/* tests/test_stl.cpp -- STL type casters Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch> All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include <pybind11/stl.h> #include "constructor_stats.h" #include "pybind11_tests.h" #ifndef PYBIND11_HAS_FILESYSTEM_IS_OPTIONAL # define PYBIND11_HAS_FILESYSTEM_IS_OPTIONAL #endif #include <pybind11/stl/filesystem.h> #include <string> #include <vector> #if defined(PYBIND11_TEST_BOOST) # include <boost/optional.hpp> namespace pybind11 { namespace detail { template <typename T> struct type_caster<boost::optional<T>> : optional_caster<boost::optional<T>> {}; template <> struct type_caster<boost::none_t> : void_caster<boost::none_t> {}; } // namespace detail } // namespace pybind11 #endif // Test with `std::variant` in C++17 mode, or with `boost::variant` in C++11/14 #if defined(PYBIND11_HAS_VARIANT) using std::variant; #elif defined(PYBIND11_TEST_BOOST) # include <boost/variant.hpp> # define PYBIND11_HAS_VARIANT 1 using boost::variant; namespace pybind11 { namespace detail { template <typename... Ts> struct type_caster<boost::variant<Ts...>> : variant_caster<boost::variant<Ts...>> {}; template <> struct visit_helper<boost::variant> { template <typename... Args> static auto call(Args &&...args) -> decltype(boost::apply_visitor(args...)) { return boost::apply_visitor(args...); } }; } // namespace detail } // namespace pybind11 #endif PYBIND11_MAKE_OPAQUE(std::vector<std::string, std::allocator<std::string>>); /// Issue #528: templated constructor struct TplCtorClass { template <typename T> explicit TplCtorClass(const T &) {} bool operator==(const TplCtorClass &) const { return true; } }; namespace std { template <> struct hash<TplCtorClass> { size_t operator()(const TplCtorClass &) const { return 0; } }; } // namespace std template <template <typename> class OptionalImpl, typename T> struct OptionalHolder { // NOLINTNEXTLINE(modernize-use-equals-default): breaks GCC 4.8 OptionalHolder(){}; bool member_initialized() const { return member && member->initialized; } OptionalImpl<T> member = T{}; }; enum class EnumType { kSet = 42, kUnset = 85, }; // This is used to test that return-by-ref and return-by-copy policies are // handled properly for optional types. This is a regression test for a dangling // reference issue. The issue seemed to require the enum value type to // reproduce - it didn't seem to happen if the value type is just an integer. template <template <typename> class OptionalImpl> class OptionalProperties { public: using OptionalEnumValue = OptionalImpl<EnumType>; OptionalProperties() : value(EnumType::kSet) {} ~OptionalProperties() { // Reset value to detect use-after-destruction. // This is set to a specific value rather than nullopt to ensure that // the memory that contains the value gets re-written. value = EnumType::kUnset; } OptionalEnumValue &access_by_ref() { return value; } OptionalEnumValue access_by_copy() { return value; } private: OptionalEnumValue value; }; // This type mimics aspects of boost::optional from old versions of Boost, // which exposed a dangling reference bug in Pybind11. Recent versions of // boost::optional, as well as libstdc++'s std::optional, don't seem to be // affected by the same issue. This is meant to be a minimal implementation // required to reproduce the issue, not fully standard-compliant. // See issue #3330 for more details. template <typename T> class ReferenceSensitiveOptional { public: using value_type = T; ReferenceSensitiveOptional() = default; // NOLINTNEXTLINE(google-explicit-constructor) ReferenceSensitiveOptional(const T &value) : storage{value} {} // NOLINTNEXTLINE(google-explicit-constructor) ReferenceSensitiveOptional(T &&value) : storage{std::move(value)} {} ReferenceSensitiveOptional &operator=(const T &value) { storage = {value}; return *this; } ReferenceSensitiveOptional &operator=(T &&value) { storage = {std::move(value)}; return *this; } template <typename... Args> T &emplace(Args &&...args) { storage.clear(); storage.emplace_back(std::forward<Args>(args)...); return storage.back(); } const T &value() const noexcept { assert(!storage.empty()); return storage[0]; } const T &operator*() const noexcept { return value(); } const T *operator->() const noexcept { return &value(); } explicit operator bool() const noexcept { return !storage.empty(); } private: std::vector<T> storage; }; namespace pybind11 { namespace detail { template <typename T> struct type_caster<ReferenceSensitiveOptional<T>> : optional_caster<ReferenceSensitiveOptional<T>> {}; } // namespace detail } // namespace pybind11 TEST_SUBMODULE(stl, m) { // test_vector m.def("cast_vector", []() { return std::vector<int>{1}; }); m.def("load_vector", [](const std::vector<int> &v) { return v.at(0) == 1 && v.at(1) == 2; }); // `std::vector<bool>` is special because it returns proxy objects instead of references m.def("cast_bool_vector", []() { return std::vector<bool>{true, false}; }); m.def("load_bool_vector", [](const std::vector<bool> &v) { return v.at(0) == true && v.at(1) == false; }); // Unnumbered regression (caused by #936): pointers to stl containers aren't castable static std::vector<RValueCaster> lvv{2}; m.def("cast_ptr_vector", []() { return &lvv; }); // test_deque m.def("cast_deque", []() { return std::deque<int>{1}; }); m.def("load_deque", [](const std::deque<int> &v) { return v.at(0) == 1 && v.at(1) == 2; }); // test_array m.def("cast_array", []() { return std::array<int, 2>{{1, 2}}; }); m.def("load_array", [](const std::array<int, 2> &a) { return a[0] == 1 && a[1] == 2; }); // test_valarray m.def("cast_valarray", []() { return std::valarray<int>{1, 4, 9}; }); m.def("load_valarray", [](const std::valarray<int> &v) { return v.size() == 3 && v[0] == 1 && v[1] == 4 && v[2] == 9; }); // test_map m.def("cast_map", []() { return std::map<std::string, std::string>{{"key", "value"}}; }); m.def("load_map", [](const std::map<std::string, std::string> &map) { return map.at("key") == "value" && map.at("key2") == "value2"; }); // test_set m.def("cast_set", []() { return std::set<std::string>{"key1", "key2"}; }); m.def("load_set", [](const std::set<std::string> &set) { return (set.count("key1") != 0u) && (set.count("key2") != 0u) && (set.count("key3") != 0u); }); // test_recursive_casting m.def("cast_rv_vector", []() { return std::vector<RValueCaster>{2}; }); m.def("cast_rv_array", []() { return std::array<RValueCaster, 3>(); }); // NB: map and set keys are `const`, so while we technically do move them (as `const Type &&`), // casters don't typically do anything with that, which means they fall to the `const Type &` // caster. m.def("cast_rv_map", []() { return std::unordered_map<std::string, RValueCaster>{{"a", RValueCaster{}}}; }); m.def("cast_rv_nested", []() { std::vector<std::array<std::list<std::unordered_map<std::string, RValueCaster>>, 2>> v; v.emplace_back(); // add an array v.back()[0].emplace_back(); // add a map to the array v.back()[0].back().emplace("b", RValueCaster{}); v.back()[0].back().emplace("c", RValueCaster{}); v.back()[1].emplace_back(); // add a map to the array v.back()[1].back().emplace("a", RValueCaster{}); return v; }); static std::array<RValueCaster, 2> lva; static std::unordered_map<std::string, RValueCaster> lvm{{"a", RValueCaster{}}, {"b", RValueCaster{}}}; static std::unordered_map<std::string, std::vector<std::list<std::array<RValueCaster, 