/* tests/test_class.cpp -- test py::class_ definitions and basic functionality Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #if defined(__INTEL_COMPILER) && __cplusplus >= 201703L // Intel compiler requires a separate header file to support aligned new operators // and does not set the __cpp_aligned_new feature macro. // This header needs to be included before pybind11. # include #endif #include #include "constructor_stats.h" #include "local_bindings.h" #include "pybind11_tests.h" #include #if defined(_MSC_VER) # pragma warning(disable : 4324) // warning C4324: structure was padded due to alignment specifier #endif // test_brace_initialization struct NoBraceInitialization { explicit NoBraceInitialization(std::vector v) : vec{std::move(v)} {} template NoBraceInitialization(std::initializer_list l) : vec(l) {} std::vector vec; }; TEST_SUBMODULE(class_, m) { // test_instance struct NoConstructor { NoConstructor() = default; NoConstructor(const NoConstructor &) = default; NoConstructor(NoConstructor &&) = default; static NoConstructor *new_instance() { auto *ptr = new NoConstructor(); print_created(ptr, "via new_instance"); return ptr; } ~NoConstructor() { print_destroyed(this); } }; struct NoConstructorNew { NoConstructorNew() = default; NoConstructorNew(const NoConstructorNew &) = default; NoConstructorNew(NoConstructorNew &&) = default; static NoConstructorNew *new_instance() { auto *ptr = new NoConstructorNew(); print_created(ptr, "via new_instance"); return ptr; } ~NoConstructorNew() { print_destroyed(this); } }; py::class_(m, "NoConstructor") .def_static("new_instance", &NoConstructor::new_instance, "Return an instance"); py::class_(m, "NoConstructorNew") .def(py::init([](const NoConstructorNew &self) { return self; })) // Need a NOOP __init__ .def_static("__new__", [](const py::object &) { return NoConstructorNew::new_instance(); }); // test_inheritance class Pet { public: Pet(const std::string &name, const std::string &species) : m_name(name), m_species(species) {} std::string name() const { return m_name; } std::string species() const { return m_species; } private: std::string m_name; std::string m_species; }; class Dog : public Pet { public: explicit Dog(const std::string &name) : Pet(name, "dog") {} std::string bark() const { return "Woof!"; } }; class Rabbit : public Pet { public: explicit Rabbit(const std::string &name) : Pet(name, "parrot") {} }; class Hamster : public Pet { public: explicit Hamster(const std::string &name) : Pet(name, "rodent") {} }; class Chimera : public Pet { Chimera() : Pet("Kimmy", "chimera") {} }; py::class_ pet_class(m, "Pet"); pet_class.def(py::init()) .def("name", &Pet::name) .def("species", &Pet::species); /* One way of declaring a subclass relationship: reference parent's class_ object */ py::class_(m, "Dog", pet_class).def(py::init()); /* Another way of declaring a subclass relationship: reference parent's C++ type */ py::class_(m, "Rabbit").def(py::init()); /* And another: list parent in class template arguments */ py::class_(m, "Hamster").def(py::init()); /* Constructors are not inherited by default */ py::class_(m, "Chimera"); m.def("pet_name_species", [](const Pet &pet) { return pet.name() + " is a " + pet.species(); }); m.def("dog_bark", [](const Dog &dog) { return dog.bark(); }); // test_automatic_upcasting struct BaseClass { BaseClass() = default; BaseClass(const BaseClass &) = default; BaseClass(BaseClass &&) = default; virtual ~BaseClass() = default; }; struct DerivedClass1 : BaseClass {}; struct DerivedClass2 : BaseClass {}; py::class_(m, "BaseClass").def(py::init<>()); py::class_(m, "DerivedClass1").def(py::init<>()); py::class_(m, "DerivedClass2").def(py::init<>()); m.def("return_class_1", []() -> BaseClass * { return new DerivedClass1(); }); m.def("return_class_2", []() -> BaseClass * { return new DerivedClass2(); }); m.def("return_class_n", [](int n) -> BaseClass * { if (n == 1) { return new DerivedClass1(); } if (n == 2) { return new DerivedClass2(); } return new BaseClass(); }); m.def("return_none", []() -> BaseClass * { return nullptr; }); // test_isinstance m.def("check_instances", [](const py::list &l) { return py::make_tuple(py::isinstance(l[0]), py::isinstance(l[1]), py::isinstance(l[2]), py::isinstance(l[3]), py::isinstance(l[4]), py::isinstance(l[5]), py::isinstance(l[6])); }); struct