The variables PYBIND11_HAS_OPTIONAL, PYBIND11_HAS_EXP_OPTIONAL, PYBIND11_HAS_VARIANT,
__clang__, __APPLE__ were not checked for defined in a minortity of instances.
If the project using pybind11 sets -Wundef, the warnings will show.
The test build is also modified to catch the problem.
* fix: support nvcc and test
* fixup! fix: support nvcc and test
* docs: mention what compilers fail
* fix: much simpler logic
* refactor: slightly faster / clearer
* tests: keep source dir clean
* ci: make first build inplace
* ci: drop dev setting (wasn't doing anything)
* tests: warn if source directory is dirty
* docs: move helpers to .github where allowed
* docs: more guidelines in CONTRIBUTING
* chore: update issue templates
* fix: review from @bstaletic
* refactor: a few points from @rwgk
* docs: more touchup, review changes
* tests: refactor and cleanup
* refactor: more consistent
* tests: vendor six
* tests: more xfails, nicer system
* tests: simplify to info
* tests: suggestions from @YannickJadoul and @bstaletic
* tests: restore some pypy tests that now pass
* tests: rename info to env
* tests: strict False/True
* tests: drop explicit strict=True again
* tests: reduce minimum PyTest to 3.1
This is only necessary if `get_internals` is called for the first time in a given module when the running thread is in a GIL-released state.
Fixes#1364
In def_readonly and def_readwrite, there is an assertion that the member comes
from the class or a base class:
static_assert(std::is_base_of<C, type>::value, "...");
However, if C and type are the same type, is_base_of will still only be true
if they are the same _non-union_ type. This means we can't define accessors
for the members of a union type because of this assertion.
Update the assertion to test
std::is_same<C, type>::value || std::is_base_of<C, type>::value
which will allow union types, or members of base classes.
Also add a basic unit test for accessing unions.
This avoids GIL deadlocking when pybind11 tries to acquire the GIL in a thread that already acquired it using standard Python API (e.g. when running from a Python thread).
* Add basic support for tag-based static polymorphism
Sometimes it is possible to look at a C++ object and know what its dynamic type is,
even if it doesn't use C++ polymorphism, because instances of the object and its
subclasses conform to some other mechanism for being self-describing; for example,
perhaps there's an enumerated "tag" or "kind" member in the base class that's always
set to an indication of the correct type. This might be done for performance reasons,
or to permit most-derived types to be trivially copyable. One of the most widely-known
examples is in LLVM: https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
This PR permits pybind11 to be informed of such conventions via a new specializable
detail::polymorphic_type_hook<> template, which generalizes the previous logic for
determining the runtime type of an object based on C++ RTTI. Implementors provide
a way to map from a base class object to a const std::type_info* for the dynamic
type; pybind11 then uses this to ensure that casting a Base* to Python creates a
Python object that knows it's wrapping the appropriate sort of Derived.
There are a number of restrictions with this tag-based static polymorphism support
compared to pybind11's existing support for built-in C++ polymorphism:
- there is no support for this-pointer adjustment, so only single inheritance is permitted
- there is no way to make C++ code call new Python-provided subclasses
- when binding C++ classes that redefine a method in a subclass, the .def() must be
repeated in the binding for Python to know about the update
But these are not much of an issue in practice in many cases, the impact on the
complexity of pybind11's innards is minimal and localized, and the support for
automatic downcasting improves usability a great deal.
This commit turns on `-Wdeprecated` in the test suite and fixes several
associated deprecation warnings that show up as a result:
- in C++17 `static constexpr` members are implicitly inline; our
redeclaration (needed for C++11/14) is deprecated in C++17.
- various test suite classes have destructors and rely on implicit copy
constructors, but implicit copy constructor definitions when a
user-declared destructor is present was deprecated in C++11.
- Eigen also has various implicit copy constructors, so just disable
`-Wdeprecated` in `eigen.h`.
E.g. trying to convert a `list` to a `std::vector<int>` without
including <pybind11/stl.h> will now raise an error with a note that
suggests checking the headers.
