If we need to initialize a holder around an unowned instance, and the
holder type is non-copyable (i.e. a unique_ptr), we currently construct
the holder type around the value pointer, but then never actually
destruct the holder: the holder destructor is called only for the
instance that actually has `inst->owned = true` set.
This seems no pointer, however, in creating such a holder around an
unowned instance: we never actually intend to use anything that the
unique_ptr gives us: and, in fact, do not want the unique_ptr (because
if it ever actually got destroyed, it would cause destruction of the
wrapped pointer, despite the fact that that wrapped pointer isn't
owned).
This commit changes the logic to only create a unique_ptr holder if we
actually own the instance, and to destruct via the constructed holder
whenever we have a constructed holder--which will now only be the case
for owned-unique-holder or shared-holder types.
Other changes include:
* Added test for non-movable holder constructor/destructor counts
The three alive assertions now pass, before #478 they fail with counts
of 2/2/1 respectively, because of the unique_ptr that we don't want and
don't destroy (because we don't *want* its destructor to run).
* Return cstats reference; fix ConstructStats doc
Small cleanup to the #478 test code, and fix to the ConstructStats
documentation (the static method definition should use `reference` not
`reference_internal`).
* Rename inst->constructed to inst->holder_constructed
This makes it clearer exactly what it's referring to.
Currently pybind11 doesn't check when you define a new object (e.g. a
class, function, or exception) that overwrites an existing one. If the
thing being overwritten is a class, this leads to a segfault (because
pybind still thinks the type is defined, even though Python no longer
has the type). In other cases this is harmless (e.g. replacing a
function with an exception), but even in that case it's most likely a
bug.
This code doesn't prevent you from actively doing something harmful,
like deliberately overwriting a previous definition, but detects
overwriting with a run-time error if it occurs in the standard
class/function/exception/def registration interfaces.
All of the additions are in non-template code; the result is actually a
tiny decrease in .so size compared to master without the new test code
(977304 to 977272 bytes), and about 4K higher with the new tests.
This commit adds support for forcing alias type initialization by
defining constructors with `py::init_alias<arg1, arg2>()` instead of
`py::init<arg1, arg2>()`. Currently py::init<> only results in Alias
initialization if the type is extended in python, or the given
arguments can't be used to construct the base type, but can be used to
construct the alias. py::init_alias<>, in contrast, always invokes the
constructor of the alias type.
It looks like this was already the intention of
`py::detail::init_alias`, which was forward-declared in
86d825f330, but was apparently never
finished: despite the existance of a .def method accepting it, the
`detail::init_alias` class isn't actually defined anywhere.
This commit completes the feature (or possibly repurposes it), allowing
declaration of classes that will always initialize the trampoline which
is (as I argued in #397) sometimes useful.
Type alias for alias classes with members didn't work properly: space
was only allocated for sizeof(type), but if we want to be able to put a
type_alias instance there, we need sizeof(type_alias), but
sizeof(type_alias) > sizeof(type) whenever type_alias has members.
The previous commit to address #392 triggers a compiler warning about
returning a reference to a local variable, which is *not* a false alarm:
the following:
py::cast<int &>(o)
(which happens internally in an overload declaration) really is
returning a reference to a local, because the cast operators for the
type_caster for numeric types returns a reference to its own member.
This commit adds a static_assert to make that a compilation failure
rather than returning a reference into about-to-be-freed memory.
Incidentally, this is also a fix for #219, which is exactly the same
issue: we can't reference numeric primitives that are cast from
wrappers around python numeric types.
The C++ part of the test code is modified to achieve this. As a result,
this kind of test:
```python
with capture:
kw_func1(5, y=10)
assert capture == "kw_func(x=5, y=10)"
```
can be replaced with a simple:
`assert kw_func1(5, y=10) == "x=5, y=10"`
Use simple asserts and pytest's powerful introspection to make testing
simpler. This merges the old .py/.ref file pairs into simple .py files
where the expected values are right next to the code being tested.
This commit does not touch the C++ part of the code and replicates the
Python tests exactly like the old .ref-file-based approach.