/* pybind11/cast.h: Partial template specializations to cast between C++ and Python types Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "pytypes.h" #include "detail/common.h" #include "detail/descr.h" #include "detail/type_caster_base.h" #include "detail/typeid.h" #include #include #include #include #include #include #include #include #include #include #include PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) PYBIND11_NAMESPACE_BEGIN(detail) template class type_caster : public type_caster_base { }; template using make_caster = type_caster>; // Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T template typename make_caster::template cast_op_type cast_op(make_caster &caster) { return caster.operator typename make_caster::template cast_op_type(); } template typename make_caster::template cast_op_type::type> cast_op(make_caster &&caster) { return std::move(caster).operator typename make_caster::template cast_op_type::type>(); } template class type_caster> { private: using caster_t = make_caster; caster_t subcaster; using reference_t = type&; using subcaster_cast_op_type = typename caster_t::template cast_op_type; static_assert(std::is_same::type &, subcaster_cast_op_type>::value || std::is_same::value, "std::reference_wrapper caster requires T to have a caster with an " "`operator T &()` or `operator const T &()`"); public: bool load(handle src, bool convert) { return subcaster.load(src, convert); } static constexpr auto name = caster_t::name; static handle cast(const std::reference_wrapper &src, return_value_policy policy, handle parent) { // It is definitely wrong to take ownership of this pointer, so mask that rvp if (policy == return_value_policy::take_ownership || policy == return_value_policy::automatic) { policy = return_value_policy::automatic_reference; } return caster_t::cast(&src.get(), policy, parent); } template using cast_op_type = std::reference_wrapper; explicit operator std::reference_wrapper() { return cast_op(subcaster); } }; #define PYBIND11_TYPE_CASTER(type, py_name) \ protected: \ type value; \ \ public: \ static constexpr auto name = py_name; \ template >::value, int> = 0> \ static handle cast(T_ *src, return_value_policy policy, handle parent) { \ if (!src) \ return none().release(); \ if (policy == return_value_policy::take_ownership) { \ auto h = cast(std::move(*src), policy, parent); \ delete src; \ return h; \ } \ return cast(*src, policy, parent); \ } \ operator type *() { return &value; } /* NOLINT(bugprone-macro-parentheses) */ \ operator type &() { return value; } /* NOLINT(bugprone-macro-parentheses) */ \ operator type &&() && { return std::move(value); } /* NOLINT(bugprone-macro-parentheses) */ \ template \ using cast_op_type = pybind11::detail::movable_cast_op_type template using is_std_char_type = any_of< std::is_same, /* std::string */ #if defined(PYBIND11_HAS_U8STRING) std::is_same, /* std::u8string */ #endif std::is_same, /* std::u16string */ std::is_same, /* std::u32string */ std::is_same /* std::wstring */ >; template struct type_caster::value && !is_std_char_type::value>> { using _py_type_0 = conditional_t; using _py_type_1 = conditional_t::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>; using py_type = conditional_t::value, double, _py_type_1>; public: bool load(handle src, bool convert) { py_type py_value; if (!src) { return false; } #if !defined(PYPY_VERSION) auto index_check = [](PyObject *o) { return PyIndex_Check(o); }; #else // In PyPy 7.3.3, `PyIndex_Check` is implemented by calling `__index__`, // while CPython only considers the existence of `nb_index`/`__index__`. auto index_check = [](PyObject *o) { return hasattr(o, "__index__"); }; #endif if (std::is_floating_point::value) { if (convert || PyFloat_Check(src.ptr())) { py_value = (py_type) PyFloat_AsDouble(src.ptr()); } else { return false; } } else if (PyFloat_Check(src.ptr()) || (!convert && !PYBIND11_LONG_CHECK(src.ptr()) && !index_check(src.ptr()))) { return false; } else { handle src_or_index = src; // PyPy: 7.3.7's 3.8 does not implement PyLong_*'s __index__ calls. #if PY_VERSION_HEX < 0x03080000 || defined(PYPY_VERSION) object index; if (!PYBIND11_LONG_CHECK(src.ptr())) { // So: index_check(src.ptr()) index = reinterpret_steal(PyNumber_Index(src.ptr())); if (!index) { PyErr_Clear(); if (!convert) return false; } else { src_or_index = index; } } #endif if (std::is_unsigned::value) { py_value = as_unsigned(src_or_index.ptr()); } else { // signed integer: py_value = sizeof(T) <= sizeof(long) ? (py_type) PyLong_AsLong(src_or_index.ptr()) : (py_type) PYBIND11_LONG_AS_LONGLONG(src_or_index.ptr()); } } // Python API reported an error bool py_err = py_value == (py_type) -1 && PyErr_Occurred(); // Check to see if the conversion is valid (integers should match exactly) // Signed/unsigned checks happen elsewhere if (py_err || (std::is_integral::value && sizeof(py_type) != sizeof(T) && py_value != (py_type) (T) py_value)) { PyErr_Clear(); if (py_err && convert && (PyNumber_Check(src.ptr()) != 0)) { auto tmp = reinterpret_steal(std::is_floating_point::value ? PyNumber_Float(src.ptr()) : PyNumber_Long(src.ptr())); PyErr_Clear(); return load(tmp, false); } return false; } value = (T) py_value; return true; } template static typename std::enable_if::value, handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PyFloat_FromDouble((double) src); } template static typename std::enable_if::value && std::is_signed::value && (sizeof(U) <= sizeof(long)), handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PYBIND11_LONG_FROM_SIGNED((long) src); } template