Commit Graph

6 Commits

Author SHA1 Message Date
Henry Schreiner
6bcd220c8d
refactor: module -> module_ with typedef (#2544)
* WIP: module -> module_ without typedef

* refactor: allow py::module to work again
2020-10-03 13:38:03 -04:00
Dean Moldovan
7b1de1e551 Fix nullptr dereference when loading an external-only module_local type 2017-09-10 12:28:03 +02:00
Jason Rhinelander
5e14aa6aa7 Allow module-local classes to be loaded externally
The main point of `py::module_local` is to make the C++ -> Python cast
unique so that returning/casting a C++ instance is well-defined.
Unfortunately it also makes loading unique, but this isn't particularly
desirable: when an instance contains `Type` instance there's no reason
it shouldn't be possible to pass that instance to a bound function
taking a `Type` parameter, even if that function is in another module.

This commit solves the issue by allowing foreign module (and global)
type loaders have a chance to load the value if the local module loader
fails.  The implementation here does this by storing a module-local
loading function in a capsule in the python type, which we can then call
if the local (and possibly global, if the local type is masking a global
type) version doesn't work.
2017-08-19 15:30:39 -04:00
Dean Moldovan
8d3cedbe2b Add test for mixing STL casters and local binders across modules
One module uses a generic vector caster from `<pybind11/stl.h>` while
the other exports `std::vector<int>` with a local `py:bind_vector`.
2017-08-14 01:11:52 +02:00
Jason Rhinelander
4b159230d9 Made module_local types take precedence over global types
Attempting to mix py::module_local and non-module_local classes results
in some unexpected/undesirable behaviour:

- if a class is registered non-local by some other module, a later
  attempt to register it locally fails.  It doesn't need to: it is
  perfectly acceptable for the local registration to simply override
  the external global registration.
- going the other way (i.e. module `A` registers a type `T` locally,
  then `B` registers the same type `T` globally) causes a more serious
  issue: `A.T`'s constructors no longer work because the `self` argument
  gets converted to a `B.T`, which then fails to resolve.

Changing the cast precedence to prefer local over global fixes this and
makes it work more consistently, regardless of module load order.
2017-08-05 11:23:34 -04:00
Jason Rhinelander
7437c69500 Add py::module_local() attribute for module-local type bindings
This commit adds a `py::module_local` attribute that lets you confine a
registered type to the module (more technically, the shared object) in
which it is defined, by registering it with:

    py::class_<C>(m, "C", py::module_local())

This will allow the same C++ class `C` to be registered in different
modules with independent sets of class definitions.  On the Python side,
two such types will be completely distinct; on the C++ side, the C++
type resolves to a different Python type in each module.

This applies `py::module_local` automatically to `stl_bind.h` bindings
when the container value type looks like something global: i.e. when it
is a converting type (for example, when binding a `std::vector<int>`),
or when it is a registered type itself bound with `py::module_local`.
This should help resolve potential future conflicts (e.g. if two
completely unrelated modules both try to bind a `std::vector<int>`.
Users can override the automatic selection by adding a
`py::module_local()` or `py::module_local(false)`.

Note that this does mildly break backwards compatibility: bound stl
containers of basic types like `std::vector<int>` cannot be bound in one
module and returned in a different module.  (This can be re-enabled with
`py::module_local(false)` as described above, but with the potential for
eventual load conflicts).
2017-08-04 10:47:34 -04:00