/* tests/test_virtual_functions.cpp -- overriding virtual functions from Python Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" #include /* This is an example class that we'll want to be able to extend from Python */ class ExampleVirt { public: ExampleVirt(int state) : state(state) { print_created(this, state); } ExampleVirt(const ExampleVirt &e) : state(e.state) { print_copy_created(this); } ExampleVirt(ExampleVirt &&e) : state(e.state) { print_move_created(this); e.state = 0; } ~ExampleVirt() { print_destroyed(this); } virtual int run(int value) { std::cout << "Original implementation of ExampleVirt::run(state=" << state << ", value=" << value << ")" << std::endl; return state + value; } virtual bool run_bool() = 0; virtual void pure_virtual() = 0; private: int state; }; /* This is a wrapper class that must be generated */ class PyExampleVirt : public ExampleVirt { public: using ExampleVirt::ExampleVirt; /* Inherit constructors */ virtual int run(int value) { /* Generate wrapping code that enables native function overloading */ PYBIND11_OVERLOAD( int, /* Return type */ ExampleVirt, /* Parent class */ run, /* Name of function */ value /* Argument(s) */ ); } virtual bool run_bool() { PYBIND11_OVERLOAD_PURE( bool, /* Return type */ ExampleVirt, /* Parent class */ run_bool, /* Name of function */ /* This function has no arguments. The trailing comma in the previous line is needed for some compilers */ ); } virtual void pure_virtual() { PYBIND11_OVERLOAD_PURE( void, /* Return type */ ExampleVirt, /* Parent class */ pure_virtual, /* Name of function */ /* This function has no arguments. The trailing comma in the previous line is needed for some compilers */ ); } }; class NonCopyable { public: NonCopyable(int a, int b) : value{new int(a*b)} { print_created(this, a, b); } NonCopyable(NonCopyable &&o) { value = std::move(o.value); print_move_created(this); } NonCopyable(const NonCopyable &) = delete; NonCopyable() = delete; void operator=(const NonCopyable &) = delete; void operator=(NonCopyable &&) = delete; std::string get_value() const { if (value) return std::to_string(*value); else return "(null)"; } ~NonCopyable() { print_destroyed(this); } private: std::unique_ptr value; }; // This is like the above, but is both copy and movable. In effect this means it should get moved // when it is not referenced elsewhere, but copied if it is still referenced. class Movable { public: Movable(int a, int b) : value{a+b} { print_created(this, a, b); } Movable(const Movable &m) { value = m.value; print_copy_created(this); } Movable(Movable &&m) { value = std::move(m.value); print_move_created(this); } std::string get_value() const { return std::to_string(value); } ~Movable() { print_destroyed(this); } private: int value; }; class NCVirt { public: virtual NonCopyable get_noncopyable(int a, int b) { return NonCopyable(a, b); } virtual Movable get_movable(int a, int b) = 0; std::string print_nc(int a, int b) { return get_noncopyable(a, b).get_value(); } std::string print_movable(int a, int b) { return get_movable(a, b).get_value(); } }; class NCVirtTrampoline : public NCVirt { virtual NonCopyable get_noncopyable(int a, int b) { PYBIND11_OVERLOAD(NonCopyable, NCVirt, get_noncopyable, a, b); } virtual Movable get_movable(int a, int b) { PYBIND11_OVERLOAD_PURE(Movable, NCVirt, get_movable, a, b); } }; int runExampleVirt(ExampleVirt *ex, int value) { return ex->run(value); } bool runExampleVirtBool(ExampleVirt* ex) { return ex->run_bool(); } void runExampleVirtVirtual(ExampleVirt *ex) { ex->pure_virtual(); } // Inheriting virtual methods. We do two versions here: the repeat-everything version and the // templated trampoline versions mentioned in docs/advanced.rst. // // These base classes are exactly the same, but we technically need distinct // classes for this example code because we need to be able to bind them // properly (pybind11, sensibly, doesn't allow us to bind the same C++ class to // multiple python classes). class A_Repeat { #define A_METHODS \ public: \ virtual int unlucky_number() = 0; \ virtual std::string say_something(unsigned times) { \ std::string s = ""; \ for (unsigned i = 0; i < times; ++i) \ s += "hi"; \ return s; \ } A_METHODS }; class B_Repeat : public A_Repeat { #define B_METHODS \ public: \ int unlucky_number() override { return 13; } \ std::string say_something(unsigned times) override { \ return "B says hi " + std::to_string(times) + " times"; \ } \ virtual double lucky_number() { return 7.0; } B_METHODS }; class C_Repeat : public B_Repeat { #define C_METHODS \ public: \ int unlucky_number() override { return 4444; } \ double lucky_number() override { return 888; } C_METHODS }; class D_Repeat : public C_Repeat { #define D_METHODS // Nothing overridden. D_METHODS }; // Base classes for templated inheritance trampolines. Identical to the repeat-everything version: class A_Tpl { A_METHODS }; class B_Tpl : public