static typename std::enable_if::value && std::is_unsigned::value && (sizeof(U) <= sizeof(unsigned long)), handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PYBIND11_LONG_FROM_UNSIGNED((unsigned long) src); } template static typename std::enable_if::value && std::is_signed::value && (sizeof(U) > sizeof(long)), handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PyLong_FromLongLong((long long) src); } template static typename std::enable_if::value && std::is_unsigned::value && (sizeof(U) > sizeof(unsigned long)), handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PyLong_FromUnsignedLongLong((unsigned long long) src); } PYBIND11_TYPE_CASTER(T, const_name::value>("int", "float")); }; template struct void_caster { public: bool load(handle src, bool) { if (src && src.is_none()) { return true; } return false; } static handle cast(T, return_value_policy /* policy */, handle /* parent */) { return none().inc_ref(); } PYBIND11_TYPE_CASTER(T, const_name("None")); }; template <> class type_caster : public void_caster {}; template <> class type_caster : public type_caster { public: using type_caster::cast; bool load(handle h, bool) { if (!h) { return false; } if (h.is_none()) { value = nullptr; return true; } /* Check if this is a capsule */ if (isinstance(h)) { value = reinterpret_borrow(h); return true; } /* Check if this is a C++ type */ const auto &bases = all_type_info((PyTypeObject *) type::handle_of(h).ptr()); if (bases.size() == 1) { // Only allowing loading from a single-value type value = values_and_holders(reinterpret_cast(h.ptr())).begin()->value_ptr(); return true; } /* Fail */ return false; } static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) { if (ptr) { return capsule(ptr).release(); } return none().inc_ref(); } template using cast_op_type = void*&; explicit operator void *&() { return value; } static constexpr auto name = const_name("capsule"); private: void *value = nullptr; }; template <> class type_caster : public void_caster { }; template <> class type_caster { public: bool load(handle src, bool convert) { if (!src) { return false; } if (src.ptr() == Py_True) { value = true; return true; } if (src.ptr() == Py_False) { value = false; return true; } if (convert || (std::strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name) == 0)) { // (allow non-implicit conversion for numpy booleans) Py_ssize_t res = -1; if (src.is_none()) { res = 0; // None is implicitly converted to False } #if defined(PYPY_VERSION) // On PyPy, check that "__bool__" (or "__nonzero__" on Python 2.7) attr exists else if (hasattr(src, PYBIND11_BOOL_ATTR)) { res = PyObject_IsTrue(src.ptr()); } #else // Alternate approach for CPython: this does the same as the above, but optimized // using the CPython API so as to avoid an unneeded attribute lookup. else if (auto *tp_as_number = src.ptr()->ob_type->tp_as_number) { if (PYBIND11_NB_BOOL(tp_as_number)) { res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr()); } } #endif if (res == 0 || res == 1) { value = (res != 0); return true; } PyErr_Clear(); } return false; } static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) { return handle(src ? Py_True : Py_False).inc_ref(); } PYBIND11_TYPE_CASTER(bool, const_name("bool")); }; // Helper class for UTF-{8,16,32} C++ stl strings: template struct string_caster { using CharT = typename StringType::value_type; // Simplify life by being able to assume standard char sizes (the standard only guarantees // minimums, but Python requires exact sizes) static_assert(!std::is_same::value || sizeof(CharT) == 1, "Unsupported char size != 1"); #if defined(PYBIND11_HAS_U8STRING) static_assert(!std::is_same::value || sizeof(CharT) == 1, "Unsupported char8_t size != 1"); #endif static_assert(!std::is_same::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2"); static_assert(!std::is_same::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4"); // wchar_t can be either 16 bits (Windows) or 32 (everywhere else) static_assert(!std::is_same::value || sizeof(CharT) == 2 || sizeof(CharT) == 4, "Unsupported wchar_t size != 2/4"); static constexpr size_t UTF_N = 8 * sizeof(CharT); bool load(handle src, bool) { #if PY_MAJOR_VERSION < 3 object temp; #endif handle load_src = src; if (!src) { return false; } if (!PyUnicode_Check(load_src.ptr())) { #if PY_MAJOR_VERSION >= 3 return load_bytes(load_src); #else if (std::is_same::value) { return load_bytes(load_src); } // The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false if (!PYBIND11_BYTES_CHECK(load_src.ptr())) return false; temp = reinterpret_steal(PyUnicode_FromObject(load_src.ptr())); if (!temp) { PyErr_Clear(); return false; } load_src = temp; #endif } #if PY_VERSION_HEX >= 0x03030000 // On Python >= 3.3, for UTF-8 we avoid the need for a temporary `bytes` // object by using `PyUnicode_AsUTF8AndSize`. if (PYBIND11_SILENCE_MSVC_C4127(UTF_N == 8)) { Py_ssize_t size = -1; const auto *buffer = reinterpret_cast(PyUnicode_AsUTF8AndSize(load_src.ptr(), &size)); if (!buffer) { PyErr_Clear(); return false; } value = StringType(buffer, static_cast(size)); return true; } #endif auto utfNbytes = reinterpret_steal(PyUnicode_AsEncodedString( load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr)); if (!utfNbytes) { PyErr_Clear(); return false; } const auto *buffer = reinterpret_cast(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr())); size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT); // Skip