2>>>> lvn; lvn["a"].emplace_back(); // add a list lvn["a"].back().emplace_back(); // add an array lvn["a"].emplace_back(); // another list lvn["a"].back().emplace_back(); // add an array lvn["b"].emplace_back(); // add a list lvn["b"].back().emplace_back(); // add an array lvn["b"].back().emplace_back(); // add another array m.def("cast_lv_vector", []() -> const decltype(lvv) & { return lvv; }); m.def("cast_lv_array", []() -> const decltype(lva) & { return lva; }); m.def("cast_lv_map", []() -> const decltype(lvm) & { return lvm; }); m.def("cast_lv_nested", []() -> const decltype(lvn) & { return lvn; }); // #853: m.def("cast_unique_ptr_vector", []() { std::vector<std::unique_ptr<UserType>> v; v.emplace_back(new UserType{7}); v.emplace_back(new UserType{42}); return v; }); pybind11::enum_<EnumType>(m, "EnumType") .value("kSet", EnumType::kSet) .value("kUnset", EnumType::kUnset); // test_move_out_container struct MoveOutContainer { struct Value { int value; }; std::list<Value> move_list() const { return {{0}, {1}, {2}}; } }; py::class_<MoveOutContainer::Value>(m, "MoveOutContainerValue") .def_readonly("value", &MoveOutContainer::Value::value); py::class_<MoveOutContainer>(m, "MoveOutContainer") .def(py::init<>()) .def_property_readonly("move_list", &MoveOutContainer::move_list); // Class that can be move- and copy-constructed, but not assigned struct NoAssign { int value; explicit NoAssign(int value = 0) : value(value) {} NoAssign(const NoAssign &) = default; NoAssign(NoAssign &&) = default; NoAssign &operator=(const NoAssign &) = delete; NoAssign &operator=(NoAssign &&) = delete; }; py::class_<NoAssign>(m, "NoAssign", "Class with no C++ assignment operators") .def(py::init<>()) .def(py::init<int>()); struct MoveOutDetector { MoveOutDetector() = default; MoveOutDetector(const MoveOutDetector &) = default; MoveOutDetector(MoveOutDetector &&other) noexcept : initialized(other.initialized) { // steal underlying resource other.initialized = false; } bool initialized = true; }; py::class_<MoveOutDetector>(m, "MoveOutDetector", "Class with move tracking") .def(py::init<>()) .def_readonly("initialized", &MoveOutDetector::initialized); #ifdef PYBIND11_HAS_OPTIONAL // test_optional m.attr("has_optional") = true; using opt_int = std::optional<int>; using opt_no_assign = std::optional<NoAssign>; m.def("double_or_zero", [](const opt_int &x) -> int { return x.value_or(0) * 2; }); m.def("half_or_none", [](int x) -> opt_int { return x != 0 ? opt_int(x / 2) : opt_int(); }); m.def( "test_nullopt", [](opt_int x) { return x.value_or(42); }, py::arg_v("x", std::nullopt, "None")); m.def( "test_no_assign", [](const opt_no_assign &x) { return x ? x->value : 42; }, py::arg_v("x", std::nullopt, "None")); m.def("nodefer_none_optional", [](std::optional<int>) { return true; }); m.def("nodefer_none_optional", [](const py::none &) { return false; }); using opt_holder = OptionalHolder<std::optional, MoveOutDetector>; py::class_<opt_holder>(m, "OptionalHolder", "Class with optional member") .def(py::init<>()) .def_readonly("member", &opt_holder::member) .def("member_initialized", &opt_holder::member_initialized); using opt_props = OptionalProperties<std::optional>; pybind11::class_<opt_props>(m, "OptionalProperties") .def(pybind11::init<>()) .def_property_readonly("access_by_ref", &opt_props::access_by_ref) .def_property_readonly("access_by_copy", &opt_props::access_by_copy); #endif #ifdef PYBIND11_HAS_EXP_OPTIONAL // test_exp_optional m.attr("has_exp_optional") = true; using exp_opt_int = std::experimental::optional<int>; using exp_opt_no_assign = std::experimental::optional<NoAssign>; m.def("double_or_zero_exp", [](const