This adds support for implicit conversions to bool from Python types
with `__bool__` (Python 3) or `__nonzero__` (Python 2) attributes, and
adds direct (i.e. non-converting) support for numpy bools.
If a class doesn't provide a `T::operator delete(void *)` but does have
a `T::operator delete(void *, size_t)` the latter is invoked by a
`delete someT`. Pybind currently only look for and call the former;
this commit adds detection and calling of the latter when the former
doesn't exist.
This changes the pointer `cast()` in `PYBIND11_TYPE_CASTER` to recognize
the `take_ownership` policy: if casting a pointer with take-ownership,
the `cast()` now recalls `cast()` with a dereferenced rvalue (rather
than the previous code, which was always calling it with a const lvalue
reference), and deletes the pointer after the chained `cast()` is
complete.
This makes code like:
m.def("f", []() { return new std::vector<int>(100, 1); },
py::return_value_policy::take_ownership);
do the expected thing by taking over ownership of the returned pointer
(which is deleted once the chained cast completes).
PR #936 broke the ability to return a pointer to a stl container (and,
likewise, to a tuple) because the added deduced type matched a
non-const pointer argument: the pointer-accepting `cast` in
PYBIND11_TYPE_CASTER had a `const type *`, which is a worse match for a
non-const pointer than the universal reference template #936 added.
This changes the provided TYPE_CASTER cast(ptr) to take the pointer by
template arg (so that it will accept either const or non-const pointer).
It has two other effects: it slightly reduces .so size (because many
type casters never actually need the pointer cast at all), and it allows
type casters to provide their untemplated pointer `cast()` that will
take precedence over the templated version provided in the macro.
In a Debug build, MSVC doesn't apply copy/move elision as often,
triggering a test failure. This relaxes the test count requirements
to let the test suite pass.
This updates the std::tuple, std::pair and `stl.h` type casters to
forward their contained value according to whether the container being
cast is an lvalue or rvalue reference. This fixes an issue where
subcaster casts were always called with a const lvalue which meant
nested type casters didn't have the desired `cast()` overload invoked.
For example, this caused Eigen values in a tuple to end up with a
readonly flag (issue #935) and made it impossible to return a container
of move-only types (issue #853).
This fixes both issues by adding templated universal reference `cast()`
methods to the various container types that forward container elements
according to the container reference type.
The std::pair caster can be written as a special case of the std::tuple
caster; this combines them via a base `tuple_caster` class (which is
essentially identical to the previous std::tuple caster).
This also removes the special empty tuple base case: returning an empty
tuple is relatively rare, and the base case still works perfectly well
even when the tuple types is an empty list.
When defining method from a member function pointer (e.g. `.def("f",
&Derived::f)`) we run into a problem if `&Derived::f` is actually
implemented in some base class `Base` when `Base` isn't
pybind-registered.
This happens because the class type is deduced from the member function
pointer, which then becomes a lambda with first argument this deduced
type. For a base class implementation, the deduced type is `Base`, not
`Derived`, and so we generate and registered an overload which takes a
`Base *` as first argument. Trying to call this fails if `Base` isn't
registered (e.g. because it's an implementation detail class that isn't
intended to be exposed to Python) because the type caster for an
unregistered type always fails.
This commit adds a `method_adaptor` function that rebinds a member
function to a derived type member function and otherwise (i.e. regular
functions/lambda) leaves the argument as-is. This is now used for class
definitions so that they are bound with type being registered rather
than a potential base type.
A closely related fix in this commit is to similarly update the lambdas
used for `def_readwrite` (and related) to bind to the class type being
registered rather than the deduced type so that registering a property
that resolves to a base class member similarly generates a usable
function.
Fixes#854, #910.
Co-Authored-By: Dean Moldovan <dean0x7d@gmail.com>
When casting to an unsigned type from a python 2 `int`, we currently
cast using `(unsigned long long) PyLong_AsUnsignedLong(src.ptr())`.
If the Python cast fails, it returns (unsigned long) -1, but then we
cast this to `unsigned long long`, which means we get 4294967295, but
because that isn't equal to `(unsigned long long) -1`, we don't detect
the failure.
This commit moves the unsigned casting into a `detail::as_unsigned`
function which, upon error, casts -1 to the final type, and otherwise
casts the return value to the final type to avoid the problematic double
cast when an error occurs.
The error most commonly shows up wherever `long` is 32-bits (e.g. under
both 32- and 64-bit Windows, and under 32-bit linux) when passing a
negative value to a bound function taking an `unsigned long`.
Fixes#929.