BOM for UTF-16/32 if (PYBIND11_SILENCE_MSVC_C4127(UTF_N > 8)) { buffer++; length--; } value = StringType(buffer, length); // If we're loading a string_view we need to keep the encoded Python object alive: if (IsView) { loader_life_support::add_patient(utfNbytes); } return true; } static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) { const char *buffer = reinterpret_cast(src.data()); auto nbytes = ssize_t(src.size() * sizeof(CharT)); handle s = decode_utfN(buffer, nbytes); if (!s) { throw error_already_set(); } return s; } PYBIND11_TYPE_CASTER(StringType, const_name(PYBIND11_STRING_NAME)); private: static handle decode_utfN(const char *buffer, ssize_t nbytes) { #if !defined(PYPY_VERSION) return UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) : UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) : PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr); #else // PyPy segfaults when on PyUnicode_DecodeUTF16 (and possibly on PyUnicode_DecodeUTF32 as well), // so bypass the whole thing by just passing the encoding as a string value, which works properly: return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr); #endif } // When loading into a std::string or char*, accept a bytes object as-is (i.e. // without any encoding/decoding attempt). For other C++ char sizes this is a no-op. // which supports loading a unicode from a str, doesn't take this path. template bool load_bytes(enable_if_t::value, handle> src) { if (PYBIND11_BYTES_CHECK(src.ptr())) { // We were passed a Python 3 raw bytes; accept it into a std::string or char* // without any encoding attempt. const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr()); if (bytes) { value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr())); return true; } } return false; } template bool load_bytes(enable_if_t::value, handle>) { return false; } }; template struct type_caster, enable_if_t::value>> : string_caster> {}; #ifdef PYBIND11_HAS_STRING_VIEW template struct type_caster, enable_if_t::value>> : string_caster, true> {}; #endif // Type caster for C-style strings. We basically use a std::string type caster, but also add the // ability to use None as a nullptr char* (which the string caster doesn't allow). template struct type_caster::value>> { using StringType = std::basic_string; using StringCaster = type_caster; StringCaster str_caster; bool none = false; CharT one_char = 0; public: bool load(handle src, bool convert) { if (!src) { return false; } if (src.is_none()) { // Defer accepting None to other overloads (if we aren't in convert mode): if (!convert) { return false; } none = true; return true; } return str_caster.load(src, convert); } static handle cast(const CharT *src, return_value_policy policy, handle parent) { if (src == nullptr) { return pybind11::none().inc_ref(); } return StringCaster::cast(StringType(src), policy, parent); } static handle cast(CharT src, return_value_policy policy, handle parent) { if (std::is_same::value) { handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr); if (!s) { throw error_already_set(); } return s; } return StringCaster::cast(StringType(1, src), policy, parent); } explicit operator CharT *() { return none ? nullptr : const_cast(static_cast(str_caster).c_str()); } explicit operator CharT &() { if (none) { throw value_error("Cannot convert None to a character"); } auto &value = static_cast(str_caster); size_t str_len = value.size(); if (str_len == 0) { throw value_error("Cannot convert empty string to a character"); } // If we're in UTF-8 mode, we have two possible failures: one for a unicode character that // is too high, and one for multiple unicode characters (caught later), so we need to figure // out how long the first encoded character is in bytes to distinguish between these two // errors. We also allow want to allow unicode characters U+0080 through U+00FF, as those // can fit into a single char value. if (PYBIND11_SILENCE_MSVC_C4127(StringCaster::UTF_N == 8) && str_len > 1 && str_len <= 4) { auto v0 = static_cast(value[0]); // low bits only: 0-127 // 0b110xxxxx - start of 2-byte sequence // 0b1110xxxx - start of 3-byte sequence // 0b11110xxx - start of 4-byte sequence size_t char0_bytes = (v0 & 0x80) == 0 ? 1 : (v0 & 0xE0) == 0xC0 ? 2 : (v0 & 0xF0) == 0xE0 ? 3 : 4; if (char0_bytes == str_len) { // If we have a 128-255 value, we can decode it into a single char: if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx one_char = static_cast(((v0 & 3) << 6) + (static_cast(value[1]) & 0x3F)); return one_char; } // Otherwise we have a single character, but it's > U+00FF throw value_error("Character code point not in range(0x100)"); } } // UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a // surrogate pair with total length 2 instantly indicates a range error (but not a "your // string was too long" error). else if (PYBIND11_SILENCE_MSVC_C4127(StringCaster::UTF_N == 16) && str_len == 2) { one_char = static_cast(value[0]); if (one_char >= 0xD800 && one_char < 0xE000) { throw value_error("Character code point not in range(0x10000)"); } } if (str_len != 1) { throw value_error("Expected a character, but multi-character string found"); } one_char = value[0]; return one_char; } static constexpr auto name = const_name(PYBIND11_STRING_NAME); template using cast_op_type = pybind11::detail::cast_op_type<_T>; }; // Base implementation for std::tuple and std::pair template class Tuple, typename... Ts> class tuple_caster { using type = Tuple; static constexpr auto size = sizeof...