The note is only appended if `std::` is found in the function
signature. This should only be the case when a header is missing.
E.g. when stl.h is included, the signature would contain `List[int]`
instead of `std::vector<int>` while using stl_bind.h would produce
something like `MyVector`. Similarly for `std::map`/`Dict`, `complex`,
`std::function`/`Callable`, etc.
There's a possibility for false positives, but it's pretty low.
To avoid an ODR violation in the test suite while testing
both `stl.h` and `std_bind.h` with `std::vector<bool>`,
the `py::bind_vector<std::vector<bool>>` test is moved to
the secondary module (which does not include `stl.h`).
This allows you to use:
cls.def(py::init(&factory_function));
where `factory_function` returns a pointer, holder, or value of the
class type (or a derived type). Various compile-time checks
(static_asserts) are performed to ensure the function is valid, and
various run-time type checks where necessary.
Some other details of this feature:
- The `py::init` name doesn't conflict with the templated no-argument
`py::init<...>()`, but keeps the naming consistent: the existing
templated, no-argument one wraps constructors, the no-template,
function-argument one wraps factory functions.
- If returning a CppClass (whether by value or pointer) when an CppAlias
is required (i.e. python-side inheritance and a declared alias), a
dynamic_cast to the alias is attempted (for the pointer version); if
it fails, or if returned by value, an Alias(Class &&) constructor
is invoked. If this constructor doesn't exist, a runtime error occurs.
- for holder returns when an alias is required, we try a dynamic_cast of
the wrapped pointer to the alias to see if it is already an alias
instance; if it isn't, we raise an error.
- `py::init(class_factory, alias_factory)` is also available that takes
two factories: the first is called when an alias is not needed, the
second when it is.
- Reimplement factory instance clearing. The previous implementation
failed under python-side multiple inheritance: *each* inherited
type's factory init would clear the instance instead of only setting
its own type value. The new implementation here clears just the
relevant value pointer.
- dealloc is updated to explicitly set the leftover value pointer to
nullptr and the `holder_constructed` flag to false so that it can be
used to clear preallocated value without needing to rebuild the
instance internals data.
- Added various tests to test out new allocation/deallocation code.
- With preallocation now done lazily, init factory holders can
completely avoid the extra overhead of needing an extra
allocation/deallocation.
- Updated documentation to make factory constructors the default
advanced constructor style.
- If an `__init__` is called a second time, we have two choices: we can
throw away the first instance, replacing it with the second; or we can
ignore the second call. The latter is slightly easier, so do that.
In C++11 mode, `boost::apply_visitor` requires an explicit `result_type`.
This also adds optional tests for `boost::variant` in C++11/14, if boost
is available. In C++17 mode, `std::variant` is tested instead.
This commit adds a `py::module_local` attribute that lets you confine a
registered type to the module (more technically, the shared object) in
which it is defined, by registering it with:
py::class_<C>(m, "C", py::module_local())
This will allow the same C++ class `C` to be registered in different
modules with independent sets of class definitions. On the Python side,
two such types will be completely distinct; on the C++ side, the C++
type resolves to a different Python type in each module.
This applies `py::module_local` automatically to `stl_bind.h` bindings
when the container value type looks like something global: i.e. when it
is a converting type (for example, when binding a `std::vector<int>`),
or when it is a registered type itself bound with `py::module_local`.
This should help resolve potential future conflicts (e.g. if two
completely unrelated modules both try to bind a `std::vector<int>`.
Users can override the automatic selection by adding a
`py::module_local()` or `py::module_local(false)`.
Note that this does mildly break backwards compatibility: bound stl
containers of basic types like `std::vector<int>` cannot be bound in one
module and returned in a different module. (This can be re-enabled with
`py::module_local(false)` as described above, but with the potential for
eventual load conflicts).
