size_t>(ndim), 1);
bool trivial_broadcast = true; bool trivial_broadcast = true;
for (size_t i = 0; i < N; ++i) for (size_t i = 0; i < N; ++i) {
{ auto res_iter = shape.rbegin();
auto res_iter = shape.rbegin(); bool i_trivial_broadcast = (buffers[i].size == 1) || (buffers[i].ndim == ndim);
bool i_trivial_broadcast = (buffers[i].size == 1) || (buffers[i].ndim == ndim); for (auto shape_iter = buffers[i].shape.rbegin(); shape_iter != buffers[i].shape.rend(); ++shape_iter, ++res_iter) {
for (auto shape_iter = buffers[i].shape.rbegin(); shape_iter != buffers[i].shape.rend(); ++shape_iter, ++res_iter) if (*res_iter == 1) {
{
if (*res_iter == 1)
{
*res_iter = *shape_iter; *res_iter = *shape_iter;
} }
else if ((*shape_iter != 1) && (*res_iter != *shape_iter)) else if ((*shape_iter != 1) && (*res_iter != *shape_iter)) {
{
pybind11_fail("pybind11::vectorize: incompatible size/dimension of inputs!"); pybind11_fail("pybind11::vectorize: incompatible size/dimension of inputs!");
} }
i_trivial_broadcast = i_trivial_broadcast && (*res_iter == *shape_iter); i_trivial_broadcast = i_trivial_broadcast && (*res_iter == *shape_iter);
} }
trivial_broadcast = trivial_broadcast && i_trivial_broadcast; trivial_broadcast = trivial_broadcast && i_trivial_broadcast;
} }
return trivial_broadcast; return trivial_broadcast;
} }
@ -197,26 +314,23 @@ struct vectorize_helper {
template <size_t ... Index> object run(array_t<Args>&... args, index_sequence<Index...> index) { template <size_t ... Index> object run(array_t<Args>&... args, index_sequence<Index...> index) {
/* Request buffers from all parameters */ /* Request buffers from all parameters */
const size_t N = sizeof...(Args); const size_t N = sizeof...(Args);
constexpr size_t SMALL_DIM = 4;
std::array<buffer_info, N> buffers {{ args.request()... }}; std::array<buffer_info, N> buffers {{ args.request()... }};
/* Determine dimensions parameters of output array */ /* Determine dimensions parameters of output array */
int ndim = 0; int ndim = 0;
std::vector<size_t> shape(0); std::vector<size_t> shape(0);
bool trivial_broadcast = broadcast(buffers, ndim, shape); bool trivial_broadcast = broadcast(buffers, ndim, shape);
size_t size = 1; size_t size = 1;
std::vector<size_t> strides(ndim); std::vector<size_t> strides(ndim);
if (ndim > 0) if (ndim > 0) {
{
strides[ndim-1] = sizeof(Return); strides[ndim-1] = sizeof(Return);
for (int i = ndim - 1; i > 0; --i) for (int i = ndim - 1; i > 0; --i) {
{ strides[i - 1] = strides[i] * shape[i];
strides[i - 1] = strides[i] * shape[i]; size *= shape[i];
size *= shape[i]; }
} size *= shape[0];
size *= shape[0];
} }
if (size == 1) if (size == 1)
@ -229,41 +343,32 @@ struct vectorize_helper {
buffer_info buf = result.request(); buffer_info buf = result.request();
Return *output = (Return *) buf.ptr; Return *output = (Return *) buf.ptr;
if(trivial_broadcast) if(trivial_broadcast) {
{ /* Call the function */
/* Call the function */ for (size_t i=0; i<size; ++i) {
for (size_t i=0; i<size; ++i) output[i] = f((buffers[Index].size == 1
{ ? *((Args *) buffers[Index].ptr)
output[i] = f((buffers[Index].size == 1 : ((Args *) buffers[Index].ptr)[i])...);
? *((Args *) buffers[Index].ptr)
: ((Args *) buffers[Index].ptr)[i])...);
} }
} }
else if (shape.size() < SMALL_DIM) else {
{ apply_broadcast<N, Index...>(buffers, buf, index);
apply_broadcast<short_vector<int>, N, Index...>(buffers, buf, index); }
}
else
{
apply_broadcast<std::vector<int>, N, Index...>(buffers, buf, index);
}
return result; return result;
} }
template <class C, size_t N, size_t... Index> template <size_t N, size_t... Index>