(Ts); using indices = make_index_sequence; public: bool load(handle src, bool convert) { if (!isinstance(src)) { return false; } const auto seq = reinterpret_borrow(src); if (seq.size() != size) { return false; } return load_impl(seq, convert, indices{}); } template static handle cast(T &&src, return_value_policy policy, handle parent) { return cast_impl(std::forward(src), policy, parent, indices{}); } // copied from the PYBIND11_TYPE_CASTER macro template static handle cast(T *src, return_value_policy policy, handle parent) { if (!src) { return none().release(); } if (policy == return_value_policy::take_ownership) { auto h = cast(std::move(*src), policy, parent); delete src; return h; } return cast(*src, policy, parent); } static constexpr auto name = const_name("Tuple[") + concat(make_caster::name...) + const_name("]"); template using cast_op_type = type; explicit operator type() & { return implicit_cast(indices{}); } explicit operator type() && { return std::move(*this).implicit_cast(indices{}); } protected: template type implicit_cast(index_sequence) & { return type(cast_op(std::get(subcasters))...); } template type implicit_cast(index_sequence) && { return type(cast_op(std::move(std::get(subcasters)))...); } static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; } template bool load_impl(const sequence &seq, bool convert, index_sequence) { #ifdef __cpp_fold_expressions if ((... || !std::get(subcasters).load(seq[Is], convert))) { return false; } #else for (bool r : {std::get(subcasters).load(seq[Is], convert)...}) if (!r) return false; #endif return true; } /* Implementation: Convert a C++ tuple into a Python tuple */ template static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence) { PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(src, policy, parent); PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(policy, parent); std::array entries{{ reinterpret_steal(make_caster::cast(std::get(std::forward(src)), policy, parent))... }}; for (const auto &entry : entries) { if (!entry) { return handle(); } } tuple result(size); int counter = 0; for (auto &entry : entries) { PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr()); } return result.release(); } Tuple...> subcasters; }; template class type_caster> : public tuple_caster {}; template class type_caster> : public tuple_caster {}; /// Helper class which abstracts away certain actions. Users can provide specializations for /// custom holders, but it's only necessary if the type has a non-standard interface. template struct holder_helper { static auto get(const T &p) -> decltype(p.get()) { return p.get(); } }; /// Type caster for holder types like std::shared_ptr, etc. /// The SFINAE hook is provided to help work around the current lack of support /// for smart-pointer interoperability. Please consider it an implementation /// detail that may change in the future, as formal support for smart-pointer /// interoperability is added into pybind11. template struct copyable_holder_caster : public type_caster_base { public: using base = type_caster_base; static_assert(std::is_base_of>::value, "Holder classes are only supported for custom types"); using base::base; using base::cast; using base::typeinfo; using base::value; bool load(handle src, bool convert) { return base::template load_impl>(src, convert); } explicit operator type*() { return this->value; } // static_cast works around compiler error with MSVC 17 and CUDA 10.2 // see issue #2180 explicit operator type&() { return *(static_cast(this->value)); } explicit operator holder_type*() { return std::addressof(holder); } explicit operator holder_type&() { return holder; } static handle cast(const holder_type &src, return_value_policy, handle) { const auto *ptr = holder_helper::get(src); return type_caster_base::cast_holder(ptr, &src); } protected: friend class type_caster_generic; void check_holder_compat() { if (typeinfo->default_holder) { throw cast_error("Unable to load a custom holder type from a default-holder instance"); } } bool load_value(value_and_holder &&v_h) { if (v_h.holder_constructed()) { value = v_h.value_ptr(); holder = v_h.template holder(); return true; } throw cast_error("Unable to cast from non-held to held instance (T& to Holder) " #if defined(NDEBUG) "(compile in debug mode for type information)"); #else "of type '" + type_id() + "''"); #endif } template ::value, int> = 0> bool try_implicit_casts(handle, bool) { return false; } template ::value, int> = 0> bool try_implicit_casts(handle src, bool convert) { for (auto &cast : typeinfo->implicit_casts) { copyable_holder_caster sub_caster(*cast.first); if (sub_caster.load(src, convert)) { value = cast.second(sub_caster.value); holder = holder_type(sub_caster.holder, (type *) value); return true; } } return false; } static bool try_direct_conversions(handle) { return false; } holder_type holder; }; /// Specialize for the common std::shared_ptr, so users don't need to template class type_caster> : public copyable_holder_caster> { }; /// Type caster for holder types like std::unique_ptr. /// Please consider the SFINAE hook an implementation detail, as explained /// in the comment for the copyable_holder_caster. template struct move_only_holder_caster { static_assert(std::is_base_of, type_caster>::value, "Holder classes are only supported for custom types"); static handle cast(holder_type &&src, return_value_policy, handle) { auto *ptr = holder_helper::get(src); return type_caster_base::cast_holder(ptr, std::addressof(src)); } static