/* tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array arguments Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include <pybind11/numpy.h> double my_func(int x, float y, double z) { py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z)); return (float) x*y*z; } TEST_SUBMODULE(numpy_vectorize, m) { try { py::module::import("numpy"); } catch (...) { return; } // test_vectorize, test_docs, test_array_collapse // Vectorize all arguments of a function (though non-vector arguments are also allowed) m.def("vectorized_func", py::vectorize(my_func)); // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) m.def("vectorized_func2", [](py::array_t<int> x, py::array_t<float> y, float z) { return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y); } ); // Vectorize a complex-valued function m.def("vectorized_func3", py::vectorize( [](std::complex<double> c) { return c * std::complex<double>(2.f); } )); // test_type_selection // Numpy function which only accepts specific data types m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; }); m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; }); m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; }); // test_passthrough_arguments // Passthrough test: references and non-pod types should be automatically passed through (in the // function definition below, only `b`, `d`, and `g` are vectorized): struct NonPODClass { NonPODClass(int v) : value{v} {} int value; }; py::class_<NonPODClass>(m, "NonPODClass").def(py::init<int>()); m.def("vec_passthrough", py::vectorize( [](double *a, double b, py::array_t<double> c, const int &d, int &e, NonPODClass f, const double g) { return *a + b + c.at(0) + d + e + f.value + g; } )); // test_method_vectorization struct VectorizeTestClass { VectorizeTestClass(int v) : value{v} {}; float method(int x, float y) { return y + (float) (x + value); } int value = 0; }; py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass"); vtc .def(py::init<int>()) .def_readwrite("value", &VectorizeTestClass::value); // Automatic vectorizing of methods vtc.def("method", py::vectorize(&VectorizeTestClass::method)); // test_trivial_broadcasting // Internal optimization test for whether the input is trivially broadcastable: py::enum_<py::detail::broadcast_trivial>(m, "trivial") .value("f_trivial", py::detail::broadcast_trivial::f_trivial) .value("c_trivial", py::detail::broadcast_trivial::c_trivial) .value("non_trivial", py::detail::broadcast_trivial::non_trivial); m.def("vectorized_is_trivial", []( py::array_t<int, py::array::forcecast> arg1, py::array_t<float, py::array::forcecast> arg2, py::array_t<double, py::array::forcecast> arg3 ) { ssize_t ndim; std::vector<ssize_t> shape; std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }}; return py::detail::broadcast(buffers, ndim, shape); }); }