A_Tpl { B_METHODS }; class C_Tpl : public B_Tpl { C_METHODS }; class D_Tpl : public C_Tpl { D_METHODS }; // Inheritance approach 1: each trampoline gets every virtual method (11 in total) class PyA_Repeat : public A_Repeat { public: using A_Repeat::A_Repeat; int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, A_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, A_Repeat, say_something, times); } }; class PyB_Repeat : public B_Repeat { public: using B_Repeat::B_Repeat; int unlucky_number() override { PYBIND11_OVERLOAD(int, B_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, B_Repeat, say_something, times); } double lucky_number() override { PYBIND11_OVERLOAD(double, B_Repeat, lucky_number, ); } }; class PyC_Repeat : public C_Repeat { public: using C_Repeat::C_Repeat; int unlucky_number() override { PYBIND11_OVERLOAD(int, C_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, C_Repeat, say_something, times); } double lucky_number() override { PYBIND11_OVERLOAD(double, C_Repeat, lucky_number, ); } }; class PyD_Repeat : public D_Repeat { public: using D_Repeat::D_Repeat; int unlucky_number() override { PYBIND11_OVERLOAD(int, D_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, D_Repeat, say_something, times); } double lucky_number() override { PYBIND11_OVERLOAD(double, D_Repeat, lucky_number, ); } }; // Inheritance approach 2: templated trampoline classes. // // Advantages: // - we have only 2 (template) class and 4 method declarations (one per virtual method, plus one for // any override of a pure virtual method), versus 4 classes and 6 methods (MI) or 4 classes and 11 // methods (repeat). // - Compared to MI, we also don't have to change the non-trampoline inheritance to virtual, and can // properly inherit constructors. // // Disadvantage: // - the compiler must still generate and compile 14 different methods (more, even, than the 11 // required for the repeat approach) instead of the 6 required for MI. (If there was no pure // method (or no pure method override), the number would drop down to the same 11 as the repeat // approach). template class PyA_Tpl : public Base { public: using Base::Base; // Inherit constructors int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, Base, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, Base, say_something, times); } }; template class PyB_Tpl : public PyA_Tpl { public: using PyA_Tpl::PyA_Tpl; // Inherit constructors (via PyA_Tpl's inherited constructors) int unlucky_number() override { PYBIND11_OVERLOAD(int, Base, unlucky_number, ); } double lucky_number() override { PYBIND11_OVERLOAD(double, Base, lucky_number, ); } }; // Since C_Tpl and D_Tpl don't declare any new virtual methods, we don't actually need these (we can // use PyB_Tpl and PyB_Tpl for the trampoline classes instead): /* template class PyC_Tpl : public PyB_Tpl { public: using PyB_Tpl::PyB_Tpl; }; template class PyD_Tpl : public PyC_Tpl { public: using PyC_Tpl::PyC_Tpl; }; */ void initialize_inherited_virtuals(py::module &m) { // Method 1: repeat py::class_, PyA_Repeat>(m, "A_Repeat") .def(py::init<>()) .def("unlucky_number", &A_Repeat::unlucky_number) .def("say_something", &A_Repeat::say_something); py::class_, PyB_Repeat>(m, "B_Repeat", py::base()) .def(py::init<>()) .def("lucky_number", &B_Repeat::lucky_number); py::class_, PyC_Repeat>(m, "C_Repeat", py::base()) .def(py::init<>()); py::class_, PyD_Repeat>(m, "D_Repeat", py::base()) .def(py::init<>()); // Method 2: Templated trampolines py::class_, PyA_Tpl<>>(m, "A_Tpl") .def(py::init<>()) .def("unlucky_number", &A_Tpl::unlucky_number) .def("say_something", &A_Tpl::say_something); py::class_, PyB_Tpl<>>(m, "B_Tpl", py::base()) .def(py::init<>()) .def("lucky_number", &B_Tpl::lucky_number); py::class_, PyB_Tpl>(m, "C_Tpl", py::base()) .def(py::init<>()); py::class_, PyB_Tpl>(m, "D_Tpl", py::base()) .def(py::init<>()); }; void init_ex_virtual_functions(py::module &m) { /* Important: indicate the trampoline class PyExampleVirt using the third argument to py::class_. The second argument with the unique pointer is simply the default holder type used by pybind11. */ py::class_, PyExampleVirt>(m, "ExampleVirt") .def(py::init()) /* Reference original class in function definitions */ .def("run", &ExampleVirt::run) .def("run_bool", &ExampleVirt::run_bool) .def("pure_virtual", &ExampleVirt::pure_virtual); py::class_(m, "NonCopyable") .def(py::init()) ; py::class_(m, "Movable") .def(py::init()) ; py::class_, NCVirtTrampoline>(m, "NCVirt") .def(py::init<>()) .def("get_noncopyable", &NCVirt::get_noncopyable) .def("get_movable", &NCVirt::get_movable) .def("print_nc", &NCVirt::print_nc) .def("print_movable", &NCVirt::print_movable) ; m.def("runExampleVirt", &runExampleVirt); m.def("runExampleVirtBool", &runExampleVirtBool); m.def("runExampleVirtVirtual", &runExampleVirtVirtual); m.def("cstats_debug", &ConstructorStats::get); initialize_inherited_virtuals(m); }