constexpr auto name = type_caster_base::name; }; template class type_caster> : public move_only_holder_caster> { }; template using type_caster_holder = conditional_t::value, copyable_holder_caster, move_only_holder_caster>; template struct always_construct_holder { static constexpr bool value = Value; }; /// Create a specialization for custom holder types (silently ignores std::shared_ptr) #define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \ namespace pybind11 { namespace detail { \ template \ struct always_construct_holder : always_construct_holder { }; \ template \ class type_caster::value>> \ : public type_caster_holder { }; \ }} // PYBIND11_DECLARE_HOLDER_TYPE holder types: template struct is_holder_type : std::is_base_of, detail::type_caster> {}; // Specialization for always-supported unique_ptr holders: template struct is_holder_type> : std::true_type {}; template struct handle_type_name { static constexpr auto name = const_name(); }; template <> struct handle_type_name { static constexpr auto name = const_name("bool"); }; template <> struct handle_type_name { static constexpr auto name = const_name(PYBIND11_BYTES_NAME); }; template <> struct handle_type_name { static constexpr auto name = const_name("int"); }; template <> struct handle_type_name { static constexpr auto name = const_name("Iterable"); }; template <> struct handle_type_name { static constexpr auto name = const_name("Iterator"); }; template <> struct handle_type_name { static constexpr auto name = const_name("float"); }; template <> struct handle_type_name { static constexpr auto name = const_name("None"); }; template <> struct handle_type_name { static constexpr auto name = const_name("*args"); }; template <> struct handle_type_name { static constexpr auto name = const_name("**kwargs"); }; template struct pyobject_caster { template ::value, int> = 0> bool load(handle src, bool /* convert */) { value = src; return static_cast(value); } template ::value, int> = 0> bool load(handle src, bool /* convert */) { #if PY_MAJOR_VERSION < 3 && !defined(PYBIND11_STR_LEGACY_PERMISSIVE) // For Python 2, without this implicit conversion, Python code would // need to be cluttered with six.ensure_text() or similar, only to be // un-cluttered later after Python 2 support is dropped. if (PYBIND11_SILENCE_MSVC_C4127(std::is_same::value) && isinstance(src)) { PyObject *str_from_bytes = PyUnicode_FromEncodedObject(src.ptr(), "utf-8", nullptr); if (!str_from_bytes) throw error_already_set(); value = reinterpret_steal(str_from_bytes); return true; } #endif if (!isinstance(src)) { return false; } value = reinterpret_borrow(src); return true; } static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) { return src.inc_ref(); } PYBIND11_TYPE_CASTER(type, handle_type_name::name); }; template class type_caster::value>> : public pyobject_caster { }; // Our conditions for enabling moving are quite restrictive: // At compile time: // - T needs to be a non-const, non-pointer, non-reference type // - type_caster::operator T&() must exist // - the type must be move constructible (obviously) // At run-time: // - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it // must have ref_count() == 1)h // If any of the above are not satisfied, we fall back to copying. template using move_is_plain_type = satisfies_none_of; template struct move_always : std::false_type {}; template struct move_always, negation>, std::is_move_constructible, std::is_same>().operator T&()), T&> >::value>> : std::true_type {}; template struct move_if_unreferenced : std::false_type {}; template struct move_if_unreferenced, negation>, std::is_move_constructible, std::is_same>().operator T&()), T&> >::value>> : std::true_type {}; template using move_never = none_of, move_if_unreferenced>; // Detect whether returning a `type` from a cast on type's type_caster is going to result in a // reference or pointer to a local variable of the type_caster. Basically, only // non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe; // everything else returns a reference/pointer to a local variable. template using cast_is_temporary_value_reference = bool_constant< (std::is_reference::value || std::is_pointer::value) && !std::is_base_of>::value && !std::is_same, void>::value >; // When a value returned from a C++ function is being cast back to Python, we almost always want to // force `policy = move`, regardless of the return value policy the function/method was declared // with. template struct return_value_policy_override { static return_value_policy policy(return_value_policy p) { return p; } }; template struct return_value_policy_override>::value, void>> { static return_value_policy policy(return_value_policy p) { return !std::is_lvalue_reference::value && !std::is_pointer::value ? return_value_policy::move : p; } }; // Basic python -> C++ casting; throws if casting fails template type_caster &load_type(type_caster &conv, const handle &handle) { if (!conv.load(handle, true)) { #if defined(NDEBUG) throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)"); #else throw cast_error("Unable to cast Python instance of type " + (std::string) str(type::handle_of(handle)) + " to C++ type '" + type_id() + "'"); #endif } return conv; } // Wrapper around the above that also constructs and returns a type_caster template make_caster load_type(const handle &handle) { make_caster conv; load_type(conv, handle); return conv; } PYBIND11_NAMESPACE_END(detail) // pytype -> C++ type template ::value, int> = 