- Try to update and upgrade twice (with a brief pause between attempts)
to deal with occassional spurious server failures or repository race
conditions. Do the same for the main package install.
- Use dist-upgrade instead of upgrade for updating the image
- Add -q to the upgrade and install commands to make apt less verbose.
This commit adds support for forcing alias type initialization by
defining constructors with `py::init_alias<arg1, arg2>()` instead of
`py::init<arg1, arg2>()`. Currently py::init<> only results in Alias
initialization if the type is extended in python, or the given
arguments can't be used to construct the base type, but can be used to
construct the alias. py::init_alias<>, in contrast, always invokes the
constructor of the alias type.
It looks like this was already the intention of
`py::detail::init_alias`, which was forward-declared in
86d825f330, but was apparently never
finished: despite the existance of a .def method accepting it, the
`detail::init_alias` class isn't actually defined anywhere.
This commit completes the feature (or possibly repurposes it), allowing
declaration of classes that will always initialize the trampoline which
is (as I argued in #397) sometimes useful.
Switch count_t to use constexpr_sum (under non-MSVC), and then make
all_of_t/any_of_t use it instead of doing the sum itself.
For MSVC, count_t is still done using template recursion, but
all_of_t/any_of_t can also make use of it.
Type alias for alias classes with members didn't work properly: space
was only allocated for sizeof(type), but if we want to be able to put a
type_alias instance there, we need sizeof(type_alias), but
sizeof(type_alias) > sizeof(type) whenever type_alias has members.
The previous commit to address #392 triggers a compiler warning about
returning a reference to a local variable, which is *not* a false alarm:
the following:
py::cast<int &>(o)
(which happens internally in an overload declaration) really is
returning a reference to a local, because the cast operators for the
type_caster for numeric types returns a reference to its own member.
This commit adds a static_assert to make that a compilation failure
rather than returning a reference into about-to-be-freed memory.
Incidentally, this is also a fix for #219, which is exactly the same
issue: we can't reference numeric primitives that are cast from
wrappers around python numeric types.
This allows a slightly cleaner base type specification of:
py::class_<Type, Base>("Type")
as an alternative to
py::class_<Type>("Type", py::base<Base>())
As with the other template parameters, the order relative to the holder
or trampoline types doesn't matter.
This also includes a compile-time assertion failure if attempting to
specify more than one base class (but is easily extendible to support
multiple inheritance, someday, by updating the class_selector::set_bases
function to set multiple bases).
With this change both C++ and Python write to sys.stdout which resolves
the capture issues noted in #351. Therefore, the related workarounds are
removed.
The current pybind11::class_<Type, Holder, Trampoline> fixed template
ordering results in a requirement to repeat the Holder with its default
value (std::unique_ptr<Type>) argument, which is a little bit annoying:
it needs to be specified not because we want to override the default,
but rather because we need to specify the third argument.
This commit removes this limitation by making the class_ template take
the type name plus a parameter pack of options. It then extracts the
first valid holder type and the first subclass type for holder_type and
trampoline type_alias, respectively. (If unfound, both fall back to
their current defaults, `std::unique_ptr<type>` and `type`,
respectively). If any unmatched template arguments are provided, a
static assertion fails.
What this means is that you can specify or omit the arguments in any
order:
py::class_<A, PyA> c1(m, "A");
py::class_<B, PyB, std::shared_ptr<B>> c2(m, "B");
py::class_<C, std::shared_ptr<C>, PyB> c3(m, "C");
It also allows future class attributes (such as base types in the next
commit) to be passed as class template types rather than needing to use
a py::base<> wrapper.
With this change arg_t is no longer a template, but it must remain so
for backward compatibility. Thus, a non-template arg_v is introduced,
while a dummy template alias arg_t is there to keep old code from
breaking. This can be remove in the next major release.
The implementation of arg_v also needed to be placed a little earlier in
the headers because it's not a template any more and unpacking_collector
needs more than a forward declaration.
MSVC fails to compile if the constructor is defined out-of-line.
The error states that it cannot deduce the type of the default template
parameter which is used for SFINAE.
The variadic handle::operator() offers the same functionality as well
as mixed positional, keyword, * and ** arguments. The tests are also
superseded by the ones in `test_callbacks`.
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
Currently pybind11 only supports std::unique_ptr<T> holders by default
(other holders can, of course, be declared using the macro). PR #368
added a `py::nodelete` that is intended to be used as:
py::class_<Type, std::unique_ptr<Type, py::nodelete>> c("Type");
but this doesn't work out of the box. (You could add an explicit
holder type declaration, but this doesn't appear to have been the
intention of the commit).
This commit fixes it by generalizing the unique_ptr type_caster to take
both the type and deleter as template arguments, so that *any*
unique_ptr instances are now automatically handled by pybind. It also
adds a test to test_smart_ptr, testing both that py::nodelete (now)
works, and that the object is indeed not deleted as intended.