Invalid {}; // test_type m.def("check_type", [](int category) { // Currently not supported (via a fail at compile time) // See https://github.com/pybind/pybind11/issues/2486 // if (category == 2) // return py::type::of(); if (category == 1) { return py::type::of(); } return py::type::of(); }); m.def("get_type_of", [](py::object ob) { return py::type::of(std::move(ob)); }); m.def("get_type_classic", [](py::handle h) { return h.get_type(); }); m.def("as_type", [](const py::object &ob) { return py::type(ob); }); // test_mismatched_holder struct MismatchBase1 {}; struct MismatchDerived1 : MismatchBase1 {}; struct MismatchBase2 {}; struct MismatchDerived2 : MismatchBase2 {}; m.def("mismatched_holder_1", []() { auto mod = py::module_::import("__main__"); py::class_>(mod, "MismatchBase1"); py::class_(mod, "MismatchDerived1"); }); m.def("mismatched_holder_2", []() { auto mod = py::module_::import("__main__"); py::class_(mod, "MismatchBase2"); py::class_, MismatchBase2>( mod, "MismatchDerived2"); }); // test_override_static // #511: problem with inheritance + overwritten def_static struct MyBase { static std::unique_ptr make() { return std::unique_ptr(new MyBase()); } }; struct MyDerived : MyBase { static std::unique_ptr make() { return std::unique_ptr(new MyDerived()); } }; py::class_(m, "MyBase").def_static("make", &MyBase::make); py::class_(m, "MyDerived") .def_static("make", &MyDerived::make) .def_static("make2", &MyDerived::make); // test_implicit_conversion_life_support struct ConvertibleFromUserType { int i; explicit ConvertibleFromUserType(UserType u) : i(u.value()) {} }; py::class_(m, "AcceptsUserType").def(py::init()); py::implicitly_convertible(); m.def("implicitly_convert_argument", [](const ConvertibleFromUserType &r) { return r.i; }); m.def("implicitly_convert_variable", [](const py::object &o) { // `o` is `UserType` and `r` is a reference to a temporary created by implicit // conversion. This is valid when called inside a bound function because the temp // object is attached to the same life support system as the arguments. const auto &r = o.cast(); return r.i; }); m.add_object("implicitly_convert_variable_fail", [&] { auto f = [](PyObject *, PyObject *args) -> PyObject * { auto o = py::reinterpret_borrow(args)[0]; try { // It should fail here because there is no life support. o.cast(); } catch (const py::cast_error &e) { return py::str(e.what()).release().ptr(); } return py::str().release().ptr(); }; auto *def = new PyMethodDef{"f", f, METH_VARARGS, nullptr}; py::capsule def_capsule(def, [](void *ptr) { delete reinterpret_cast(ptr); }); return py::reinterpret_steal( PyCFunction_NewEx(def, def_capsule.ptr(), m.ptr())); }()); // test_operator_new_delete struct HasOpNewDel { std::uint64_t i; static void *operator new(size_t s) { py::print("A new", s); return ::operator new(s); } static void *operator new(size_t s, void *ptr) { py::print("A placement-new", s); return ptr; } static void operator delete(void *p) { py::print("A delete"); return ::operator delete(p); } }; struct HasOpNewDelSize { std::uint32_t i; static void *operator new(size_t s) { py::print("B new", s); return ::operator new(s); } static void *operator new(size_t s, void *ptr) { py::print("B placement-new", s); return ptr; } static void operator delete(void *p, size_t s) { py::print("B delete", s); return ::operator delete(p); } }; struct AliasedHasOpNewDelSize { std::uint64_t i; static void *operator new(size_t s) { py::print("C new", s); return ::operator new(s); } static void *operator new(size_t s, void *ptr) { py::print("C placement-new", s); return ptr; } static void operator delete(void *p, size_t s) { py::print("C delete", s); return ::operator delete(p); } virtual ~AliasedHasOpNewDelSize() = default; AliasedHasOpNewDelSize() = default; AliasedHasOpNewDelSize(const AliasedHasOpNewDelSize &) = delete; }; struct PyAliasedHasOpNewDelSize : AliasedHasOpNewDelSize { PyAliasedHasOpNewDelSize() = default; explicit PyAliasedHasOpNewDelSize(int) {} std::uint64_t j; }; struct HasOpNewDelBoth { std::uint32_t i[8]; static void *operator new(size_t s) { py::print("D new", s); return ::operator new(s); } static void *operator new(size_t s, void *ptr) { py::print("D placement-new", s); return ptr; } static void operator delete(void *p) { py::print("D delete"); return ::operator delete(p); } static void operator delete(void *p, size_t s) { py::print("D wrong delete", s); return ::operator delete(p); } }; py::class_(m, "HasOpNewDel").def(py::init<>()); py::class_(m, "HasOpNewDelSize").def(py::init<>()); py::class_(m, "HasOpNewDelBoth").def(py::init<>()); py::class_ aliased(m, "AliasedHasOpNewDelSize"); aliased.def(py::init<>()); aliased.attr("size_noalias") = py::int_(sizeof(AliasedHasOpNewDelSize)); aliased.attr("size_alias") = py::int_(sizeof(PyAliasedHasOpNewDelSize)); // This test is actually part of test_local_bindings (test_duplicate_local), but we need a // definition in a different compilation unit within the same module: bind_local(m, "LocalExternal", py::module_local()); // test_bind_protected_functions class ProtectedA { protected: int foo() const { return value; } private: int value = 42; }; class PublicistA : public ProtectedA { public: using ProtectedA::foo; }; py::class_(m, "ProtectedA") .def(py::init<>()) .def("foo", &PublicistA::foo); class ProtectedB { public: virtual ~ProtectedB() = default; ProtectedB() = default; ProtectedB(const ProtectedB &) = delete; protected: virtual int foo() const { return value; } private: int value = 42; }; class TrampolineB : public ProtectedB { public: int foo() const override { PYBIND11_OVERRIDE(int, ProtectedB, foo, ); } }; class PublicistB : public ProtectedB { public: // [workaround(intel)] = default does not work here // Removing or defaulting this destructor results in linking errors with the Intel compiler // (in Debug builds only, tested with icpc (ICC) 2021.1 Beta 20200827) ~PublicistB() override{}; // NOLINT(modernize-use-equals-default) using ProtectedB::foo; }; py::class_(m, "ProtectedB") .def(py::init<>()) .def("foo", &PublicistB::foo); // test_brace_initialization struct BraceInitialization { int field1; std::string field2; }; py::class_(m, "BraceInitialization") .def(py::init()) .def_readwrite("field1", &BraceInitialization::field1) .def_readwrite("field2", &BraceInitialization::field2); // We *don't* want to construct using braces when the given constructor argument maps to a // constructor, because brace initialization could go to the wrong place (in particular when // there is also an `initializer_list`-accept constructor): py::class_(m, "NoBraceInitialization") .def(py::init>()) .def_readonly("vec", &NoBraceInitialization::vec); // test_reentrant_implicit_conversion_failure // #1035: issue with runaway reentrant implicit conversion struct BogusImplicitConversion { BogusImplicitConversion(const BogusImplicitConversion &) = default; }; py::class_(m, "BogusImplicitConversion") .def(py::init()); py::implicitly_convertible(); // test_qualname // #1166: nested class docstring doesn't show nested name // Also related: tests that __qualname__ is set properly struct NestBase {}; struct Nested {}; py::class_ base(m, "NestBase"); base.def(py::init<>()); py::class_(base, "Nested") .def(py::init<>()) .def("fn", [](Nested &, int, NestBase &, Nested &) {}) .def( "fa", [](Nested &, int, NestBase &, Nested &) {}, "a"_a, "b"_a, "c"_a); base.def("g", [](NestBase &, Nested &) {}); base.def("h", []() { return NestBase(); }); // test_error_after_conversion // The second-pass path through dispatcher() previously didn't // remember which overload was used, and would crash trying to // generate a useful error message struct NotRegistered {}; struct StringWrapper { std::string str; }; m.def("test_error_after_conversions", [](int) {}); m.def("test_error_after_conversions", [](const StringWrapper &) -> NotRegistered { return {}; }); py::class_(m, "StringWrapper").def(py::init()); py::implicitly_convertible(); #if defined(PYBIND11_CPP17) struct alignas(1024) Aligned { std::uintptr_t ptr() const { return (uintptr_t) this; } }; py::class_(m, "Aligned").def(py::init<>()).def("ptr", &Aligned::ptr); #endif // test_final struct IsFinal final {}; py::class_(m, "IsFinal", py::is_final()); // test_non_final_final struct IsNonFinalFinal {}; py::class_(m, "IsNonFinalFinal", py::is_final()); // test_exception_rvalue_abort struct PyPrintDestructor { PyPrintDestructor() = default; ~PyPrintDestructor() { py::print("Print from destructor"); } void throw_something() { throw std::runtime_error("error"); } }; py::class_(m, "PyPrintDestructor") .def(py::init<>()) .def("throw_something", &PyPrintDestructor::throw_something); // test_multiple_instances_with_same_pointer