0> T cast(const handle &handle) { using namespace detail; static_assert(!cast_is_temporary_value_reference::value, "Unable to cast type to reference: value is local to type caster"); return cast_op(load_type(handle)); } // pytype -> pytype (calls converting constructor) template ::value, int> = 0> T cast(const handle &handle) { return T(reinterpret_borrow(handle)); } // C++ type -> py::object template ::value, int> = 0> object cast(T &&value, return_value_policy policy = return_value_policy::automatic_reference, handle parent = handle()) { using no_ref_T = typename std::remove_reference::type; if (policy == return_value_policy::automatic) { policy = std::is_pointer::value ? return_value_policy::take_ownership : std::is_lvalue_reference::value ? return_value_policy::copy : return_value_policy::move; } else if (policy == return_value_policy::automatic_reference) { policy = std::is_pointer::value ? return_value_policy::reference : std::is_lvalue_reference::value ? return_value_policy::copy : return_value_policy::move; } return reinterpret_steal(detail::make_caster::cast(std::forward(value), policy, parent)); } template T handle::cast() const { return pybind11::cast(*this); } template <> inline void handle::cast() const { return; } template detail::enable_if_t::value, T> move(object &&obj) { if (obj.ref_count() > 1) { #if defined(NDEBUG) throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references" " (compile in debug mode for details)"); #else throw cast_error("Unable to move from Python " + (std::string) str(type::handle_of(obj)) + " instance to C++ " + type_id() + " instance: instance has multiple references"); #endif } // Move into a temporary and return that, because the reference may be a local value of `conv` T ret = std::move(detail::load_type(obj).operator T&()); return ret; } // Calling cast() on an rvalue calls pybind11::cast with the object rvalue, which does: // - If we have to move (because T has no copy constructor), do it. This will fail if the moved // object has multiple references, but trying to copy will fail to compile. // - If both movable and copyable, check ref count: if 1, move; otherwise copy // - Otherwise (not movable), copy. template detail::enable_if_t::value, T> cast(object &&object) { return move(std::move(object)); } template detail::enable_if_t::value, T> cast(object &&object) { if (object.ref_count() > 1) { return cast(object); } return move(std::move(object)); } template detail::enable_if_t::value, T> cast(object &&object) { return cast(object); } template T object::cast() const & { return pybind11::cast(*this); } template T object::cast() && { return pybind11::cast(std::move(*this)); } template <> inline void object::cast() const & { return; } template <> inline void object::cast() && { return; } PYBIND11_NAMESPACE_BEGIN(detail) // Declared in pytypes.h: template ::value, int>> object object_or_cast(T &&o) { return pybind11::cast(std::forward(o)); } struct override_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the PYBIND11_OVERRIDE_OVERRIDE macro template using override_caster_t = conditional_t< cast_is_temporary_value_reference::value, make_caster, override_unused>; // Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then // store the result in the given variable. For other types, this is a no-op. template enable_if_t::value, T> cast_ref(object &&o, make_caster &caster) { return cast_op(load_type(caster, o)); } template enable_if_t::value, T> cast_ref(object &&, override_unused &) { pybind11_fail("Internal error: cast_ref fallback invoked"); } // Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even // though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in // cases where pybind11::cast is valid. template enable_if_t::value, T> cast_safe(object &&o) { return pybind11::cast(std::move(o)); } template enable_if_t::value, T> cast_safe(object &&) { pybind11_fail("Internal error: cast_safe fallback invoked"); } template <> inline void cast_safe(object &&) {} PYBIND11_NAMESPACE_END(detail) // The overloads could coexist, i.e. the #if is not strictly speaking needed, // but it is an easy minor optimization. #if defined(NDEBUG) inline cast_error cast_error_unable_to_convert_call_arg() { return cast_error( "Unable to convert call argument to Python object (compile in debug mode for details)"); } #else inline cast_error cast_error_unable_to_convert_call_arg(const std::string &name, const std::string &type) { return cast_error("Unable to convert call argument '" + name + "' of type '" + type + "' to Python object"); } #endif template tuple make_tuple() { return tuple(0); } template tuple make_tuple(Args&&... args_) { constexpr size_t size = sizeof...(Args); std::array args { { reinterpret_steal(detail::make_caster::cast( std::forward(args_), policy, nullptr))... } }; for (size_t i = 0; i < args.size(); i++) { if (!args[i]) { #if defined(NDEBUG) throw cast_error_unable_to_convert_call_arg(); #else std::array argtypes { {type_id()...