exp_opt_int &x) -> int { return x.value_or(0) * 2; }); m.def("half_or_none_exp", [](int x) -> exp_opt_int { return x ? exp_opt_int(x / 2) : exp_opt_int(); }); m.def( "test_nullopt_exp", [](exp_opt_int x) { return x.value_or(42); }, py::arg_v("x", std::experimental::nullopt, "None")); m.def( "test_no_assign_exp", [](const exp_opt_no_assign &x) { return x ? x->value : 42; }, py::arg_v("x", std::experimental::nullopt, "None")); using opt_exp_holder = OptionalHolder<std::experimental::optional, MoveOutDetector>; py::class_<opt_exp_holder>(m, "OptionalExpHolder", "Class with optional member") .def(py::init<>()) .def_readonly("member", &opt_exp_holder::member) .def("member_initialized", &opt_exp_holder::member_initialized); using opt_exp_props = OptionalProperties<std::experimental::optional>; pybind11::class_<opt_exp_props>(m, "OptionalExpProperties") .def(pybind11::init<>()) .def_property_readonly("access_by_ref", &opt_exp_props::access_by_ref) .def_property_readonly("access_by_copy", &opt_exp_props::access_by_copy); #endif #if defined(PYBIND11_TEST_BOOST) // test_boost_optional m.attr("has_boost_optional") = true; using boost_opt_int = boost::optional<int>; using boost_opt_no_assign = boost::optional<NoAssign>; m.def("double_or_zero_boost", [](const boost_opt_int &x) -> int { return x.value_or(0) * 2; }); m.def("half_or_none_boost", [](int x) -> boost_opt_int { return x != 0 ? boost_opt_int(x / 2) : boost_opt_int(); }); m.def( "test_nullopt_boost", [](boost_opt_int x) { return x.value_or(42); }, py::arg_v("x", boost::none, "None")); m.def( "test_no_assign_boost", [](const boost_opt_no_assign &x) { return x ? x->value : 42; }, py::arg_v("x", boost::none, "None")); using opt_boost_holder = OptionalHolder<boost::optional, MoveOutDetector>; py::class_<opt_boost_holder>(m, "OptionalBoostHolder", "Class with optional member") .def(py::init<>()) .def_readonly("member", &opt_boost_holder::member) .def("member_initialized", &opt_boost_holder::member_initialized); using opt_boost_props = OptionalProperties<boost::optional>; pybind11::class_<opt_boost_props>(m, "OptionalBoostProperties") .def(pybind11::init<>()) .def_property_readonly("access_by_ref", &opt_boost_props::access_by_ref) .def_property_readonly("access_by_copy", &opt_boost_props::access_by_copy); #endif // test_refsensitive_optional using refsensitive_opt_int = ReferenceSensitiveOptional<int>; using refsensitive_opt_no_assign = ReferenceSensitiveOptional<NoAssign>; m.def("double_or_zero_refsensitive", [](const refsensitive_opt_int &x) -> int { return (x ? x.value() : 0) * 2; }); m.def("half_or_none_refsensitive", [](int x) -> refsensitive_opt_int { return x != 0 ? refsensitive_opt_int(x / 2) : refsensitive_opt_int(); }); m.def( "test_nullopt_refsensitive", // NOLINTNEXTLINE(performance-unnecessary-value-param) [](refsensitive_opt_int x) { return x ? x.value() : 42; }, py::arg_v("x", refsensitive_opt_int(), "None")); m.def( "test_no_assign_refsensitive", [](const refsensitive_opt_no_assign &x) { return x ? x->value : 42; }, py::arg_v("x", refsensitive_opt_no_assign(), "None")); using opt_refsensitive_holder = OptionalHolder<ReferenceSensitiveOptional, MoveOutDetector>; py::class_<opt_refsensitive_holder>( m, "OptionalRefSensitiveHolder", "Class with optional member") .def(py::init<>()) .def_readonly("member", &opt_refsensitive_holder::member) .def("member_initialized", &opt_refsensitive_holder::member_initialized); using opt_refsensitive_props = OptionalProperties<ReferenceSensitiveOptional>; pybind11::class_<opt_refsensitive_props>(m, "OptionalRefSensitiveProperties") .def(pybind11::init<>()) .def_property_readonly("access_by_ref", &opt_refsensitive_props::access_by_ref) .def_property_readonly("access_by_copy", &opt_refsensitive_props::access_by_copy); #ifdef