The builtin exception handler currently doesn't work across modules
under clang/libc++ for builtin pybind exceptions like
`pybind11::error_already_set` or `pybind11::stop_iteration`: under
RTLD_LOCAL module loading clang considers each module's exception
classes distinct types. This then means that the base exception
translator fails to catch the exceptions and the fall through to the
generic `std::exception` handler, which completely breaks things like
`stop_iteration`: only the `stop_iteration` of the first module loaded
actually works properly; later modules raise a RuntimeError with no
message when trying to invoke their iterators.
For example, two modules defined like this exhibit the behaviour under
clang++/libc++:
z1.cpp:
#include <pybind11/pybind11.h>
#include <pybind11/stl_bind.h>
namespace py = pybind11;
PYBIND11_MODULE(z1, m) {
py::bind_vector<std::vector<long>>(m, "IntVector");
}
z2.cpp:
#include <pybind11/pybind11.h>
#include <pybind11/stl_bind.h>
namespace py = pybind11;
PYBIND11_MODULE(z2, m) {
py::bind_vector<std::vector<double>>(m, "FloatVector");
}
Python:
import z1, z2
for i in z2.FloatVector():
pass
results in:
Traceback (most recent call last):
File "zs.py", line 2, in <module>
for i in z2.FloatVector():
RuntimeError
This commit fixes the issue by adding a new exception translator each
time the internals pointer is initialized from python builtins: this
generally means the internals data was initialized by some other
module. (The extra translator(s) are skipped under libstdc++).
This adds the infrastructure for a separate test plugin for cross-module
tests. (This commit contains no tests that actually use it, but the
following commits do; this is separated simply to provide a cleaner
commit history).
At this point, there is only a single test for interpreter basics.
Apart from embedding itself, having a C++ test framework will also
benefit the C++-side features by allowing them to be tested directly.
All targets provided by pybind11:
* pybind11::module - the existing target for creating extension modules
* pybind11::embed - new target for embedding the interpreter
* pybind11::pybind11 - common "base" target (headers only)
MSVC by default uses the local codepage, which fails when it sees the
utf-8 in test_python_types.cpp. This adds the /utf-8 flag to the test
suite compilation to force it to interpret source code as utf-8.
Fixes#869
This commit allows type_casters to allow their local values to be moved
away, rather than copied, when the type caster instance itself is an rvalue.
This only applies (automatically) to type casters using
PYBIND11_TYPE_CASTER; the generic type type casters don't own their own
pointer, and various value casters (e.g. std::string, std::pair,
arithmetic types) already cast to an rvalue (i.e. they return by value).
This updates various calling code to attempt to get a movable value
whenever the value is itself coming from a type caster about to be
destroyed: for example, when constructing an std::pair or various stl.h
containers. For types that don't support value moving, the cast_op
falls back to an lvalue cast.
There wasn't an obvious place to add the tests, so I added them to
test_copy_move_policies, but also renamed it to drop the _policies as it
now tests more than just policies.
* Add `pytest.ini` config file and set default options there instead of
in `CMakeLists.txt` (command line arguments).
* Change all output capture from `capfd` (filedescriptors) to `capsys`
(Python's `sys.stdout` and `sys.stderr`). This avoids capturing
low-level C errors, e.g. from the debug build of Python.
* Set pytest minimum version to 3.0 to make it easier to use new
features. Removed conditional use of `excinfo.match()`.
* Clean up some leftover function-level `@pytest.requires_numpy`.
* Make tests buildable independently
This makes "tests" buildable as a separate project that uses
find_package(pybind11 CONFIG) when invoked independently.
This also moves the WERROR option into tests/CMakeLists.txt, as that's
the only place it is used.
* Use Eigen 3.3.1's cmake target, if available
This changes the eigen finding code to attempt to use Eigen's
system-installed Eigen3Config first. In Eigen 3.3.1, it exports a cmake
Eigen3::Eigen target to get dependencies from (rather than setting the
include path directly).
If it fails, we fall back to the trying to load allowing modules (i.e.
allowing our tools/FindEigen3.cmake). If we either fallback, or the
eigen version is older than 3.3.1 (or , we still set the include
directory manually; otherwise, for CONFIG + new Eigen, we get it via
the target.