} }; throw cast_error_unable_to_convert_call_arg(std::to_string(i), argtypes[i]); #endif } } tuple result(size); int counter = 0; for (auto &arg_value : args) { PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr()); } return result; } /// \ingroup annotations /// Annotation for arguments struct arg { /// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument. constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) { } /// Assign a value to this argument template arg_v operator=(T &&value) const; /// Indicate that the type should not be converted in the type caster arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; } /// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args) arg &none(bool flag = true) { flag_none = flag; return *this; } const char *name; ///< If non-null, this is a named kwargs argument bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!) bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument }; /// \ingroup annotations /// Annotation for arguments with values struct arg_v : arg { private: template arg_v(arg &&base, T &&x, const char *descr = nullptr) : arg(base), value(reinterpret_steal( detail::make_caster::cast(x, return_value_policy::automatic, {}) )), descr(descr) #if !defined(NDEBUG) , type(type_id()) #endif { // Workaround! See: // https://github.com/pybind/pybind11/issues/2336 // https://github.com/pybind/pybind11/pull/2685#issuecomment-731286700 if (PyErr_Occurred()) { PyErr_Clear(); } } public: /// Direct construction with name, default, and description template arg_v(const char *name, T &&x, const char *descr = nullptr) : arg_v(arg(name), std::forward(x), descr) { } /// Called internally when invoking `py::arg("a") = value` template arg_v(const arg &base, T &&x, const char *descr = nullptr) : arg_v(arg(base), std::forward(x), descr) { } /// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg& arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; } /// Same as `arg::nonone()`, but returns *this as arg_v&, not arg& arg_v &none(bool flag = true) { arg::none(flag); return *this; } /// The default value object value; /// The (optional) description of the default value const char *descr; #if !defined(NDEBUG) /// The C++ type name of the default value (only available when compiled in debug mode) std::string type; #endif }; /// \ingroup annotations /// Annotation indicating that all following arguments are keyword-only; the is the equivalent of an /// unnamed '*' argument (in Python 3) struct kw_only {}; /// \ingroup annotations /// Annotation indicating that all previous arguments are positional-only; the is the equivalent of an /// unnamed '/' argument (in Python 3.8) struct pos_only {}; template arg_v arg::operator=(T &&value) const { return {*this, std::forward(value)}; } /// Alias for backward compatibility -- to be removed in version 2.0 template using arg_t = arg_v; inline namespace literals { /** \rst String literal version of `arg` \endrst */ constexpr arg operator"" _a(const char *name, size_t) { return arg(name); } } // namespace literals PYBIND11_NAMESPACE_BEGIN(detail) template using is_kw_only = std::is_same, kw_only>; template using is_pos_only = std::is_same, pos_only>; // forward declaration (definition in attr.h) struct function_record; /// Internal data associated with a single function call struct function_call { function_call(const function_record &f, handle p); // Implementation in attr.h /// The function data: const function_record &func; /// Arguments passed to the function: std::vector args; /// The `convert` value the arguments should be loaded with std::vector args_convert; /// Extra references for the optional `py::args` and/or `py::kwargs` arguments (which, if /// present, are also in `args` but without a reference). object args_ref, kwargs_ref; /// The parent, if any handle parent; /// If this is a call to an initializer, this argument contains `self` handle init_self; }; /// Helper class which loads arguments for C++ functions called from Python template class argument_loader { using indices = make_index_sequence; template using argument_is_args = std::is_same, args>; template using argument_is_kwargs = std::is_same, kwargs>; // Get kwargs argument position, or -1 if not present: static constexpr auto kwargs_pos = constexpr_last(); static_assert(kwargs_pos == -1 || kwargs_pos == (int) sizeof...(Args) - 1, "py::kwargs is only permitted as the last argument of a function"); public: static constexpr bool has_kwargs = kwargs_pos != -1; // py::args argument position; -1 if not present. static constexpr int args_pos = constexpr_last(); static_assert(args_pos == -1 || args_pos == constexpr_first(), "py::args cannot be specified more than once"); static constexpr auto arg_names = concat(type_descr(make_caster::name)...); bool load_args(function_call &call) { return load_impl_sequence(call, indices{}); } template // NOLINTNEXTLINE(readability-const-return-type) enable_if_t::value, Return> call(Func &&f) && { return std::move(*this).template call_impl>(std::forward(f), indices{}, Guard{}); } template enable_if_t::value, void_type> call(Func &&f) && { std::move(*this).template call_impl>(std::forward(f), indices{}, Guard{}); return void_type(); } private: static bool load_impl_sequence(function_call &, index_sequence<>) { return true; } template bool load_impl_sequence(function_call &call, index_sequence) { #ifdef __cpp_fold_expressions if ((... || !std::get(argcasters).load(call.args[Is], call.args_convert[Is]))) { return false; } #else for (bool r : {std::get(argcasters).load(call.args[Is], call.args_convert[Is])...}) { if (!r) { return false; } } #endif return true; } template Return call_impl(Func &&f, index_sequence, Guard &&) && { return std::forward(f)(cast_op(std::move(std::get(argcasters)))...); } std::tuple...