PYBIND11_HAS_FILESYSTEM // test_fs_path m.attr("has_filesystem") = true; m.def("parent_path", [](const std::filesystem::path &p) { return p.parent_path(); }); #endif #ifdef PYBIND11_HAS_VARIANT static_assert(std::is_same<py::detail::variant_caster_visitor::result_type, py::handle>::value, "visitor::result_type is required by boost::variant in C++11 mode"); struct visitor { using result_type = const char *; result_type operator()(int) { return "int"; } result_type operator()(const std::string &) { return "std::string"; } result_type operator()(double) { return "double"; } result_type operator()(std::nullptr_t) { return "std::nullptr_t"; } }; // test_variant m.def("load_variant", [](const variant<int, std::string, double, std::nullptr_t> &v) { return py::detail::visit_helper<variant>::call(visitor(), v); }); m.def("load_variant_2pass", [](variant<double, int> v) { return py::detail::visit_helper<variant>::call(visitor(), v); }); m.def("cast_variant", []() { using V = variant<int, std::string>; return py::make_tuple(V(5), V("Hello")); }); #endif // #528: templated constructor // (no python tests: the test here is that this compiles) m.def("tpl_ctor_vector", [](std::vector<TplCtorClass> &) {}); m.def("tpl_ctor_map", [](std::unordered_map<TplCtorClass, TplCtorClass> &) {}); m.def("tpl_ctor_set", [](std::unordered_set<TplCtorClass> &) {}); #if defined(PYBIND11_HAS_OPTIONAL) m.def("tpl_constr_optional", [](std::optional<TplCtorClass> &) {}); #endif #if defined(PYBIND11_HAS_EXP_OPTIONAL) m.def("tpl_constr_optional_exp", [](std::experimental::optional<TplCtorClass> &) {}); #endif #if defined(PYBIND11_TEST_BOOST) m.def("tpl_constr_optional_boost", [](boost::optional<TplCtorClass> &) {}); #endif // test_vec_of_reference_wrapper // #171: Can't return STL structures containing reference wrapper m.def("return_vec_of_reference_wrapper", [](std::reference_wrapper<UserType> p4) { static UserType p1{1}, p2{2}, p3{3}; return std::vector<std::reference_wrapper<UserType>>{ std::ref(p1), std::ref(p2), std::ref(p3), p4}; }); // test_stl_pass_by_pointer m.def( "stl_pass_by_pointer", [](std::vector<int> *v) { return *v; }, "v"_a = nullptr); // #1258: pybind11/stl.h converts string to vector<string> m.def("func_with_string_or_vector_string_arg_overload", [](const std::vector<std::string> &) { return 1; }); m.def("func_with_string_or_vector_string_arg_overload", [](const std::list<std::string> &) { return 2; }); m.def("func_with_string_or_vector_string_arg_overload", [](const std::string &) { return 3; }); class Placeholder { public: Placeholder() { print_created(this); } Placeholder(const Placeholder &) = delete; ~Placeholder() { print_destroyed(this); } }; py::class_<Placeholder>(m, "Placeholder"); /// test_stl_vector_ownership m.def( "test_stl_ownership", []() { std::vector<Placeholder *> result; result.push_back(new Placeholder()); return result; }, py::return_value_policy::take_ownership); m.def("array_cast_sequence", [](std::array<int, 3> x) { return x; }); /// test_issue_1561 struct Issue1561Inner { std::string data; }; struct Issue1561Outer { std::vector<Issue1561Inner> list; }; py::class_<Issue1561Inner>(m, "Issue1561Inner") .def(py::init<std::string>()) .def_readwrite("data", &Issue1561Inner::data); py::class_<Issue1561Outer>(m, "Issue1561Outer") .def(py::init<>()) .def_readwrite("list", &Issue1561Outer::list); m.def( "return_vector_bool_raw_ptr", []() { return new std::vector<bool>(4513); }, // Without explicitly specifying `take_ownership`, this function leaks. py::return_value_policy::take_ownership); }