This is also needed to allow 'tests' to be built independently, when
the find_package(Eigen3) is going to find via the system-installed
Eigen3Config.cmake.
* Add a install-then-build test, using clang on linux
This tests that `make install` to the actual system, followed by a build
of the tests (without the main pybind11 repository available) works as
expected.
To also expand the testing variety a bit, it also builds using
clang-3.9 instead of gcc.
* Don't try loading Eigen3Config in cmake < 3.0
It could FATAL_ERROR as the newer cmake includes a cmake 3.0 required
line.
If doing an independent, out-of-tree "tests" build, the regular
find_package(Eigen3) is likely to fail with the same error, but I think
we can just let that be: if you want a recent Eigen with proper cmake
loading support *and* want to do an independent tests build, you'll
need at least cmake 3.0.
Clang on linux currently fails to run cmake:
$ CC=clang CXX=clang++ cmake ..
...
-- Configuring done
CMake Error at tools/pybind11Tools.cmake:135 (target_compile_options):
Error evaluating generator expression:
$<:-flto>
Expression did not evaluate to a known generator expression
Call Stack (most recent call first):
tests/CMakeLists.txt:68 (pybind11_add_module)
But investigating this led to various other -flto detection problems;
this commit thus overhauls LTO flag detection:
- -flto needs to be passed to the linker as well
- Also compile with -fno-fat-lto-objects under GCC
- Pass the equivalent flags to MSVC
- Enable LTO flags for via generator expressions (for non-debug builds
only), so that multi-config builds (like on Windows) still work
properly. This seems reasonable, however, even on single-config
builds (and simplifies the cmake code a bit).
- clang's lto linker plugins don't accept '-Os', so replace it with
'-O3' when doing a MINSIZEREL build
- Enable trying ThinLTO by default for test suite (only affects clang)
- Match Clang$ rather than ^Clang$ because, for cmake with 3.0+
policies in effect, the compiler ID will be AppleClang on macOS.
Use PROJECT_SOURCE_DIR instead of CMAKE_SOURCE_DIR as the base of the
path to libsize.py. This fixes an error if pybind11 is being built
directly within another project.
On a debian jessie machine, running 'python --version --noconftest' caused
pytest to try and run the test suite with the not-yet-compiled extension
module, thus failing the test. This commit chages the pytest detection
so that it only attempts to run an import statement.
Add a BUILD_INTERFACE and a pybind11::pybind11 alias for the interface
library to match the installed target.
Add new cmake tests for add_subdirectory and consolidates the
.cpp and .py files needed for the cmake build tests:
Before:
tests
|-- test_installed_module
| |-- CMakeLists.txt
| |-- main.cpp
| \-- test.py
\-- test_installed_target
|-- CMakeLists.txt
|-- main.cpp
\-- test.py
After:
tests
\-- test_cmake_build
|-- installed_module/CMakeLists.txt
|-- installed_target/CMakeLists.txt
|-- subdirectory_module/CMakeLists.txt
|-- subdirectory_target/CMakeLists.txt
|-- main.cpp
\-- test.py
When working on some particular feature, it's nice to be able to disable
all the tests except for the one I'm working on; this is currently
possible by editing tests/CMakeLists.txt, and commenting out the tests
you don't want.
This commit goes a step further by letting you give a list of tests you
do want when invoking cmake, e.g.:
cmake -DPYBIND11_TEST_OVERRIDE="test_issues.cpp;test_pickling.cpp" ..
changes the build to build just those two tests (and changes the `pytest`
target to invoke just the two associated tests).
This persists in the build directory until you disable it again by
running cmake with `-DPYBIND11_TEST_OVERRIDE=`. It also adds a message
after the pytest output to remind you that it is in effect:
Note: not all tests run: -DPYBIND11_TEST_OVERRIDE is in effect
* Add debugging info about so size to build output
This adds a small python script to tools that captures before-and-after
.so sizes between builds and outputs this in the build output via a
string such as:
------ pybind11_tests.cpython-35m-x86_64-linux-gnu.so file size: 924696 (decrease of 73680 bytes = 7.38%)
------ pybind11_tests.cpython-35m-x86_64-linux-gnu.so file size: 998376 (increase of 73680 bytes = 7.97%)
------ pybind11_tests.cpython-35m-x86_64-linux-gnu.so file size: 998376 (no change)
Or, if there was no .so during the build, just the .so size by itself:
------ pybind11_tests.cpython-35m-x86_64-linux-gnu.so file size: 998376
This allows you to, for example, build, checkout a different branch,
rebuild, and easily see exactly the change in the pybind11_tests.so
size.