void apply_broadcast(const std::array<buffer_info, N>& buffers, buffer_info& output, index_sequence<Index...>) void apply_broadcast(const std::array<buffer_info, N>& buffers, buffer_info& output, index_sequence<Index...>) {
{ using input_iterator = multi_array_iterator<N>;
using input_iterator = multi_array_iterator<C, N>; using output_iterator = array_iterator<Return>;
using output_iterator = array_iterator<Return>;
input_iterator input_iter(buffers, output.shape); input_iterator input_iter(buffers, output.shape);
output_iterator output_end = array_end<Return>(output); output_iterator output_end = array_end<Return>(output);
for (output_iterator iter = array_begin<Return>(output); iter != output_end; ++iter, ++input_iter) for (output_iterator iter = array_begin<Return>(output); iter != output_end; ++iter, ++input_iter) {
{ *iter = f((input_iter.template data<Index, Args>())...);
*iter = f((input_iter.template data<Index, Args>())...); }
}
} }
}; };

View File

@ -1,98 +0,0 @@
/*
pybind11/short_vector.h: similar to std::array but with dynamic size
Copyright (c) 2016 Johan Mabille
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <array>
#include <algorithm>
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#endif
NAMESPACE_BEGIN(pybind11)
template <class T, size_t N = 3>
class short_vector
{
public:
using data_type = std::array<T, N>;
using value_type = typename data_type::value_type;
using size_type = typename data_type::size_type;
using difference_type = typename data_type::difference_type;
using reference = typename data_type::reference;
using const_reference = typename data_type::const_reference;
using pointer = typename data_type::pointer;
using const_pointer = typename data_type::const_pointer;
using iterator = typename data_type::iterator;
using const_iterator = typename data_type::const_iterator;
using reverse_iterator = typename data_type::reverse_iterator;
using const_reverse_iterator = typename data_type::const_reverse_iterator;
short_vector() : m_data(), m_size(0) {}
explicit short_vector(size_type size) : m_data(), m_size(size) {}
short_vector(size_type size, const_reference t) : m_data(), m_size(size)
{
std::fill(begin(), end(), t);
}
size_type size() const noexcept { return m_size; }
constexpr size_type max_size() const noexcept { return m_data.max_size(); }
bool empty() const noexcept { return m_size == 0; }
void resize(size_type size) { m_size = size; }
void resize(size_type size, const_reference t)
{
size_type old_size = m_size;
resize(size);
std::fill(begin() + old_size, end(), t);
}
reference operator[](size_type i) { return m_data[i]; }
const_reference operator[](size_type i) const { return m_data[i]; }
reference front() { return m_data[0]; }
const_reference front() const { return m_data[0]; }
reference back() { return m_data[m_size - 1]; }
const_reference back() const { return m_data[m_size - 1]; }
void fill(const_reference t) { std::fill(begin(), end(), t); }
iterator begin() noexcept { return m_data.begin(); }
const_iterator begin() const noexcept { return m_data.begin(); }
iterator end() noexcept { return begin() + m_size; }
const_iterator end() const noexcept { return begin() + m_size(); }
reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const noexcept { return const_reverse_iterator(end()); }
reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
const_reverse_iterator rend() const noexcept { return const_reverse_iterator(begin()); }
const_iterator cbegin() const noexcept { return begin(); }
const_iterator cend() const noexcept { return end(); }
const_reverse_iterator crbegin() const noexcept { return rbegin(); }
const_reverse_iterator crend() const noexcept { return rend(); }
private:
data_type m_data;
size_type m_size;
};
NAMESPACE_END(pybind11)
#if defined(_MSC_VER)
#pragma warning(pop)
#endif