> argcasters; }; /// Helper class which collects only positional arguments for a Python function call. /// A fancier version below can collect any argument, but this one is optimal for simple calls. template class simple_collector { public: template explicit simple_collector(Ts &&...values) : m_args(pybind11::make_tuple(std::forward(values)...)) { } const tuple &args() const & { return m_args; } dict kwargs() const { return {}; } tuple args() && { return std::move(m_args); } /// Call a Python function and pass the collected arguments object call(PyObject *ptr) const { PyObject *result = PyObject_CallObject(ptr, m_args.ptr()); if (!result) { throw error_already_set(); } return reinterpret_steal(result); } private: tuple m_args; }; /// Helper class which collects positional, keyword, * and ** arguments for a Python function call template class unpacking_collector { public: template explicit unpacking_collector(Ts &&...values) { // Tuples aren't (easily) resizable so a list is needed for collection, // but the actual function call strictly requires a tuple. auto args_list = list(); using expander = int[]; (void) expander{0, (process(args_list, std::forward(values)), 0)...}; m_args = std::move(args_list); } const tuple &args() const & { return m_args; } const dict &kwargs() const & { return m_kwargs; } tuple args() && { return std::move(m_args); } dict kwargs() && { return std::move(m_kwargs); } /// Call a Python function and pass the collected arguments object call(PyObject *ptr) const { PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr()); if (!result) { throw error_already_set(); } return reinterpret_steal(result); } private: template void process(list &args_list, T &&x) { auto o = reinterpret_steal(detail::make_caster::cast(std::forward(x), policy, {})); if (!o) { #if defined(NDEBUG) throw cast_error_unable_to_convert_call_arg(); #else throw cast_error_unable_to_convert_call_arg( std::to_string(args_list.size()), type_id()); #endif } args_list.append(o); } void process(list &args_list, detail::args_proxy ap) { for (auto a : ap) { args_list.append(a); } } void process(list &/*args_list*/, arg_v a) { if (!a.name) { #if defined(NDEBUG) nameless_argument_error(); #else nameless_argument_error(a.type); #endif } if (m_kwargs.contains(a.name)) { #if defined(NDEBUG) multiple_values_error(); #else multiple_values_error(a.name); #endif } if (!a.value) { #if defined(NDEBUG) throw cast_error_unable_to_convert_call_arg(); #else throw cast_error_unable_to_convert_call_arg(a.name, a.type); #endif } m_kwargs[a.name] = a.value; } void process(list &/*args_list*/, detail::kwargs_proxy kp) { if (!kp) { return; } for (auto k : reinterpret_borrow(kp)) { if (m_kwargs.contains(k.first)) { #if defined(NDEBUG) multiple_values_error(); #else multiple_values_error(str(k.first)); #endif } m_kwargs[k.first] = k.second; } } [[noreturn]] static void nameless_argument_error() { throw type_error("Got kwargs without a name; only named arguments " "may be passed via py::arg() to a python function call. " "(compile in debug mode for details)"); } [[noreturn]] static void nameless_argument_error(const std::string &type) { throw type_error("Got kwargs without a name of type '" + type + "'; only named " "arguments may be passed via py::arg() to a python function call. "); } [[noreturn]] static void multiple_values_error() { throw type_error("Got multiple values for keyword argument " "(compile in debug mode for details)"); } [[noreturn]] static void multiple_values_error(const std::string &name) { throw type_error("Got multiple values for keyword argument '" + name + "'"); } private: tuple m_args; dict m_kwargs; }; // [workaround(intel)] Separate function required here // We need to put this into a separate function because the Intel compiler // fails to compile enable_if_t...>::value> // (tested with ICC 2021.1 Beta 20200827). template constexpr bool args_are_all_positional() { return all_of...>::value; } /// Collect only positional arguments for a Python function call template ()>> simple_collector collect_arguments(Args &&...args) { return simple_collector(std::forward(args)...); } /// Collect all arguments, including keywords and unpacking (only instantiated when needed) template ()>> unpacking_collector collect_arguments(Args &&...args) { // Following argument order rules for generalized unpacking according to PEP 448 static_assert( constexpr_last() < constexpr_first() && constexpr_last() < constexpr_first(), "Invalid function call: positional args must precede keywords and ** unpacking; " "* unpacking must precede ** unpacking" ); return unpacking_collector(std::forward(args)...); } template template object object_api::operator()(Args &&...args) const { #if !defined(NDEBUG) && PY_VERSION_HEX >= 0x03060000 if (!PyGILState_Check()) { pybind11_fail("pybind11::object_api<>::operator() PyGILState_Check() failure."); } #endif return detail::collect_arguments(std::forward(args)...).call(derived().ptr()); } template template object object_api::call(Args &&...args) const { return operator()(std::forward(args)...); } PYBIND11_NAMESPACE_END(detail) template handle type::handle_of() { static_assert( std::is_base_of>::value, "py::type::of only supports the case where T is a registered C++ types." ); return detail::get_type_handle(typeid(T), true); } #define PYBIND11_MAKE_OPAQUE(...) \ namespace pybind11 { namespace detail { \ template<> class type_caster<__VA_ARGS__> : public type_caster_base<__VA_ARGS__> { }; \ }} /// Lets you pass a type containing a `,` through a macro parameter without needing a separate /// typedef, e.g.: `PYBIND11_OVERRIDE(PYBIND11_TYPE(ReturnType), PYBIND11_TYPE(Parent), f, arg)` #define PYBIND11_TYPE(...) __VA_ARGS__ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)