It also allows looking at the travis and appveyor build logs to get an
idea of .so/.dll sizes across different build systems.
* Minor libsize.py script changes
- Use RAII open
- Remove unused libsize=-1
- Report change as [+-]xyz bytes = [+-]a.bc%
This commit adds support for forcing alias type initialization by
defining constructors with `py::init_alias<arg1, arg2>()` instead of
`py::init<arg1, arg2>()`. Currently py::init<> only results in Alias
initialization if the type is extended in python, or the given
arguments can't be used to construct the base type, but can be used to
construct the alias. py::init_alias<>, in contrast, always invokes the
constructor of the alias type.
It looks like this was already the intention of
`py::detail::init_alias`, which was forward-declared in
86d825f330, but was apparently never
finished: despite the existance of a .def method accepting it, the
`detail::init_alias` class isn't actually defined anywhere.
This commit completes the feature (or possibly repurposes it), allowing
declaration of classes that will always initialize the trampoline which
is (as I argued in #397) sometimes useful.
The current pybind11::class_<Type, Holder, Trampoline> fixed template
ordering results in a requirement to repeat the Holder with its default
value (std::unique_ptr<Type>) argument, which is a little bit annoying:
it needs to be specified not because we want to override the default,
but rather because we need to specify the third argument.
This commit removes this limitation by making the class_ template take
the type name plus a parameter pack of options. It then extracts the
first valid holder type and the first subclass type for holder_type and
trampoline type_alias, respectively. (If unfound, both fall back to
their current defaults, `std::unique_ptr<type>` and `type`,
respectively). If any unmatched template arguments are provided, a
static assertion fails.
What this means is that you can specify or omit the arguments in any
order:
py::class_<A, PyA> c1(m, "A");
py::class_<B, PyB, std::shared_ptr<B>> c2(m, "B");
py::class_<C, std::shared_ptr<C>, PyB> c3(m, "C");
It also allows future class attributes (such as base types in the next
commit) to be passed as class template types rather than needing to use
a py::base<> wrapper.
Adding or removing tests is a little bit cumbersome currently: the test
needs to be added to CMakeLists.txt, the init function needs to be
predeclared in pybind11_tests.cpp, then called in the plugin
initialization. While this isn't a big deal for tests that are being
committed, it's more of a hassle when working on some new feature or
test code for which I temporarily only care about building and linking
the test being worked on rather than the entire test suite.
This commit changes tests to self-register their initialization by
having each test initialize a local object (which stores the
initialization function in a static variable). This makes changing the
set of tests being build easy: one only needs to add or comment out
test names in tests/CMakeLists.txt.
A couple other minor changes that go along with this:
- test_eigen.cpp is now included in the test list, then removed if eigen
isn't available. This lets you disable the eigen tests by commenting
it out, just like all the other tests, but keeps the build working
without eigen eigen isn't available. (Also, if it's commented out, we
don't even bother looking for and reporting the building with/without
eigen status message).
- pytest is now invoked with all the built test names (with .cpp changed
to .py) so that it doesn't try to run tests that weren't built.
Installing something outside the project directory from a cmake
invocation is overly intrusive; this changes tests/CMakeLists.txt to
just fail with an informative message instead, and changes the
travis-ci builds to install pytest via pip or apt-get.
Use simple asserts and pytest's powerful introspection to make testing
simpler. This merges the old .py/.ref file pairs into simple .py files
where the expected values are right next to the code being tested.
This commit does not touch the C++ part of the code and replicates the
Python tests exactly like the old .ref-file-based approach.