.. _basics: First steps ########### This sections demonstrates the basic features of pybind11. Before getting started, make sure that development environment is set up to compile the included set of test cases. Compiling the test cases ======================== Linux/MacOS ----------- On Linux you'll need to install the **python-dev** or **python3-dev** packages as well as **cmake**. On Mac OS, the included python version works out of the box, but **cmake** must still be installed. After installing the prerequisites, run .. code-block:: bash mkdir build cd build cmake .. make check -j 4 The last line will both compile and run the tests. Windows ------- On Windows, only **Visual Studio 2015** and newer are supported since pybind11 relies on various C++11 language features that break older versions of Visual Studio. To compile and run the tests: .. code-block:: batch mkdir build cd build cmake .. cmake --build . --config Release --target check This will create a Visual Studio project, compile and run the target, all from the command line. .. Note:: If all tests fail, make sure that the Python binary and the testcases are compiled for the same processor type and bitness (i.e. either **i386** or **x86_64**). You can specify **x86_64** as the target architecture for the generated Visual Studio project using ``cmake -A x64 ..``. .. seealso:: Advanced users who are already familiar with Boost.Python may want to skip the tutorial and look at the test cases in the :file:`tests` directory, which exercise all features of pybind11. Header and namespace conventions ================================ For brevity, all code examples assume that the following two lines are present: .. code-block:: cpp #include namespace py = pybind11; Some features may require additional headers, but those will be specified as needed. Creating bindings for a simple function ======================================= Let's start by creating Python bindings for an extremely simple function, which adds two numbers and returns their result: .. code-block:: cpp int add(int i, int j) { return i + j; } For simplicity [#f1]_, we'll put both this function and the binding code into a file named :file:`example.cpp` with the following contents: .. code-block:: cpp #include int add(int i, int j) { return i + j; } PYBIND11_MODULE(example, m) { m.doc() = "pybind11 example plugin"; // optional module docstring m.def("add", &add, "A function which adds two numbers"); } .. [#f1] In practice, implementation and binding code will generally be located in separate files. The :func:`PYBIND11_MODULE` macro creates a function that will be called when an ``import`` statement is issued from within Python. The module name (``example``) is given as the fist macro argument (it should not be in quotes). The second argument (``m``) defines a variable of type :class:`py::module ` which is the main interface for creating bindings. The method :func:`module::def` generates binding code that exposes the ``add()`` function to Python. .. note:: Notice how little code was needed to expose our function to Python: all details regarding the function's parameters and return value were automatically inferred using template metaprogramming. This overall approach and the used syntax are borrowed from Boost.Python, though the underlying implementation is very different. pybind11 is a header-only-library, hence it is not necessary to link against any special libraries (other than Python itself). On Windows, use the CMake build file discussed in section :ref:`cmake`. On Linux and Mac OS, the above example can be compiled using the following command .. code-block:: bash $ c++ -O3 -shared -std=c++11 -I /include `python-config --cflags --ldflags` example.cpp -o example.so In general, it is advisable to include several additional build parameters that can considerably reduce the size of the created binary. Refer to section :ref:`cmake` for a detailed example of a suitable cross-platform CMake-based build system. Assuming that the created file :file:`example.so` (:file:`example.pyd` on Windows) is located in the current directory, the following interactive Python session shows how to load and execute the example. .. code-block:: pycon $ python Python 2.7.10 (default, Aug 22 2015, 20:33:39) [GCC 4.2.1 Compatible Apple LLVM 7.0.0 (clang-700.0.59.1)] on darwin Type "help", "copyright", "credits" or "license" for more information. >>> import example >>> example.add(1, 2) 3L >>> .. _keyword_args: Keyword arguments ================= With a simple modification code, it is possible to inform Python about the names of the arguments ("i" and "j" in this case). .. code-block:: cpp m.def("add", &add, "A function which adds two numbers", py::arg("i"), py::arg("j")); :class:`arg` is one of several special tag classes which can be used to pass metadata into :func:`module::def`. With this modified binding code, we can now call the function using keyword arguments, which is a more readable alternative particularly for functions taking many parameters: .. code-block:: pycon >>> import example >>> example.add(i=1, j=2) 3L The keyword names also appear in the function signatures within the documentation. .. code-block:: pycon >>> help(example) .... FUNCTIONS add(...) Signature : (i: int, j: int) -> int A function which adds two numbers A shorter notation for named arguments is also available: .. code-block:: cpp // regular notation m.def("add1", &add, py::arg("i"), py::arg("j")); // shorthand using namespace pybind11::literals; m.def("add2", &add, "i"_a, "j"_a); The :var:`_a` suffix forms a C++11 literal which is equivalent to :class:`arg`. Note that the literal operator must first be made visible with the directive ``using namespace pybind11::literals``. This does not bring in anything else from the ``pybind11`` namespace except for literals. .. _default_args: Default arguments ================= Suppose now that the function to be bound has default arguments, e.g.: .. code-block:: cpp int add(int i = 1, int j = 2) { return i + j; } Unfortunately, pybind11 cannot automatically extract these parameters, since they are not part of the function's type information. However, they are simple to specify using an extension of :class:`arg`: .. code-block:: cpp m.def("add", &add, "A function which adds two numbers", py::arg("i") = 1, py::arg("j") = 2); The default values also appear within the documentation. .. code-block:: pycon >>> help(example) .... FUNCTIONS add(...) Signature : (i: int = 1, j: int = 2) -> int A function which adds two numbers The shorthand notation is also available for default arguments: .. code-block:: cpp // regular notation m.def("add1", &add, py::arg("i") = 1, py::arg("j") = 2); // shorthand m.def("add2", &add, "i"_a=1, "j"_a=2); Exporting variables =================== To expose a value from C++, use the ``attr`` function to register it in a module as shown below. Built-in types and general objects (more on that later) are automatically converted when assigned as attributes, and can be explicitly converted using the function ``py::cast``. .. code-block:: cpp PYBIND11_MODULE(example, m) { m.attr("the_answer") = 42; py::object world = py::cast("World"); m.attr("what") = world; } These are then accessible from Python: .. code-block:: pycon >>> import example >>> example.the_answer 42 >>> example.what 'World' .. _supported_types: Supported data types ==================== A large number of data types are supported out of the box and can be used seamlessly as functions arguments, return values or with ``py::cast`` in general. For a full overview, see the :doc:`advanced/cast/index` section.