/* tests/test_smart_ptr.cpp -- binding classes with custom reference counting, implicit conversions between types Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #if defined(_MSC_VER) && _MSC_VER < 1910 # pragma warning(disable: 4702) // unreachable code in system header #endif #include "pybind11_tests.h" #include "object.h" // Make pybind aware of the ref-counted wrapper type (s): // ref is a wrapper for 'Object' which uses intrusive reference counting // It is always possible to construct a ref from an Object* pointer without // possible inconsistencies, hence the 'true' argument at the end. PYBIND11_DECLARE_HOLDER_TYPE(T, ref, true); // Make pybind11 aware of the non-standard getter member function namespace pybind11 { namespace detail { template struct holder_helper> { static const T *get(const ref &p) { return p.get_ptr(); } }; }} // The following is not required anymore for std::shared_ptr, but it should compile without error: PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr); // This is just a wrapper around unique_ptr, but with extra fields to deliberately bloat up the // holder size to trigger the non-simple-layout internal instance layout for single inheritance with // large holder type: template class huge_unique_ptr { std::unique_ptr ptr; uint64_t padding[10]; public: huge_unique_ptr(T *p) : ptr(p) {}; T *get() { return ptr.get(); } }; PYBIND11_DECLARE_HOLDER_TYPE(T, huge_unique_ptr); // Simple custom holder that works like unique_ptr template class custom_unique_ptr { std::unique_ptr impl; public: custom_unique_ptr(T* p) : impl(p) { } T* get() const { return impl.get(); } T* release_ptr() { return impl.release(); } }; PYBIND11_DECLARE_HOLDER_TYPE(T, custom_unique_ptr); TEST_SUBMODULE(smart_ptr, m) { // test_smart_ptr // Object implementation in `object.h` py::class_> obj(m, "Object"); obj.def("getRefCount", &Object::getRefCount); // Custom object with builtin reference counting (see 'object.h' for the implementation) class MyObject1 : public Object { public: MyObject1(int value) : value(value) { print_created(this, toString()); } std::string toString() const { return "MyObject1[" + std::to_string(value) + "]"; } protected: virtual ~MyObject1() { print_destroyed(this); } private: int value; }; py::class_>(m, "MyObject1", obj) .def(py::init()); py::implicitly_convertible(); m.def("make_object_1", []() -> Object * { return new MyObject1(1); }); m.def("make_object_2", []() -> ref { return new MyObject1(2); }); m.def("make_myobject1_1", []() -> MyObject1 * { return new MyObject1(4); }); m.def("make_myobject1_2", []() -> ref { return new MyObject1(5); }); m.def("print_object_1", [](const Object *obj) { py::print(obj->toString()); }); m.def("print_object_2", [](ref obj) { py::print(obj->toString()); }); m.def("print_object_3", [](const ref &obj) { py::print(obj->toString()); }); m.def("print_object_4", [](const ref *obj) { py::print((*obj)->toString()); }); m.def("print_myobject1_1", [](const MyObject1 *obj) { py::print(obj->toString()); }); m.def("print_myobject1_2", [](ref obj) { py::print(obj->toString()); }); m.def("print_myobject1_3", [](const ref &obj) { py::print(obj->toString()); }); m.def("print_myobject1_4", [](const ref *obj) { py::print((*obj)->toString()); }); // Expose constructor stats for the ref type m.def("cstats_ref", &ConstructorStats::get); // Object managed by a std::shared_ptr<> class MyObject2 { public: MyObject2(int value) : value(value) { print_created(this, toString()); } std::string toString() const { return "MyObject2[" + std::to_string(value) + "]"; } virtual ~MyObject2() { print_destroyed(this); } private: int value; }; py::class_>(m, "MyObject2") .def(py::init()); m.def("make_myobject2_1", []() { return new MyObject2(6); }); m.def("make_myobject2_2", []() { return std::make_shared(7); }); m.def("print_myobject2_1", [](const MyObject2 *obj) { py::print(obj->toString()); }); m.def("print_myobject2_2", [](std::shared_ptr obj) { py::print(obj->toString()); }); m.def("print_myobject2_3", [](const std::shared_ptr &obj) { py::print(obj->toString()); }); m.def("print_myobject2_4", [](const std::shared_ptr *obj) { py::print((*obj)->toString()); }); // Object managed by a std::shared_ptr<>, additionally derives from std::enable_shared_from_this<> class MyObject3 : public std::enable_shared_from_this { public: MyObject3(int value) : value(value) { print_created(this, toString()); } std::string toString() const { return "MyObject3[" + std::to_string(value) + "]"; } virtual ~MyObject3() { print_destroyed(this); } private: int value; }; py::class_>(m, "MyObject3") .def(py::init()); m.def("make_myobject3_1", []() { return new MyObject3(8); }); m.def("make_myobject3_2", []() { return