* Change NAMESPACE_BEGIN and NAMESPACE_END macros into PYBIND11_NAMESPACE_BEGIN and PYBIND11_NAMESPACE_END
* Fix sudden HomeBrew 'python not installed' error
* Sweep difference in 'Class.__init__() must be called when overriding __init__' error message between CPython and PyPy under the rug
* Homebrew updated to 3.8 yesterday.
Co-authored-by: Henry Schreiner <HenrySchreinerIII@gmail.com>
* Error out eval_file
* Enable dynamic attribute support for Pypy >= 6
* Add a test for dynamic attribute support
* Skip test for eval_file on pypy
* Workaround for __qualname__ on PyPy3
* Add a PyPy3.6 7.3.0 build
* Only disable in PyPy3
* Fix travis testing
* No numpy and scipy for pypy
* Enable test on pypy2
* Fix logic in eval_file
* Skip a few tests due to bugs in PyPy
* scipy wheels are broken. make pypy2 a failrue
Co-authored-by: Andreas Kloeckner <inform@tiker.net>
The PyEval_InitThreads() and PyEval_ThreadsInitialized() functions are
now deprecated and will be removed in Python 3.11. Calling
PyEval_InitThreads() now does nothing. The GIL is initialized by
Py_Initialize() since Python 3.7.
For rationale, see #2241, eeb1044818af5b70761deae602c49eba439164dc;
there is a second entry point function defined by the PYBIND11_MODULE
macro that also needs to be annotated as unused.
This change defines a new, portable macro PYBIND11_MAYBE_UNUSED to
mark declarations as unused, and annotates the PYBIND11_MODULE entry
point with this attribute.
The purpose of this annotation is to facilitate dead code detection,
which might otherwise consider the module entry point function dead,
since it isn't otherwise used. (It is only used via FFI.)
This adds support for a `py::args_kw_only()` annotation that can be
specified between `py::arg` annotations to indicate that any following
arguments are keyword-only. This allows you to write:
m.def("f", [](int a, int b) { /* ... */ },
py::arg("a"), py::args_kw_only(), py::arg("b"));
and have it work like Python 3's:
def f(a, *, b):
# ...
with respect to how `a` and `b` arguments are accepted (that is, `a` can
be positional or by keyword; `b` can only be specified by keyword).
Currently user specializations of the form
template <typename itype> struct polymorphic_type_hook<itype, std::enable_if_t<...>> { ... };
will fail if itype is also polymorphic, because the existing specialization will also
be enabled, which leads to 2 equally viable candidates. With this change, user provided
specializations have higher priority than the built in specialization for polymorphic types.
When binding code immediately throws an exception of type
py::error_already_set (e.g. via py::module::import that fails), the
catch block sets an import error as expected. Unfortunately, following
this, the deconstructor of py::error_already_set decides to call
py::detail::get_internals() and set up various internal data structures
of pybind11, which fails given that the error flag is active. The call
stack of this looks as follows:
Py_init_mymodule() -> __cxa_decrement_exception_refcount ->
error_already_set::~error_already_set() ->
gil_scoped_acquire::gil_scoped_acquire() -> detail::get_internals() ->
... -> pybind11::detail::simple_collector() -> uh oh..
The solution is simple: we call detail::get_internals() once before
running any binding code to make sure that the internal data structures
are ready.
This commit introduces the use of C++17-style fold expressions when
casting tuples & the argument lists of functions.
This change can improve performance of the resulting bindings: because
fold expressions have short-circuiting semantics, pybind11 e.g. won't
try to cast the second argument of a function if the first one failed.
This is particularly effective when working with functions that have
many overloads with long argument lists.
* test pair-copyability on C++17 upwards
The stdlib falsely detects containers like M=std::map<T, U>
as copyable, even when one of T and U is not copyable.
Therefore we cannot rely on the stdlib dismissing std::pair<T, M>
by itself, even on C++17.
* fix is_copy_assignable
bind_map used std::is_copy_assignable which suffers from the same problems
as std::is_copy_constructible, therefore the same fix has been applied.