The added tests also trigger a latent segfault under PyPy: when casting
to an integer smaller than `long` (e.g. casting to a `uint32_t` on a
64-bit `long` architecture) we check both for a Python error and also
that the resulting intermediate value will fit in the final type. If
there is no conversion error, but we get a value that would overflow, we
end up calling `PyErr_ExceptionMatches()` illegally: that call is only
allowed when there is a current exception. Under PyPy, this segfaults
the test suite. It doesn't appear to segfault under CPython, but the
documentation suggests that it *could* do so. The fix is to only check
for the exception match if we actually got an error.
This fixes#856. Instead of the weakref trick, the internals structure
holds an unordered_map from PyObject* to a vector of references. To
avoid the cost of the unordered_map lookup for objects that don't have
any keep_alive patients, a flag is added to each instance to indicate
whether there is anything to do.
Fixes a race condition when multiple threads try to acquire the GIL
before `detail::internals` have been initialized. `gil_scoped_release`
is now tasked with initializing `internals` (guaranteed single-threaded)
to ensure the safety of subsequent `acquire` calls from multiple threads.
This commit allows multiple inheritance of pybind11 classes from
Python, e.g.
class MyType(Base1, Base2):
def __init__(self):
Base1.__init__(self)
Base2.__init__(self)
where Base1 and Base2 are pybind11-exported classes.
This requires collapsing the various builtin base objects
(pybind11_object_56, ...) introduced in 2.1 into a single
pybind11_object of a fixed size; this fixed size object allocates enough
space to contain either a simple object (one base class & small* holder
instance), or a pointer to a new allocation that can contain an
arbitrary number of base classes and holders, with holder size
unrestricted.
* "small" here means having a sizeof() of at most 2 pointers, which is
enough to fit unique_ptr (sizeof is 1 ptr) and shared_ptr (sizeof is 2
ptrs).
To minimize the performance impact, this repurposes
`internals::registered_types_py` to store a vector of pybind-registered
base types. For direct-use pybind types (e.g. the `PyA` for a C++ `A`)
this is simply storing the same thing as before, but now in a vector;
for Python-side inherited types, the map lets us avoid having to do a
base class traversal as long as we've seen the class before. The
change to vector is needed for multiple inheritance: Python types
inheriting from multiple registered bases have one entry per base.
Fixes#896.
From Python docs: "Once an iterator’s `__next__()` method raises
`StopIteration`, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken."
Passing utf8 encoded strings from python to a C++ function taking a
std::string was broken. The previous version was trying to call
'PyUnicode_FromObject' on this data, which failed to convert the string
to unicode with the default ascii codec. Also this incurs an unnecessary
conversion to unicode for data this is immediately converted back to
utf8.
Fix by treating python 2 strings the same python 3 bytes objects, and just
copying over the data if possible.
Py_Finalize could potentially invoke code that calls `get_internals()`,
which could create a new internals object if one didn't exist.
`finalize_interpreter()` didn't catch this because it only used the
pre-finalize interpreter pointer status; if this happens, it results in
the internals pointer not being properly destroyed with the interpreter,
which leaks, and also causes a `get_internals()` under a future
interpreter to return an internals object that is wrong in various ways.
This reimplements the std::reference_wrapper<T> caster to be a shell
around the underlying T caster (rather than assuming T is a generic
type), which lets it work for things like `std::reference_wrapper<int>`
or anything else custom type caster with a lvalue cast operator.
This also makes it properly fail when None is provided, just as an
ordinary lvalue reference argument would similarly fail.
This also adds a static assert to test that T has an appropriate type
caster. It triggers for casters like `std::pair`, which have
return-by-value cast operators. (In theory this could be supported by
storing a local temporary for such types, but that's beyond the scope
of this PR).
This also replaces `automatic` or `take_ownership` return value policies
with `automatic_reference` as taking ownership of a reference inside a
reference_wrapper is not valid.
The new version of pytest now reports Python warnings by default. This
commit filters out some third-party extension warnings which are not
useful for pybind11 tests.
This commit also adds `doc()` to `object_api` as a shortcut for the
`attr("__doc__")` accessor.
The module macro changes from:
```c++
PYBIND11_PLUGIN(example) {
pybind11::module m("example", "pybind11 example plugin");
m.def("add", [](int a, int b) { return a + b; });
return m.ptr();
}
```
to:
```c++
PYBIND11_MODULE(example, m) {
m.doc() = "pybind11 example plugin";
m.def("add", [](int a, int b) { return a + b; });
}
```
Using the old macro results in a deprecation warning. The warning
actually points to the `pybind11_init` function (since attributes
don't bind to macros), but the message should be quite clear:
"PYBIND11_PLUGIN is deprecated, use PYBIND11_MODULE".