struct SamePointer {}; static SamePointer samePointer; py::class_>(m, "SamePointer") .def(py::init([]() { return &samePointer; })); struct Empty {}; py::class_(m, "Empty").def(py::init<>()); // test_base_and_derived_nested_scope struct BaseWithNested { struct Nested {}; }; struct DerivedWithNested : BaseWithNested { struct Nested {}; }; py::class_ baseWithNested_class(m, "BaseWithNested"); py::class_ derivedWithNested_class(m, "DerivedWithNested"); py::class_(baseWithNested_class, "Nested") .def_static("get_name", []() { return "BaseWithNested::Nested"; }); py::class_(derivedWithNested_class, "Nested") .def_static("get_name", []() { return "DerivedWithNested::Nested"; }); // test_register_duplicate_class struct Duplicate {}; struct OtherDuplicate {}; struct DuplicateNested {}; struct OtherDuplicateNested {}; m.def("register_duplicate_class_name", [](const py::module_ &m) { py::class_(m, "Duplicate"); py::class_(m, "Duplicate"); }); m.def("register_duplicate_class_type", [](const py::module_ &m) { py::class_(m, "OtherDuplicate"); py::class_(m, "YetAnotherDuplicate"); }); m.def("register_duplicate_nested_class_name", [](const py::object >) { py::class_(gt, "DuplicateNested"); py::class_(gt, "DuplicateNested"); }); m.def("register_duplicate_nested_class_type", [](const py::object >) { py::class_(gt, "OtherDuplicateNested"); py::class_(gt, "YetAnotherDuplicateNested"); }); } template class BreaksBase { public: virtual ~BreaksBase() = default; BreaksBase() = default; BreaksBase(const BreaksBase &) = delete; }; template class BreaksTramp : public BreaksBase {}; // These should all compile just fine: using DoesntBreak1 = py::class_, std::unique_ptr>, BreaksTramp<1>>; using DoesntBreak2 = py::class_, BreaksTramp<2>, std::unique_ptr>>; using DoesntBreak3 = py::class_, std::unique_ptr>>; using DoesntBreak4 = py::class_, BreaksTramp<4>>; using DoesntBreak5 = py::class_>; using DoesntBreak6 = py::class_, std::shared_ptr>, BreaksTramp<6>>; using DoesntBreak7 = py::class_, BreaksTramp<7>, std::shared_ptr>>; using DoesntBreak8 = py::class_, std::shared_ptr>>; #define CHECK_BASE(N) \ static_assert(std::is_same>::value, \ "DoesntBreak" #N " has wrong type!") CHECK_BASE(1); CHECK_BASE(2); CHECK_BASE(3); CHECK_BASE(4); CHECK_BASE(5); CHECK_BASE(6); CHECK_BASE(7); CHECK_BASE(8); #define CHECK_ALIAS(N) \ static_assert( \ DoesntBreak##N::has_alias \ && std::is_same>::value, \ "DoesntBreak" #N " has wrong type_alias!") #define CHECK_NOALIAS(N) \ static_assert(!DoesntBreak##N::has_alias \ && std::is_void::value, \ "DoesntBreak" #N " has type alias, but shouldn't!") CHECK_ALIAS(1); CHECK_ALIAS(2); CHECK_NOALIAS(3); CHECK_ALIAS(4); CHECK_NOALIAS(5); CHECK_ALIAS(6); CHECK_ALIAS(7); CHECK_NOALIAS(8); #define CHECK_HOLDER(N, TYPE) \ static_assert(std::is_same>>::value, \ "DoesntBreak" #N " has wrong holder_type!") CHECK_HOLDER(1, unique); CHECK_HOLDER(2, unique); CHECK_HOLDER(3, unique); CHECK_HOLDER(4, unique); CHECK_HOLDER(5, unique); CHECK_HOLDER(6, shared); CHECK_HOLDER(7, shared); CHECK_HOLDER(8, shared); // There's no nice way to test that these fail because they fail to compile; leave them here, // though, so that they can be manually tested by uncommenting them (and seeing that compilation // failures occurs). // We have to actually look into the type: the typedef alone isn't enough to instantiate the type: #define CHECK_BROKEN(N) \ static_assert(std::is_same>::value, \ "Breaks1 has wrong type!"); #ifdef PYBIND11_NEVER_DEFINED_EVER // Two holder classes: typedef py:: class_, std::unique_ptr>, std::unique_ptr>> Breaks1; CHECK_BROKEN(1); // Two aliases: typedef py::class_, BreaksTramp<-2>, BreaksTramp<-2>> Breaks2; CHECK_BROKEN(2); // Holder + 2 aliases typedef py:: class_, std::unique_ptr>, BreaksTramp<-3>, BreaksTramp<-3>> Breaks3; CHECK_BROKEN(3); // Alias + 2 holders typedef py::class_, std::unique_ptr>, BreaksTramp<-4>, std::shared_ptr>> Breaks4; CHECK_BROKEN(4); // Invalid option (not a subclass or holder) typedef py::class_, BreaksTramp<-4>> Breaks5; CHECK_BROKEN(5); // Invalid option: multiple inheritance not supported: template <> struct BreaksBase<-8> : BreaksBase<-6>, BreaksBase<-7> {}; typedef py::class_, BreaksBase<-6>, BreaksBase<-7>> Breaks8; CHECK_BROKEN(8); #endif