* created tests for copyability
Don't assume that just because the language version is C++17 that the
standard library offers all C++17 features, too. When using clang-6.0
and --std=c++17 on Ubuntu 18.04 with libstdc++, __cpp_sized_deallocation
is false.
When building with `-Werror,-Wmissing-prototypes`, `clang` complains about missing prototypes for functions defined through macro expansions. This PR adds the missing prototypes.
```
error: no previous prototype for function 'pybind11_init_impl_embedded' [
-Werror,-Wmissing-prototypes]
PYBIND11_EMBEDDED_MODULE(embedded, mod) {
^
external/pybind11/include/pybind11/embed.h:61:5: note: expanded from macro 'PYBIND11_EMBEDDED_MODULE'
PYBIND11_EMBEDDED_MODULE_IMPL(name) \
^
external/pybind11/include/pybind11/embed.h:26:23: note: expanded from macro 'PYBIND11_EMBEDDED_MODULE_IMPL'
extern "C" void pybind11_init_impl_##name() { \
^
<scratch space>:380:1: note: expanded from here
pybind11_init_impl_embedded
^
1 error generated.
```
* Adapt to python3.8 C API change
Do `Py_DECREF(type)` on all python objects on deallocation
fix#1946
* Add bare python3.8 build to CI matrix
While numpy/scipy wheels are available, run python3.8 test without them
* fix: Avoid conversion to `int_` rhs argument of enum eq/ne
* test: compare unscoped enum with strings
* suppress comparison to None warning
* test unscoped enum arithmetic and comparision with unsupported type
* Make `overload_cast_impl` available in C++11 mode.
Narrow the scope of the `#if defined(PYBIND11_CPP14)` block around overload_cast to only
cover the parts where C++14 is stricly required. Thus, the implementation in
`pybind11::details::overload_cast_impl` is still available in C++11 mode.
* PR #1581: Modify test to use overload_cast_impl, update docs and change log
The -Wmissing-prototypes Clang warning (or -Wmissing-declarations on
GCC) is very useful to avoid accidents where a function definition in a
source file doesn't match the corresponding declaration in a header
file, as it would warn already during compilation and not much later
during link time.
Unfortunately this means that exported functions defined only in the
source file (usually the ones annotated with `extern "C"`) will cause
this warning to be emitted too (on Clang, GCC has a slightly different
behavior with -Wmissing-declarations and doesn't warn here). This fixes
the warning by providing a declaration right before the definition.
Clang has a bug [1] in x86 Windows that is exposed by the use of lambdas with "unforwardable" prototypes. The error is "error: cannot compile this forwarded non-trivially copyable parameter yet", and the message was introduced in [2] (used to be an assertion).
[1] https://llvm.org/bugs/show_bug.cgi?id=28299
[2] feb1567e07
This is only necessary if `get_internals` is called for the first time in a given module when the running thread is in a GIL-released state.
Fixes#1364
* Test dtype field order in numpy dtype tests
When running tests with NumPy 1.14 or later this test exposes the
"invalid buffer descriptor" error reported in #1274.
* Create dtype_ptr with ordered fields
* Fix casting of time points with non-system-clock duration on Windows
Add explicit `time_point_cast` to time point with duration of system
clock. Fixes Visual Studio compile error.
* Add test case for custom time points casting
In def_readonly and def_readwrite, there is an assertion that the member comes
from the class or a base class:
static_assert(std::is_base_of<C, type>::value, "...");
However, if C and type are the same type, is_base_of will still only be true
if they are the same _non-union_ type. This means we can't define accessors
for the members of a union type because of this assertion.
Update the assertion to test
std::is_same<C, type>::value || std::is_base_of<C, type>::value
which will allow union types, or members of base classes.
Also add a basic unit test for accessing unions.
* Fix async Python functors invoking from multiple C++ threads (#1587)
Ensure GIL is held during functor destruction.
* Add async Python callbacks test that runs in separate Python thread
In some cases the user of pythonbuf needs to allocate the internal
buffer to a specific size e.g. for performance or to enable synchronous
writes to the buffer.
By changing `pythonbuf::d_buffer` to be dynamically allocated we can now
enable these use-cases while still providing the default behavior of
allocating a 1024 byte internal buffer (through a default parameter).