std::make_shared(9); }); m.def("print_myobject3_1", [](const MyObject3 *obj) { py::print(obj->toString()); }); m.def("print_myobject3_2", [](std::shared_ptr obj) { py::print(obj->toString()); }); m.def("print_myobject3_3", [](const std::shared_ptr &obj) { py::print(obj->toString()); }); m.def("print_myobject3_4", [](const std::shared_ptr *obj) { py::print((*obj)->toString()); }); // test_smart_ptr_refcounting m.def("test_object1_refcounting", []() { ref o = new MyObject1(0); bool good = o->getRefCount() == 1; py::object o2 = py::cast(o, py::return_value_policy::reference); // always request (partial) ownership for objects with intrusive // reference counting even when using the 'reference' RVP good &= o->getRefCount() == 2; return good; }); // test_unique_nodelete // Object with a private destructor class MyObject4 { public: MyObject4(int value) : value{value} { print_created(this); } int value; private: ~MyObject4() { print_destroyed(this); } }; py::class_>(m, "MyObject4") .def(py::init()) .def_readwrite("value", &MyObject4::value); // test_large_holder class MyObject5 { // managed by huge_unique_ptr public: MyObject5(int value) : value{value} { print_created(this); } ~MyObject5() { print_destroyed(this); } int value; }; py::class_>(m, "MyObject5") .def(py::init()) .def_readwrite("value", &MyObject5::value); // test_shared_ptr_and_references struct SharedPtrRef { struct A { A() { print_created(this); } A(const A &) { print_copy_created(this); } A(A &&) { print_move_created(this); } ~A() { print_destroyed(this); } }; A value = {}; std::shared_ptr shared = std::make_shared(); }; using A = SharedPtrRef::A; py::class_>(m, "A"); py::class_(m, "SharedPtrRef") .def(py::init<>()) .def_readonly("ref", &SharedPtrRef::value) .def_property_readonly("copy", [](const SharedPtrRef &s) { return s.value; }, py::return_value_policy::copy) .def_readonly("holder_ref", &SharedPtrRef::shared) .def_property_readonly("holder_copy", [](const SharedPtrRef &s) { return s.shared; }, py::return_value_policy::copy) .def("set_ref", [](SharedPtrRef &, const A &) { return true; }) .def("set_holder", [](SharedPtrRef &, std::shared_ptr) { return true; }); // test_shared_ptr_from_this_and_references struct SharedFromThisRef { struct B : std::enable_shared_from_this { B() { print_created(this); } B(const B &) : std::enable_shared_from_this() { print_copy_created(this); } B(B &&) : std::enable_shared_from_this() { print_move_created(this); } ~B() { print_destroyed(this); } }; B value = {}; std::shared_ptr shared = std::make_shared(); }; using B = SharedFromThisRef::B; py::class_>(m, "B"); py::class_(m, "SharedFromThisRef") .def(py::init<>()) .def_readonly("bad_wp", &SharedFromThisRef::value) .def_property_readonly("ref", [](const SharedFromThisRef &s) -> const B & { return *s.shared; }) .def_property_readonly("copy", [](const SharedFromThisRef &s) { return s.value; }, py::return_value_policy::copy) .def_readonly("holder_ref", &SharedFromThisRef::shared) .def_property_readonly("holder_copy", [](const SharedFromThisRef &s) { return s.shared; }, py::return_value_policy::copy) .def("set_ref", [](SharedFromThisRef &, const B &) { return true; }) .def("set_holder", [](SharedFromThisRef &, std::shared_ptr) { return true; }); // Issue #865: shared_from_this doesn't work with virtual inheritance struct SharedFromThisVBase : std::enable_shared_from_this { virtual ~SharedFromThisVBase() = default; }; struct SharedFromThisVirt : virtual SharedFromThisVBase {}; static std::shared_ptr sft(new SharedFromThisVirt()); py::class_>(m, "SharedFromThisVirt") .def_static("get", []() { return sft.get(); }); // test_move_only_holder struct C { C() { print_created(this); } ~C() { print_destroyed(this); } }; py::class_>(m, "TypeWithMoveOnlyHolder") .def_static("make", []() { return custom_unique_ptr(new C); }); // test_smart_ptr_from_default struct HeldByDefaultHolder { }; py::class_(m, "HeldByDefaultHolder") .def(py::init<>()) .def_static("load_shared_ptr", [](std::shared_ptr) {}); // test_shared_ptr_gc // #187: issue involving std::shared_ptr<> return value policy & garbage collection struct ElementBase { virtual void foo() { } /* Force creation of virtual table */ }; py::class_>(m, "ElementBase"); struct ElementA : ElementBase { ElementA(int v) : v(v) { } int value() { return v; } int v; }; py::class_>(m, "ElementA") .def(py::init()) .def("value", &ElementA::value); struct ElementList { void add(std::shared_ptr e) { l.push_back(e); } std::vector> l; }; py::class_>(m, "ElementList") .def(py::init<>()) .def("add", &ElementList::add) .def("get", [](ElementList &el) { py::list list; for (auto &e : el.l) list.append(py::cast(e)); return list; }); }