* Added template constructors to buffer_info that can deduce the item size, format string, and number of dimensions from the pointer type and the shape container
* Implemented actual buffer_info constructor as private delegate constructor taking rvalue reference as a workaround for the evaluation order move problem on GCC 4.8
At this point, there is only a single test for interpreter basics.
Apart from embedding itself, having a C++ test framework will also
benefit the C++-side features by allowing them to be tested directly.
All targets provided by pybind11:
* pybind11::module - the existing target for creating extension modules
* pybind11::embed - new target for embedding the interpreter
* pybind11::pybind11 - common "base" target (headers only)
Now that #851 has removed all multiple uses of a caster, it can just use
the default-constructed value with needing a reset. This fixes two
issues:
1. With std::experimental::optional (at least under GCC 5.4), the `= {}`
would construct an instance of the optional type and then move-assign
it, which fails if the value type isn't move-assignable.
2. With older versions of Boost, the `= {}` could fail because it is
ambiguous, allowing construction of either `boost::none` or the value
type.
MSVC by default uses the local codepage, which fails when it sees the
utf-8 in test_python_types.cpp. This adds the /utf-8 flag to the test
suite compilation to force it to interpret source code as utf-8.
Fixes#869
This extends py::vectorize to automatically pass through
non-vectorizable arguments. This removes the need for the documented
"explicitly exclude an argument" workaround.
Vectorization now applies to arithmetic, std::complex, and POD types,
passed as plain value or by const lvalue reference (previously only
pass-by-value types were supported). Non-const lvalue references and
any other types are passed through as-is.
Functions with rvalue reference arguments (whether vectorizable or not)
are explicitly prohibited: an rvalue reference is inherently not
something that can be passed multiple times and is thus unsuitable to
being in a vectorized function.
The vectorize returned value is also now more sensitive to inputs:
previously it would return by value when all inputs are of size 1; this
is now amended to having all inputs of size 1 *and* 0 dimensions. Thus
if you pass in, for example, [[1]], you get back a 1x1, 2D array, while
previously you got back just the resulting single value.
Vectorization of member function specializations is now also supported
via `py::vectorize(&Class::method)`; this required passthrough support
for the initial object pointer on the wrapping function pointer.
This attribute lets you disable (or explicitly enable) passing None to
an argument that otherwise would allow it by accepting
a value by raw pointer or shared_ptr.
This commit allows type_casters to allow their local values to be moved
away, rather than copied, when the type caster instance itself is an rvalue.
This only applies (automatically) to type casters using
PYBIND11_TYPE_CASTER; the generic type type casters don't own their own
pointer, and various value casters (e.g. std::string, std::pair,
arithmetic types) already cast to an rvalue (i.e. they return by value).
This updates various calling code to attempt to get a movable value
whenever the value is itself coming from a type caster about to be
destroyed: for example, when constructing an std::pair or various stl.h
containers. For types that don't support value moving, the cast_op
falls back to an lvalue cast.
There wasn't an obvious place to add the tests, so I added them to
test_copy_move_policies, but also renamed it to drop the _policies as it
now tests more than just policies.
Using a dynamic_cast instead of a static_cast is needed to safely cast
from a base to a derived type. The previous static_pointer_cast isn't
safe, however, when downcasting (and fails to compile when downcasting
with virtual inheritance).
Switching this to always use a dynamic_pointer_cast shouldn't incur any
additional overhead when a static_pointer_cast is safe (i.e. when
upcasting, or self-casting): compilers don't need RTTI checks in those
cases.
The Python method for /= was set as `__idiv__`, which should be
`__itruediv__` under Python 3.
This wasn't totally broken in that without it defined, Python constructs
a new object by calling __truediv__. The operator tests, however,
didn't actually test the /= operator: when I added it, I saw an extra
construction, leading to the problem. This commit also includes tests
for the previously untested *= operator, and adds some element-wise
vector multiplication and division operators.
Currently, `py::int_(1).cast<variant<double, int>>()` fills the `double`
slot of the variant. This commit switches the loader to a 2-pass scheme
in order to correctly fill the `int` slot.
Many of our `is_none()` checks in type caster loading return true, but
this should really be considered a deferral so that, for example, an
overload with a `py::none` argument would win over one that takes
`py::none` as a null option.
This keeps None-accepting for the `!convert` pass only for std::optional
and void casters. (The `char` caster already deferred None; this just
extends that behaviour to other casters).